organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-(3-bromo­phen­yl)-6-methyl-2-oxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

aSchool of Display and Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea, bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Chemistry, Karnatak Universitys Karnatak Science College, Dharwad 580 001, Karnataka, India
*Correspondence e-mail: yuvraj_pd@yahoo.co.in

(Received 22 November 2010; accepted 23 November 2010; online 27 November 2010)

In the title compound, C14H15BrN2O3, the dihydro­pyrimidin­one ring adopts a boat conformation. In the crystal, adjacent mol­ecules are linked through N—H⋯O hydrogen bonds forming an R22(8) ring motif and generating a zigzag chain extending in [010].

Related literature

For general background to and the pharmaceutical applications of pyrimidino­nes, see: Biginelli (1891[Biginelli, P. (1891). Ber. Dtsch Chem. Ges. 24, 2962-2965.]); Atwal (1990[Atwal, K. S. (1990). J. Med. Chem. 33, 1510-1515.]); Kappe (2000[Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043-1052.]). For a related structure, see: Fun et al. (2009[Fun, H.-K., Yeap, C. S., Babu, M. & Kalluraya, B. (2009). Acta Cryst. E65, o1188-o1189.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15BrN2O3

  • Mr = 339.19

  • Monoclinic, P 21 /c

  • a = 12.5184 (11) Å

  • b = 7.3412 (5) Å

  • c = 17.0426 (15) Å

  • β = 115.086 (6)°

  • V = 1418.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.91 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.2 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.488, Tmax = 0.559

  • 13419 measured reflections

  • 3541 independent reflections

  • 2597 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.02

  • 3541 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.04 2.868 (2) 161
N2—H2A⋯O1ii 0.86 2.12 2.948 (2) 162
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In recent years, acid-catalyzed cyclocondensation of β-ketoesters with aromatic aldehydes and ureas, known as the Biginelli reaction, has attracted remarkable attention. The resulting dihydropyrimidinones (DHPM) have drawn wide-spread interest due to their broad range of therapeutic and pharmacological properties (Kappe, 2000). Owing to this background and in order to obtain detailed information on its molecular conformation, the x-ray structure of the title compound has been determined and is discussed here.

The ORTEP plot of the title molecule is shown in Fig.1. In the present structure dihydropyrimidinone ring adopts a boat conformation with atoms N2 and C7 deviating by 0.159 (2) and 0.214 (2) Å, respectively from the least square plane defined by the remaining atoms N1/C8/C9/C10 in the ring.

The puckering parameters (Cremer & Pople, 1975) are Q = 0.339 (2) Å;Θ = 74.9 (3)° and φ = 50.2 (3)°. Atom Br1 deviates from the plane of the C1—C6 benzene ring by -0.024 (1) Å. The ethyl acetate group shows an extended conformation [C11—O3—C12—C13] = 174.7 (2)°. In the crystal structure, the molecules at (x, y, z), -x,-1/2 + y,1/2 - z,and -x,1/2 + y,1/2 - z are linked by N(1)—H(1 A)···O(1) and N(2)—H(2 A)···O(1) hydrogen bonds and forming a ring motif R22(8) and generating a one dimensional chain extending in [010] direction.

Related literature top

For general background and the pharmaceutical applications of pyrimidinones, see: Biginelli (1891); Atwal (1990); Kappe (2000). For a related structure, see: Fun et al. (2009). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of ethylacetoacetate (5 mmol), 3-bromobenzaldehyde (5 mmol) and urea (6 mmol) was refluxed in ethanol in the presence of concentrated hydrochloric acid as catalyst. After the completion of reaction, it was quenched in ice cold water and the obtained precipitate was filtered, dried and crystallized from ethanol to obtain the title compound.

Refinement top

All H atoms were positioned geometrically (N—H = 0.86 Å, C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2 Ueq(C,N) for other H atoms.

Structure description top

In recent years, acid-catalyzed cyclocondensation of β-ketoesters with aromatic aldehydes and ureas, known as the Biginelli reaction, has attracted remarkable attention. The resulting dihydropyrimidinones (DHPM) have drawn wide-spread interest due to their broad range of therapeutic and pharmacological properties (Kappe, 2000). Owing to this background and in order to obtain detailed information on its molecular conformation, the x-ray structure of the title compound has been determined and is discussed here.

The ORTEP plot of the title molecule is shown in Fig.1. In the present structure dihydropyrimidinone ring adopts a boat conformation with atoms N2 and C7 deviating by 0.159 (2) and 0.214 (2) Å, respectively from the least square plane defined by the remaining atoms N1/C8/C9/C10 in the ring.

The puckering parameters (Cremer & Pople, 1975) are Q = 0.339 (2) Å;Θ = 74.9 (3)° and φ = 50.2 (3)°. Atom Br1 deviates from the plane of the C1—C6 benzene ring by -0.024 (1) Å. The ethyl acetate group shows an extended conformation [C11—O3—C12—C13] = 174.7 (2)°. In the crystal structure, the molecules at (x, y, z), -x,-1/2 + y,1/2 - z,and -x,1/2 + y,1/2 - z are linked by N(1)—H(1 A)···O(1) and N(2)—H(2 A)···O(1) hydrogen bonds and forming a ring motif R22(8) and generating a one dimensional chain extending in [010] direction.

For general background and the pharmaceutical applications of pyrimidinones, see: Biginelli (1891); Atwal (1990); Kappe (2000). For a related structure, see: Fun et al. (2009). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule showing the thermal ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed along c axis. For clarity, hydrogen atoms which are not involved in hydrogen bonding are omitted
Ethyl 4-(3-bromophenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate top
Crystal data top
C14H15BrN2O3F(000) = 688
Mr = 339.19Dx = 1.588 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 754 reflections
a = 12.5184 (11) Åθ = 1.8–28.4°
b = 7.3412 (5) ŵ = 2.91 mm1
c = 17.0426 (15) ÅT = 293 K
β = 115.086 (6)°Block, colourless
V = 1418.5 (2) Å30.25 × 0.23 × 0.2 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3541 independent reflections
Radiation source: fine-focus sealed tube2597 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and φ scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1614
Tmin = 0.488, Tmax = 0.559k = 99
13419 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.4545P]
where P = (Fo2 + 2Fc2)/3
3541 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
C14H15BrN2O3V = 1418.5 (2) Å3
Mr = 339.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5184 (11) ŵ = 2.91 mm1
b = 7.3412 (5) ÅT = 293 K
c = 17.0426 (15) Å0.25 × 0.23 × 0.2 mm
β = 115.086 (6)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3541 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2597 reflections with I > 2σ(I)
Tmin = 0.488, Tmax = 0.559Rint = 0.033
13419 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.02Δρmax = 0.32 e Å3
3541 reflectionsΔρmin = 0.57 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.44441 (3)0.16428 (4)0.393184 (18)0.06851 (13)
O10.01129 (13)0.45992 (18)0.25987 (9)0.0366 (3)
O20.19555 (17)0.5721 (2)0.01580 (10)0.0542 (4)
O30.20747 (13)0.2739 (2)0.01176 (9)0.0398 (3)
N10.07460 (14)0.3000 (2)0.18856 (10)0.0300 (3)
H1A0.04130.20070.19320.036*
N20.07540 (15)0.6114 (2)0.18553 (10)0.0328 (4)
H2A0.07240.71290.20970.039*
C10.37388 (19)0.3902 (3)0.25000 (14)0.0394 (5)
H10.36020.50130.22120.047*
C20.4823 (2)0.3559 (3)0.31773 (15)0.0471 (5)
H20.54080.44460.33380.056*
C30.5056 (2)0.1925 (3)0.36196 (14)0.0455 (5)
H30.57850.17010.40770.055*
C40.41681 (19)0.0634 (3)0.33589 (13)0.0390 (5)
C50.30810 (18)0.0945 (3)0.26915 (12)0.0349 (4)
H50.24980.00560.25360.042*
C60.28529 (16)0.2598 (3)0.22473 (11)0.0287 (4)
C70.16221 (16)0.2905 (2)0.15251 (11)0.0271 (4)
H70.14280.18480.11380.033*
C80.04431 (16)0.4545 (2)0.21425 (11)0.0285 (4)
C90.11175 (17)0.6132 (2)0.11857 (11)0.0293 (4)
C100.15120 (16)0.4584 (2)0.09844 (11)0.0281 (4)
C110.18583 (17)0.4468 (3)0.02604 (11)0.0329 (4)
C120.2432 (2)0.2459 (4)0.05813 (13)0.0446 (5)
H12A0.31090.32140.04930.054*
H12B0.17930.27840.11320.054*
C130.2736 (3)0.0503 (4)0.05805 (18)0.0688 (8)
H13A0.33680.01960.00330.103*
H13B0.29790.02790.10360.103*
H13C0.20590.02310.06720.103*
C140.1005 (2)0.7953 (3)0.07619 (13)0.0397 (5)
H14A0.17620.85350.09820.060*
H14B0.04630.86960.08850.060*
H14C0.07160.77940.01470.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0843 (2)0.04469 (16)0.06112 (18)0.01772 (13)0.01586 (15)0.02071 (12)
O10.0494 (8)0.0265 (7)0.0486 (8)0.0023 (6)0.0348 (7)0.0010 (6)
O20.0830 (12)0.0447 (10)0.0545 (9)0.0032 (8)0.0483 (9)0.0133 (8)
O30.0568 (9)0.0381 (8)0.0374 (7)0.0002 (7)0.0322 (7)0.0014 (6)
N10.0377 (8)0.0216 (7)0.0397 (8)0.0004 (6)0.0250 (7)0.0030 (6)
N20.0496 (10)0.0197 (7)0.0374 (8)0.0007 (6)0.0267 (8)0.0020 (6)
C10.0426 (11)0.0347 (10)0.0429 (11)0.0015 (9)0.0202 (9)0.0064 (9)
C20.0382 (11)0.0504 (14)0.0514 (12)0.0075 (10)0.0178 (10)0.0000 (10)
C30.0401 (11)0.0548 (14)0.0389 (11)0.0097 (10)0.0140 (9)0.0021 (10)
C40.0519 (12)0.0331 (11)0.0352 (9)0.0121 (9)0.0216 (9)0.0059 (8)
C50.0441 (11)0.0278 (9)0.0354 (9)0.0015 (8)0.0195 (9)0.0002 (8)
C60.0362 (9)0.0273 (9)0.0291 (8)0.0036 (7)0.0202 (8)0.0001 (7)
C70.0356 (9)0.0219 (8)0.0289 (8)0.0002 (7)0.0186 (7)0.0004 (7)
C80.0327 (9)0.0247 (9)0.0312 (8)0.0001 (7)0.0165 (8)0.0016 (7)
C90.0334 (9)0.0258 (9)0.0289 (8)0.0037 (7)0.0133 (7)0.0021 (7)
C100.0330 (9)0.0269 (9)0.0261 (8)0.0017 (7)0.0142 (7)0.0019 (7)
C110.0358 (10)0.0356 (10)0.0284 (8)0.0012 (8)0.0146 (8)0.0015 (8)
C120.0493 (12)0.0619 (15)0.0323 (10)0.0057 (11)0.0266 (9)0.0014 (10)
C130.099 (2)0.0677 (19)0.0591 (15)0.0209 (16)0.0522 (16)0.0020 (14)
C140.0533 (12)0.0255 (9)0.0433 (11)0.0000 (8)0.0235 (10)0.0065 (8)
Geometric parameters (Å, º) top
Br1—C41.892 (2)C4—C51.373 (3)
O1—C81.245 (2)C5—C61.394 (3)
O2—C111.202 (2)C5—H50.9300
O3—C111.341 (2)C6—C71.527 (3)
O3—C121.453 (2)C7—C101.510 (2)
N1—C81.328 (2)C7—H70.9800
N1—C71.469 (2)C9—C101.340 (3)
N1—H1A0.8600C9—C141.497 (3)
N2—C81.371 (2)C10—C111.474 (2)
N2—C91.396 (2)C12—C131.486 (4)
N2—H2A0.8600C12—H12A0.9700
C1—C21.382 (3)C12—H12B0.9700
C1—C61.388 (3)C13—H13A0.9600
C1—H10.9300C13—H13B0.9600
C2—C31.380 (3)C13—H13C0.9600
C2—H20.9300C14—H14A0.9600
C3—C41.383 (3)C14—H14B0.9600
C3—H30.9300C14—H14C0.9600
C11—O3—C12116.02 (16)O1—C8—N1123.16 (16)
C8—N1—C7123.15 (15)O1—C8—N2120.97 (16)
C8—N1—H1A118.4N1—C8—N2115.85 (16)
C7—N1—H1A118.4C10—C9—N2118.96 (16)
C8—N2—C9122.68 (15)C10—C9—C14127.08 (17)
C8—N2—H2A118.7N2—C9—C14113.95 (17)
C9—N2—H2A118.7C9—C10—C11122.34 (16)
C2—C1—C6120.4 (2)C9—C10—C7118.95 (15)
C2—C1—H1119.8C11—C10—C7118.71 (16)
C6—C1—H1119.8O2—C11—O3122.56 (17)
C3—C2—C1121.3 (2)O2—C11—C10126.29 (19)
C3—C2—H2119.3O3—C11—C10111.15 (16)
C1—C2—H2119.3O3—C12—C13107.72 (19)
C2—C3—C4117.7 (2)O3—C12—H12A110.2
C2—C3—H3121.1C13—C12—H12A110.2
C4—C3—H3121.1O3—C12—H12B110.2
C5—C4—C3122.09 (19)C13—C12—H12B110.2
C5—C4—Br1118.33 (17)H12A—C12—H12B108.5
C3—C4—Br1119.58 (16)C12—C13—H13A109.5
C4—C5—C6119.84 (19)C12—C13—H13B109.5
C4—C5—H5120.1H13A—C13—H13B109.5
C6—C5—H5120.1C12—C13—H13C109.5
C1—C6—C5118.62 (18)H13A—C13—H13C109.5
C1—C6—C7123.28 (17)H13B—C13—H13C109.5
C5—C6—C7118.07 (17)C9—C14—H14A109.5
N1—C7—C10109.00 (14)C9—C14—H14B109.5
N1—C7—C6110.31 (14)H14A—C14—H14B109.5
C10—C7—C6114.35 (15)C9—C14—H14C109.5
N1—C7—H7107.6H14A—C14—H14C109.5
C10—C7—H7107.6H14B—C14—H14C109.5
C6—C7—H7107.6
C6—C1—C2—C30.1 (3)C9—N2—C8—N114.2 (3)
C1—C2—C3—C40.4 (4)C8—N2—C9—C1020.2 (3)
C2—C3—C4—C50.8 (3)C8—N2—C9—C14159.42 (18)
C2—C3—C4—Br1179.20 (17)N2—C9—C10—C11177.02 (16)
C3—C4—C5—C60.8 (3)C14—C9—C10—C112.5 (3)
Br1—C4—C5—C6179.11 (14)N2—C9—C10—C73.8 (3)
C2—C1—C6—C50.1 (3)C14—C9—C10—C7176.64 (18)
C2—C1—C6—C7177.96 (19)N1—C7—C10—C928.6 (2)
C4—C5—C6—C10.5 (3)C6—C7—C10—C995.4 (2)
C4—C5—C6—C7178.46 (17)N1—C7—C10—C11152.22 (15)
C8—N1—C7—C1036.2 (2)C6—C7—C10—C1183.8 (2)
C8—N1—C7—C690.2 (2)C12—O3—C11—O20.3 (3)
C1—C6—C7—N1111.5 (2)C12—O3—C11—C10179.66 (16)
C5—C6—C7—N166.4 (2)C9—C10—C11—O28.7 (3)
C1—C6—C7—C1011.8 (2)C7—C10—C11—O2170.5 (2)
C5—C6—C7—C10170.39 (16)C9—C10—C11—O3171.96 (17)
C7—N1—C8—O1165.42 (17)C7—C10—C11—O38.9 (2)
C7—N1—C8—N216.2 (2)C11—O3—C12—C13174.7 (2)
C9—N2—C8—O1164.23 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.042.868 (2)161
N2—H2A···O1ii0.862.122.948 (2)162
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H15BrN2O3
Mr339.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.5184 (11), 7.3412 (5), 17.0426 (15)
β (°) 115.086 (6)
V3)1418.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.91
Crystal size (mm)0.25 × 0.23 × 0.2
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.488, 0.559
No. of measured, independent and
observed [I > 2σ(I)] reflections
13419, 3541, 2597
Rint0.033
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.02
No. of reflections3541
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.57

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.042.868 (2)161
N2—H2A···O1ii0.862.122.948 (2)162
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

HY gratefully acknowledges Yeungnam University for offering the opportunity to work as a Full-Time Foreign Instructor. SS and DV thank the TBI X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the University Grants Commission (UGC&SAP) for financial support.

References

First citationAtwal, K. S. (1990). J. Med. Chem. 33, 1510–1515.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBiginelli, P. (1891). Ber. Dtsch Chem. Ges. 24, 2962–2965.  CrossRef Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Yeap, C. S., Babu, M. & Kalluraya, B. (2009). Acta Cryst. E65, o1188–o1189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043–1052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds