organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,5′-(Butane-1,4-di­yl)bis­­(1H-tetra­zole) dihydrate

aCollege of Biology, Chemistry and Material Science, East China of Technology, 344000 Fuzhou, Jiangxi, People's Republic of China
*Correspondence e-mail: tongxiaolan@163.com

(Received 22 November 2010; accepted 23 November 2010; online 27 November 2010)

The title compound, C6H10N8·2H2O, was prepared by the reaction of hexanedinitrile and sodium azide. The di-1H-tetra­zole mol­ecule lies on a crystallographic centre of inversion and is linked to the water mol­ecules by N—H⋯O and O—H⋯N hydrogen bonds, forming a two-dimensional supra­molecular structure in the crystal.

Related literature

For tetra­zole derivatives, see: Demko & Sharpless (2001[Demko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem. 66, 7945-7950.]); Diop et al. (2002[Diop, C. A. K., Mahon, M. F., Molloy, K. C., Ooi, L., Raaithby, P. R., Venter, M. M. & Teat, S. J. (2002). CrystEngComm, 4, 462-466.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. I. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Li et al. (2007[Li, J.-R., Tao, Y., Yu, Q. & Bu, X.-H. (2007). Chem. Commun. pp. 1527-1529.]); Tamura et al. (1998[Tamura, Y., Watanabe, F. & Nakatani, T. (1998). J. Med Chem. 41, 640-649.]); Tong et al. (2009[Tong, X. L., Wang, D. Z., Hu, T. L., Song, W. C., Tao, Y. & Bu, X. H. (2009). Cryst. Growth Des. 9, 2280-2286.]); Zhao et al. (2008[Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.]).

[Scheme 1]

Experimental

Crystal data
  • C6H10N8·2H2O

  • Mr = 230.25

  • Monoclinic, C 2/c

  • a = 6.994 (3) Å

  • b = 11.590 (5) Å

  • c = 14.097 (6) Å

  • β = 100.716 (7)°

  • V = 1122.8 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 294 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.979, Tmax = 0.983

  • 2756 measured reflections

  • 992 independent reflections

  • 722 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.147

  • S = 1.04

  • 992 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯N3i 0.85 2.02 2.851 (3) 165
O1W—H1WA⋯N4ii 0.85 1.99 2.822 (3) 167
N1—H1⋯O1W 0.86 1.80 2.662 (3) 175
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GmbH, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The tetrazole derivatives are very important molecules in pharmacological and biochemical properties (Tamura et al., 1998). Since Sharpless et al. have introduced a simple and effective method to synthesize the tetrazole derivatives (Demko et al., 2001), they have been used extensively in areas as diverse as medicinal chemistry, coordination chemistry and material chemistry (Zhao et al., 2008; Kitagawa et al., 2004; Li et al., 2007). Among these, The flexible 5-substituted tetrazolate ligands have been less investigated (Diop et al., 2002), although we have studied the coordination of the bis(tetrazole) ligands separated by alkyl (CH2)n spacers (Tong et al., 2009). Here, as the additional of our work, we report the crystal structure of the title compound (Fig. 1).

1,2-Bis(tetrazol-5-yl)butpane lies on a crystallographic centre of inversion and is linked to the water molecules by N—H···O and O—H···N hydrogen bonds into a 2-D supramolecular structure (Fig. 2).

Related literature top

For tetrazole derivatives, see: Demko & Sharpless (2001); Diop et al. (2002); Kitagawa et al. (2004); Li et al. (2007); Tamura et al. (1998); Tong et al. (2009); Zhao et al. (2008).

Experimental top

1,2-Bis(tetrazol-5-yl)butane was prepared using a reported procedure (Tong et al., 2009) (Scheme I). 1,2-Bis(tetrazol-5-yl)butane and water (12 ml) was sealed in a 25 ml Teflon-lined stainless steel vessel and heated at 393 k for 72 hr., then cooled to room temperature. Colorless prism-shaped crystals of the title compound were isolated and washed with water and ethanol and dried in air.

Refinement top

All H atoms were placed in idealized positions (O—H = 0.85 Å, N—H = 0.86 Å and C—H = 0.95 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C, N) and Uiso(H) = 1.5Ueq(O).

Structure description top

The tetrazole derivatives are very important molecules in pharmacological and biochemical properties (Tamura et al., 1998). Since Sharpless et al. have introduced a simple and effective method to synthesize the tetrazole derivatives (Demko et al., 2001), they have been used extensively in areas as diverse as medicinal chemistry, coordination chemistry and material chemistry (Zhao et al., 2008; Kitagawa et al., 2004; Li et al., 2007). Among these, The flexible 5-substituted tetrazolate ligands have been less investigated (Diop et al., 2002), although we have studied the coordination of the bis(tetrazole) ligands separated by alkyl (CH2)n spacers (Tong et al., 2009). Here, as the additional of our work, we report the crystal structure of the title compound (Fig. 1).

1,2-Bis(tetrazol-5-yl)butpane lies on a crystallographic centre of inversion and is linked to the water molecules by N—H···O and O—H···N hydrogen bonds into a 2-D supramolecular structure (Fig. 2).

For tetrazole derivatives, see: Demko & Sharpless (2001); Diop et al. (2002); Kitagawa et al. (2004); Li et al. (2007); Tamura et al. (1998); Tong et al. (2009); Zhao et al. (2008).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, (I), with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound. Hydrogen bonds are shown as dashed line.
5,5'-(Butane-1,4-diyl)bis(1H-tetrazole) dihydrate top
Crystal data top
C6H10N8·2H2OF(000) = 488
Mr = 230.25Dx = 1.362 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1178 reflections
a = 6.994 (3) Åθ = 2.9–25.0°
b = 11.590 (5) ŵ = 0.11 mm1
c = 14.097 (6) ÅT = 294 K
β = 100.716 (7)°Block, colorless
V = 1122.8 (8) Å30.20 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
992 independent reflections
Radiation source: fine-focus sealed tube722 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 78
Tmin = 0.979, Tmax = 0.983k = 1310
2756 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0759P)2 + 0.9248P]
where P = (Fo2 + 2Fc2)/3
992 reflections(Δ/σ)max < 0.001
73 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C6H10N8·2H2OV = 1122.8 (8) Å3
Mr = 230.25Z = 4
Monoclinic, C2/cMo Kα radiation
a = 6.994 (3) ŵ = 0.11 mm1
b = 11.590 (5) ÅT = 294 K
c = 14.097 (6) Å0.20 × 0.18 × 0.16 mm
β = 100.716 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
992 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
722 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.983Rint = 0.025
2756 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.04Δρmax = 0.16 e Å3
992 reflectionsΔρmin = 0.21 e Å3
73 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.2175 (3)0.10913 (15)0.88483 (13)0.0697 (7)
H1WA0.25030.08470.94240.105*
H1WB0.21530.18230.88860.105*
N10.2521 (3)0.00531 (16)0.72515 (14)0.0487 (6)
H10.24300.03550.77510.058*
N20.2517 (4)0.11987 (17)0.72219 (16)0.0607 (7)
N30.2679 (4)0.14652 (18)0.63566 (16)0.0624 (7)
N40.2787 (4)0.05060 (17)0.58246 (14)0.0536 (7)
C10.2683 (4)0.0365 (2)0.63995 (16)0.0422 (6)
C30.2750 (4)0.1611 (2)0.61690 (17)0.0505 (7)
H3A0.39910.19220.64880.061*
H3B0.17370.20060.64280.061*
C40.2488 (4)0.1863 (2)0.50977 (17)0.0463 (7)
H4A0.35250.14930.48380.056*
H4B0.12610.15410.47710.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.131 (2)0.0449 (11)0.0368 (11)0.0010 (11)0.0256 (11)0.0017 (8)
N10.0817 (16)0.0361 (12)0.0306 (11)0.0005 (10)0.0162 (10)0.0006 (9)
N20.101 (2)0.0406 (13)0.0419 (13)0.0030 (12)0.0169 (12)0.0072 (10)
N30.108 (2)0.0365 (12)0.0451 (14)0.0027 (12)0.0196 (13)0.0011 (10)
N40.0960 (18)0.0327 (11)0.0344 (11)0.0022 (11)0.0181 (11)0.0010 (9)
C10.0603 (16)0.0364 (12)0.0306 (12)0.0024 (11)0.0103 (10)0.0003 (10)
C30.082 (2)0.0344 (13)0.0373 (14)0.0022 (12)0.0157 (12)0.0011 (11)
C40.0661 (16)0.0366 (13)0.0373 (13)0.0007 (12)0.0120 (11)0.0020 (10)
Geometric parameters (Å, º) top
O1W—H1WA0.8500C1—C31.482 (3)
O1W—H1WB0.8500C3—C41.516 (3)
N1—C11.320 (3)C3—H3A0.9700
N1—N21.328 (3)C3—H3B0.9700
N1—H10.8600C4—C4i1.503 (5)
N2—N31.284 (3)C4—H4A0.9700
N3—N41.351 (3)C4—H4B0.9700
N4—C11.305 (3)
H1WA—O1W—H1WB106.1C1—C3—H3A108.8
C1—N1—N2109.8 (2)C4—C3—H3A108.8
C1—N1—H1125.1C1—C3—H3B108.8
N2—N1—H1125.1C4—C3—H3B108.8
N3—N2—N1105.69 (19)H3A—C3—H3B107.7
N2—N3—N4110.7 (2)C4i—C4—C3111.7 (3)
C1—N4—N3106.1 (2)C4i—C4—H4A109.3
N4—C1—N1107.7 (2)C3—C4—H4A109.3
N4—C1—C3127.6 (2)C4i—C4—H4B109.3
N1—C1—C3124.7 (2)C3—C4—H4B109.3
C1—C3—C4113.8 (2)H4A—C4—H4B108.0
C1—N1—N2—N30.1 (3)N2—N1—C1—N40.1 (3)
N1—N2—N3—N40.0 (3)N2—N1—C1—C3179.6 (2)
N2—N3—N4—C10.0 (3)N4—C1—C3—C413.6 (4)
N3—N4—C1—N10.1 (3)N1—C1—C3—C4167.1 (3)
N3—N4—C1—C3179.5 (2)C1—C3—C4—C4i178.4 (3)
Symmetry code: (i) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···N3ii0.852.022.851 (3)165
O1W—H1WA···N4iii0.851.992.822 (3)167
N1—H1···O1W0.861.802.662 (3)175
Symmetry codes: (ii) x+1/2, y+1/2, z+3/2; (iii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H10N8·2H2O
Mr230.25
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)6.994 (3), 11.590 (5), 14.097 (6)
β (°) 100.716 (7)
V3)1122.8 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.979, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
2756, 992, 722
Rint0.025
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.147, 1.04
No. of reflections992
No. of parameters73
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.21

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···N3i0.852.022.851 (3)165.2
O1W—H1WA···N4ii0.851.992.822 (3)167.0
N1—H1···O1W0.861.802.662 (3)174.8
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y, z+1/2.
 

Acknowledgements

This work was was supported by the Postgraduate Foundation of East China of Technology (No·Y09–11–02)

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GmbH, Bonn, Germany.  Google Scholar
First citationDemko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem. 66, 7945–7950.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDiop, C. A. K., Mahon, M. F., Molloy, K. C., Ooi, L., Raaithby, P. R., Venter, M. M. & Teat, S. J. (2002). CrystEngComm, 4, 462–466.  CSD CrossRef CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. I. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationLi, J.-R., Tao, Y., Yu, Q. & Bu, X.-H. (2007). Chem. Commun. pp. 1527–1529.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTamura, Y., Watanabe, F. & Nakatani, T. (1998). J. Med Chem. 41, 640–649.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTong, X. L., Wang, D. Z., Hu, T. L., Song, W. C., Tao, Y. & Bu, X. H. (2009). Cryst. Growth Des. 9, 2280–2286.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds