organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4,7-Tri­methyl-2-(4-methyl­phen­yl)-2H-pyrazolo­[3,4-d]pyridazin-5-ium thio­cyanate

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 21 November 2010; accepted 23 November 2010; online 27 November 2010)

1,1′-[5-Methyl-1-(4-methyl­phen­yl)-1H-pyrazole-3,4-di­yl)di­ethan­one condenses with thio­semicarbazide in the presence of acetic acid to form the title salt, C15H17N4+·NCS. The fused-ring system of the cation is almost planar (r.m.s. deviation = 0.020 Å) and the aromatic substituent is aligned at an angle of 48.2 (1)° with respect to the mean plane of the fused-ring system. The N atom at the 5-position is protonated and forms a N—H⋯N hydrogen bond to the thio­cyanate cointer-ion.

Related literature

For reviews on pyrazolo-pyridazines, see: Akbas & Berber (2006[Akbas, E. & Berber, I. (2006). Eur. J. Med. Chem. 40, 401-405.]); Matiichuk et al. (2009[Matiichuk, V. S., Potopnyk, M. A. & Obushak, N. D. (2009). Russ. J. Org. Chem. 43, 321-354.]). For a related structure, see: Dinçer et al. (2004[Dinçer, M., Özdemir, N., Yıldırım, İ., Demir, E., Akçamur, Y. & Işık, Ş. (2004). Acta Cryst. E60, o807-o809.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17N4+·NCS

  • Mr = 311.41

  • Monoclinic, C 2/c

  • a = 18.2445 (5) Å

  • b = 7.3341 (2) Å

  • c = 24.2396 (8) Å

  • β = 106.121 (3)°

  • V = 3115.89 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.30 × 0.10 × 0.05 mm

Data collection
  • Agilent SuperNova diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.939, Tmax = 0.990

  • 7809 measured reflections

  • 3491 independent reflections

  • 2968 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 1.00

  • 3491 reflections

  • 207 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N5 0.91 (2) 1.86 (2) 2.7668 (18) 175.6 (19)

Data collection: CrysAlis PRO (Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As part of our studies on the pharmaceutical applications of pyrazole derivatives, we had intended to synthesis the thiosemicarbazide condensation product of the pyrazole-dialdeyde, 1,1'-[5-methyl-1-(4-tolyl)-1H-pyrazol-3,4-diyl)diethanone, but the reaction yielded instead a pyrazolo[3,4-d]pyridazine (Scheme I, Fig. 1). The reaction was probably catalyzed by acetic acid; the reaction involves a cyclization followed by the formation of the thiocyanate ion (Fig. 2). The fused-ring system of the cation is planar (r.m.s. deviation 0.020 Å), and the aromatic substituent is aligned at 48.2 (1) ° with respect to the mean plane of the fused-ring. The nitrogen atom at the 5-position is protonated; the carbon–nitrogen double-bond involving the protonated nitrogen atom is somewhat longer [1.323 (2) Å] than the carbon–nitrogen double-bond involving the unprotonated one [1.310 (2) Å]. As the protonated nitrogen atom forms a hydrogen bond to the nitrogen end of the anion, the negative charge of the anion probably resides on this atom.

Pyrazolo[3,4-d]pyridazines are more conveniently synthesized directly, from the reaction of 1H-pyrazole-3-carboxylic acids and hydrazines (Akbas & Berber, 2006). A review of their molecular design is given by Matiichuk et al. (2009). For the crystal structure of a related compound, see: Dinçer et al. (2004).

Related literature top

For reviews on pyrazolo-pyridazines, see: Akbas & Berber (2006); Matiichuk et al. (2009). For a related structure, see: Dinçer et al. (2004).

Experimental top

1,1'-[5-Methyl-1-(4-tolyl)-1H-pyrazol-3,4-diyl)diethanone (0.26 g, 1 mmol) and thiosemicarbazide (0.18 g, 2 mmol) were heated in an ethanol/water (1/1, 50 ml) mixture for 4 h; acetic acid (0.5 ml) was added. The solid that separated on cooling was collected and recrystallized from ethanol to yield yellow prisms.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5 times Ueq(C).

The amino H-atom was located in a difference Fourier map and was freely refined.

Structure description top

As part of our studies on the pharmaceutical applications of pyrazole derivatives, we had intended to synthesis the thiosemicarbazide condensation product of the pyrazole-dialdeyde, 1,1'-[5-methyl-1-(4-tolyl)-1H-pyrazol-3,4-diyl)diethanone, but the reaction yielded instead a pyrazolo[3,4-d]pyridazine (Scheme I, Fig. 1). The reaction was probably catalyzed by acetic acid; the reaction involves a cyclization followed by the formation of the thiocyanate ion (Fig. 2). The fused-ring system of the cation is planar (r.m.s. deviation 0.020 Å), and the aromatic substituent is aligned at 48.2 (1) ° with respect to the mean plane of the fused-ring. The nitrogen atom at the 5-position is protonated; the carbon–nitrogen double-bond involving the protonated nitrogen atom is somewhat longer [1.323 (2) Å] than the carbon–nitrogen double-bond involving the unprotonated one [1.310 (2) Å]. As the protonated nitrogen atom forms a hydrogen bond to the nitrogen end of the anion, the negative charge of the anion probably resides on this atom.

Pyrazolo[3,4-d]pyridazines are more conveniently synthesized directly, from the reaction of 1H-pyrazole-3-carboxylic acids and hydrazines (Akbas & Berber, 2006). A review of their molecular design is given by Matiichuk et al. (2009). For the crystal structure of a related compound, see: Dinçer et al. (2004).

For reviews on pyrazolo-pyridazines, see: Akbas & Berber (2006); Matiichuk et al. (2009). For a related structure, see: Dinçer et al. (2004).

Computing details top

Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell refinement: CrysAlis PRO (Agilent Technologies, 2010); data reduction: CrysAlis PRO (Agilent Technologies, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C15H17N4+ NCS– the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Preparation of the title compound.
3,4,7-Trimethyl-2-(4-methylphenyl)-2H-pyrazolo[3,4-d]pyridazin- 5-ium thiocyanate top
Crystal data top
C15H17N4+·NCSF(000) = 1312
Mr = 311.41Dx = 1.328 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4295 reflections
a = 18.2445 (5) Åθ = 2.2–29.3°
b = 7.3341 (2) ŵ = 0.21 mm1
c = 24.2396 (8) ÅT = 100 K
β = 106.121 (3)°Prism, yellow
V = 3115.89 (16) Å30.30 × 0.10 × 0.05 mm
Z = 8
Data collection top
Agilent SuperNova
diffractometer
3491 independent reflections
Radiation source: fine-focus sealed tube2968 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scansh = 1623
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
k = 99
Tmin = 0.939, Tmax = 0.990l = 3123
7809 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0472P)2 + 3.0958P]
where P = (Fo2 + 2Fc2)/3
3491 reflections(Δ/σ)max = 0.001
207 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C15H17N4+·NCSV = 3115.89 (16) Å3
Mr = 311.41Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.2445 (5) ŵ = 0.21 mm1
b = 7.3341 (2) ÅT = 100 K
c = 24.2396 (8) Å0.30 × 0.10 × 0.05 mm
β = 106.121 (3)°
Data collection top
Agilent SuperNova
diffractometer
3491 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
2968 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.990Rint = 0.026
7809 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.32 e Å3
3491 reflectionsΔρmin = 0.27 e Å3
207 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.41884 (2)1.03962 (5)0.678227 (15)0.01918 (11)
N10.30697 (7)0.87179 (17)0.44978 (5)0.0175 (3)
N20.37098 (7)0.79621 (17)0.43977 (5)0.0182 (3)
N30.28626 (6)0.74548 (16)0.28642 (5)0.0148 (2)
N40.21174 (6)0.79970 (16)0.26392 (5)0.0142 (2)
N50.33646 (8)0.96211 (19)0.56469 (6)0.0255 (3)
C10.43819 (8)0.6806 (2)0.37464 (6)0.0195 (3)
H1A0.47800.66330.41090.029*
H1B0.45640.76590.35020.029*
H1C0.42620.56320.35490.029*
C20.36843 (8)0.75572 (19)0.38665 (6)0.0156 (3)
C30.29986 (8)0.78638 (18)0.34177 (6)0.0146 (3)
C40.23596 (8)0.86541 (18)0.35465 (6)0.0146 (3)
C50.24134 (8)0.91093 (19)0.41184 (6)0.0164 (3)
C60.18028 (9)0.9977 (2)0.43299 (7)0.0221 (3)
H6A0.19801.01030.47490.033*
H6B0.13440.92140.42260.033*
H6C0.16841.11850.41550.033*
C70.17924 (8)0.87516 (19)0.30233 (6)0.0147 (3)
C80.10123 (8)0.9549 (2)0.28774 (6)0.0193 (3)
H8A0.08450.98350.24660.029*
H8B0.10191.06680.31000.029*
H8C0.06590.86710.29700.029*
C90.17735 (8)0.77377 (19)0.20373 (6)0.0144 (3)
C100.10569 (8)0.69513 (19)0.18460 (6)0.0165 (3)
H100.08030.65070.21120.020*
C110.07151 (8)0.68226 (19)0.12579 (6)0.0170 (3)
H110.02220.62950.11230.020*
C120.10849 (8)0.74559 (19)0.08639 (6)0.0165 (3)
C130.18234 (8)0.81476 (19)0.10713 (6)0.0158 (3)
H130.20920.85240.08070.019*
C140.21737 (8)0.82962 (19)0.16553 (6)0.0152 (3)
H140.26760.87690.17920.018*
C150.06899 (9)0.7449 (2)0.02308 (6)0.0218 (3)
H15A0.02000.68140.01610.033*
H15B0.10110.68220.00260.033*
H15C0.06020.87080.00920.033*
C160.37098 (8)0.9940 (2)0.61179 (6)0.0176 (3)
H10.3146 (11)0.898 (3)0.4877 (9)0.037 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01806 (18)0.0235 (2)0.01600 (19)0.00002 (14)0.00481 (14)0.00172 (14)
N10.0221 (6)0.0185 (6)0.0116 (6)0.0013 (5)0.0040 (5)0.0010 (5)
N20.0195 (6)0.0184 (6)0.0159 (6)0.0008 (5)0.0035 (5)0.0004 (5)
N30.0133 (5)0.0157 (6)0.0141 (6)0.0002 (5)0.0015 (4)0.0008 (5)
N40.0144 (5)0.0142 (5)0.0134 (6)0.0009 (5)0.0030 (4)0.0001 (5)
N50.0310 (7)0.0304 (7)0.0158 (7)0.0012 (6)0.0078 (5)0.0009 (6)
C10.0170 (7)0.0225 (7)0.0172 (7)0.0005 (6)0.0018 (5)0.0019 (6)
C20.0171 (7)0.0142 (7)0.0143 (7)0.0026 (6)0.0026 (5)0.0002 (5)
C30.0175 (7)0.0124 (6)0.0142 (7)0.0024 (5)0.0045 (5)0.0002 (5)
C40.0171 (6)0.0125 (6)0.0141 (7)0.0016 (5)0.0040 (5)0.0001 (5)
C50.0201 (7)0.0141 (6)0.0150 (7)0.0019 (6)0.0050 (5)0.0010 (5)
C60.0261 (8)0.0248 (8)0.0175 (7)0.0029 (6)0.0094 (6)0.0016 (6)
C70.0184 (7)0.0125 (6)0.0136 (7)0.0016 (5)0.0053 (5)0.0005 (5)
C80.0184 (7)0.0221 (8)0.0169 (7)0.0027 (6)0.0040 (6)0.0007 (6)
C90.0173 (6)0.0138 (6)0.0112 (6)0.0015 (5)0.0024 (5)0.0003 (5)
C100.0182 (7)0.0166 (7)0.0152 (7)0.0011 (6)0.0054 (5)0.0012 (5)
C110.0156 (6)0.0165 (7)0.0174 (7)0.0026 (6)0.0020 (5)0.0013 (6)
C120.0189 (7)0.0153 (7)0.0146 (7)0.0025 (6)0.0036 (5)0.0003 (5)
C130.0178 (7)0.0169 (7)0.0141 (7)0.0021 (6)0.0065 (5)0.0009 (5)
C140.0137 (6)0.0144 (7)0.0173 (7)0.0001 (5)0.0042 (5)0.0007 (5)
C150.0223 (7)0.0269 (8)0.0143 (7)0.0006 (6)0.0018 (6)0.0006 (6)
C160.0198 (7)0.0170 (7)0.0189 (7)0.0010 (6)0.0105 (6)0.0020 (6)
Geometric parameters (Å, º) top
S1—C161.6390 (15)C6—H6B0.9800
N1—C51.3229 (18)C6—H6C0.9800
N1—N21.3738 (17)C7—C81.4877 (19)
N1—H10.91 (2)C8—H8A0.9800
N2—C21.3097 (18)C8—H8B0.9800
N3—C31.3293 (18)C8—H8C0.9800
N3—N41.3755 (16)C9—C101.386 (2)
N4—C71.3533 (17)C9—C141.3905 (19)
N4—C91.4320 (17)C10—C111.3915 (19)
N5—C161.164 (2)C10—H100.9500
C1—C21.4879 (19)C11—C121.393 (2)
C1—H1A0.9800C11—H110.9500
C1—H1B0.9800C12—C131.396 (2)
C1—H1C0.9800C12—C151.5034 (19)
C2—C31.4294 (19)C13—C141.3863 (19)
C3—C41.4124 (19)C13—H130.9500
C4—C71.3984 (19)C14—H140.9500
C4—C51.4025 (19)C15—H15A0.9800
C5—C61.492 (2)C15—H15B0.9800
C6—H6A0.9800C15—H15C0.9800
C5—N1—N2127.91 (12)N4—C7—C8124.77 (12)
C5—N1—H1120.8 (12)C4—C7—C8130.84 (13)
N2—N1—H1111.3 (12)C7—C8—H8A109.5
C2—N2—N1117.73 (12)C7—C8—H8B109.5
C3—N3—N4102.82 (11)H8A—C8—H8B109.5
C7—N4—N3114.78 (11)C7—C8—H8C109.5
C7—N4—C9127.13 (12)H8A—C8—H8C109.5
N3—N4—C9118.08 (11)H8B—C8—H8C109.5
C2—C1—H1A109.5C10—C9—C14121.39 (13)
C2—C1—H1B109.5C10—C9—N4120.13 (12)
H1A—C1—H1B109.5C14—C9—N4118.48 (12)
C2—C1—H1C109.5C9—C10—C11118.94 (13)
H1A—C1—H1C109.5C9—C10—H10120.5
H1B—C1—H1C109.5C11—C10—H10120.5
N2—C2—C3119.82 (13)C12—C11—C10121.00 (13)
N2—C2—C1118.53 (12)C12—C11—H11119.5
C3—C2—C1121.65 (13)C10—C11—H11119.5
N3—C3—C4112.43 (12)C11—C12—C13118.48 (13)
N3—C3—C2127.69 (13)C11—C12—C15120.84 (13)
C4—C3—C2119.87 (13)C13—C12—C15120.65 (13)
C7—C4—C5135.66 (13)C14—C13—C12121.43 (13)
C7—C4—C3105.60 (12)C14—C13—H13119.3
C5—C4—C3118.72 (12)C12—C13—H13119.3
N1—C5—C4115.91 (13)C13—C14—C9118.58 (13)
N1—C5—C6118.14 (13)C13—C14—H14120.7
C4—C5—C6125.95 (13)C9—C14—H14120.7
C5—C6—H6A109.5C12—C15—H15A109.5
C5—C6—H6B109.5C12—C15—H15B109.5
H6A—C6—H6B109.5H15A—C15—H15B109.5
C5—C6—H6C109.5C12—C15—H15C109.5
H6A—C6—H6C109.5H15A—C15—H15C109.5
H6B—C6—H6C109.5H15B—C15—H15C109.5
N4—C7—C4104.34 (12)N5—C16—S1179.46 (14)
C5—N1—N2—C20.3 (2)C9—N4—C7—C4179.09 (12)
C3—N3—N4—C71.25 (15)N3—N4—C7—C8175.84 (12)
C3—N3—N4—C9179.52 (11)C9—N4—C7—C83.3 (2)
N1—N2—C2—C31.58 (19)C5—C4—C7—N4177.34 (15)
N1—N2—C2—C1177.60 (12)C3—C4—C7—N41.48 (15)
N4—N3—C3—C40.19 (15)C5—C4—C7—C85.3 (3)
N4—N3—C3—C2178.40 (13)C3—C4—C7—C8175.91 (14)
N2—C2—C3—N3176.53 (13)C7—N4—C9—C1048.7 (2)
C1—C2—C3—N34.3 (2)N3—N4—C9—C10132.23 (13)
N2—C2—C3—C42.0 (2)C7—N4—C9—C14131.16 (15)
C1—C2—C3—C4177.20 (13)N3—N4—C9—C1447.96 (17)
N3—C3—C4—C70.83 (16)C14—C9—C10—C113.9 (2)
C2—C3—C4—C7179.55 (12)N4—C9—C10—C11175.90 (12)
N3—C3—C4—C5178.22 (12)C9—C10—C11—C120.5 (2)
C2—C3—C4—C50.5 (2)C10—C11—C12—C133.0 (2)
N2—N1—C5—C41.7 (2)C10—C11—C12—C15175.17 (13)
N2—N1—C5—C6178.41 (13)C11—C12—C13—C143.3 (2)
C7—C4—C5—N1177.48 (15)C15—C12—C13—C14174.88 (13)
C3—C4—C5—N11.22 (19)C12—C13—C14—C90.0 (2)
C7—C4—C5—C62.4 (3)C10—C9—C14—C133.6 (2)
C3—C4—C5—C6178.94 (13)N4—C9—C14—C13176.18 (12)
N3—N4—C7—C41.76 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N50.91 (2)1.86 (2)2.7668 (18)175.6 (19)

Experimental details

Crystal data
Chemical formulaC15H17N4+·NCS
Mr311.41
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)18.2445 (5), 7.3341 (2), 24.2396 (8)
β (°) 106.121 (3)
V3)3115.89 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.30 × 0.10 × 0.05
Data collection
DiffractometerAgilent SuperNova
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent Technologies, 2010)
Tmin, Tmax0.939, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
7809, 3491, 2968
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.00
No. of reflections3491
No. of parameters207
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.27

Computer programs: CrysAlis PRO (Agilent Technologies, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N50.91 (2)1.86 (2)2.7668 (18)175.6 (19)
 

Acknowledgements

We thank King Saud University and the University of Malaya for supporting this study.

References

First citationAgilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAkbas, E. & Berber, I. (2006). Eur. J. Med. Chem. 40, 401–405.  Web of Science CrossRef Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationDinçer, M., Özdemir, N., Yıldırım, İ., Demir, E., Akçamur, Y. & Işık, Ş. (2004). Acta Cryst. E60, o807–o809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMatiichuk, V. S., Potopnyk, M. A. & Obushak, N. D. (2009). Russ. J. Org. Chem. 43, 321–354.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds