organic compounds
[(Pyrrolidin-1-yl)carbothioylsulfanyl]methyl pyrrolidine-1-carbodithioate
aDepartment of Industrial Safety and Health & Institute Occupational Safety and Hazard Prevention, Hungkuang University, Shalu 433, Taichung, Taiwan, bDepartment of Applied Cosmetology, Hungkuang University, Shalu 433, Taichung, Taiwan, and cInstrumentation Center, College of Science, National Taiwan University, Taipei 106, Taiwan
*Correspondence e-mail: khyih@sunrise.hk.edu.tw, ghlee@ntu.edu.tw
The title compound, C11H18N2S4, was unexpectedly obtained during studies on the reactivity of the complex tris(acac-κ2O,O′)gallium(III) (acac is acetylacetonate) with C4H8NCS2H in dichloromethane. The title compound shows disordered two pyrrolidine rings with major and minor occupancies of 0.546 (4) and 0.454 (4). Two (pyrrolidin-1-yl)carbothioylsulfanyl units are linked together through a methylene C atom and weak C—H⋯S interactions are found.
Related literature
For bis(dialkyldithiocarbamates), CH2(S2CNR2)2, see: R = Me (Thomas, 1945, 1946); R = Et (Heckley et al., 1970); R = C5H10 (Sharma et al., 1991). For weak C—H⋯S interactions, see: Kayed et al. (2008); Pervez et al. (2010); Vangala et al. (2002); Yaqub et al. (2010). For our previous work on the preparation of In(III) complexes, see: Chou et al. (2007). For C=S double-bond lengths, see: Pauling (1960).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810046027/bv2162sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810046027/bv2162Isup2.hkl
The synthesis of the title compound (I) was carried out as follows. 10 ml of CH2Cl2 was added to a flask of Ga(acac)3 (0.367 g, 1.0 mmol) and C4H8NCS2H (0.345 g, 3.0 mmol). The solution was stirred for 2 days at room temperature. The solution is concentrated under vacuum and n-hexane (10 ml) was added to initiate precipitation. The pale-white solids were isolated by filtration (G4), washed with n-hexane (2 x 10 ml) and subsequently drying under vacuum yielding [CH2(S2CNC4H8)2] (0.459 g, 50%). Further purification was accomplished by recrystallization from 1/10 CH2Cl2/n-hexane. The pale-white crystals of (I) for X-ray structure analysis were obtained by slow diffusion of n-hexane into the CH2Cl2 solution of the title compound at room temperature for 3 days. Spectroscopic analysis: 1H NMR (CDCl3, 298 K, δ, p.p.m.): δ 1.65, 1.74 (m, 4H, NCCH2), δ 2.98, 3.29 (m, 4H, NCH2), 5.33 (s, 2H, SCH2). 13C{1H} NMR (CDCl3, 298 K, δ, p.p.m.): δ 24.8 (s, NCH2CH2), 49.8 (s, NCH2), 50.0 (s, SCH2S), 191.5 (s, CS). MS (m/z): 306.5 (M+). Anal. Calcd for C11H18N2S4: C, 43.10; H, 5.92; N, 9.14. Found: C, 43.31; H, 5.69; N, 9.02.
Two pyrrolidinyl groups are found to be disordered over two positions (C1, C2, C3, C4, C5, C6, C7, C8, C9, C10) and (C1', C2', C3', C4', C5', C6', C7', C8', C9', C10') and the occupancies are refined to 0.546 (4) and 0.454 (4).
H atoms were positioned geometrically and refined using a riding model, with C—H = 0.99 Å and with Uiso(H) = 1.2 times Ueq(C).
Formation of methylene bis(dialkyldithiocarbamates), CH2(S2CNR2)2 [R = Me (Thomas, 1946), Et (Heckley et al., 1970), C5H10 (Sharma et al., 1991)] have been reported in the literature as by-products in the reactions of transition metal halides with anhydrous sodium dialkyldithiocarbamates when methylene chloride was used as solvent or reaction of anhydrous sodium dialkyldithiocarbamates with methylene chloride under refluxing conditions (Sharma et al., 1991).
Our previous report showed complexes [In(S2CNC5H10)3], [In(pyS)3] and [In(pyS)2(acac)] (acac: acetylacetonate; pyS: pyridine-2-thionate) are prepared by reacting the complex tris(acac-κ2O,O')indium(III) with HS2CNC5H10, and pySH with ratios of 1:3, 1:3, and 1:2 in dichloromethane at room temperature, respectively (Chou et al., 2007). To test the generality of this we studied the reaction of tris(acac-κ2O,O')gallium(III) complex and C4H8NCS2H. During studies on the reactivity of complex tris(acac-κ2O,O')gallium(III), with C4H8NCS2H in dichloromethane, we unexpectedly obtained the white crystals of title compound (I), identified as methylene bis(pyrrolidinyldithiocarbamate) by X-ray structure, NMR and Mass spectroscopic analyses. It consists of two pyrrolidinyldithiocarbamate units, bridged by a methylene group, i.e. C4H8N—CS—S—CH2—S—CS—NC4H8. The 1H NMR spectrum of (I) in CDCl3 shows one singlet at 5.33 ppm., assignable to SCH2S. The IR spectrum shows the following characteristic bands, 1470 cm-1 (νC=N), 1305 cm-1 (νC-N), 990 cm-1 (νC=S), 915 cm-1 (νC-S). The FAB shows the molecular ions C11H18N2S4 with the characteristic isotopic distribution patterns.
The solid-state structure has been established by X-ray crystallography. The molecular structure of the title compound is shown in Fig. 1. In (I), the C1—S2 and C6—S4 bond lengths of 1.725 (10) and 1.693 (8) Å, respectively, are slightly longer than a normal C=S double bond (ca 1.61 Å) (Pauling, 1960), while the C1—S1 and C6—S3 distance of 1.743 (10) and 1.827 (8) Å, respectively, are clearly single bonds. The angle of S3—C11—S1 (114.05 (18)°) is larger than the ideal tetrahedral value of 109.47°, probably due to repulsion between the two C=S bonding electron pairs. Two pyrrolidinyl groups are found to be disordered over two positions (C1, C2, C3, C4, C5, C6, C7, C8, C9, C10) and (C1', C2', C3', C4', C5', C6', C7', C8', C9', C10') and refined ratios of the major and minor components being 0.546 (4): 0.454 (4). As a result of two different packings are shown in Fig. 2(a) and (b). The weak interactions of C—H···S (3.683 (6) - 3.823 (11) Å) in (I) are also found in those of (E)-2-[1-(1-benzothiophen-3-yl)ethylidene]hydrazinecarbothioamide (3.613 (3) - 3.762 (4) Å) (Kayed et al., 2008), 4-(5-chloro-2- methylphenyl)-1-[2-oxo-5-(trifluoromethoxy)indolin-3-ylidene]thiosemicarbazide (3.245 (4) Å) (Pervez et al., 2010), bis(4-aminophenyl)disulfide (3.7387 (18) Å) (Vangala et al., 2002) and 1-[1-(4-bromophenyl)ethylidene]-4-(2,4-dimethoxyphenyl)thiosemicarbazide (3.774 (3) Å) (Yaqub et al., 2010), respectively.
For bis(dialkyldithiocarbamates), CH2(S2CNR2)2, see: R = Me (Thomas, 1945, 1946); R = Et (Heckley et al., 1970); R = C5H10 (Sharma et al., 1991). For weak C—H···S interactions, see: Kayed et al. (2008); Pervez et al. (2010); Vangala et al. (2002); Yaqub et al. (2010). For our previous work on the preparation of In(III) complexes, see: Chou et al. (2007). For C=S double-bond lengths, see: Pauling (1960).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I), showing two independent molecules and the 50% probability displacement ellipsoids. | |
Fig. 2. The packing diagram of (I), showing two different packing patterns. |
C11H18N2S4 | F(000) = 648 |
Mr = 306.51 | Dx = 1.417 Mg m−3 |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2ac | Cell parameters from 2540 reflections |
a = 21.9118 (18) Å | θ = 2.3–26.6° |
b = 4.5705 (4) Å | µ = 0.64 mm−1 |
c = 14.3452 (12) Å | T = 150 K |
V = 1436.6 (2) Å3 | Block, light-brown |
Z = 4 | 0.25 × 0.25 × 0.15 mm |
Bruker SMART APEX CCD area-detector diffractometer | 3292 independent reflections |
Radiation source: fine-focus sealed tube | 2759 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
ω scans | θmax = 27.5°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −28→28 |
Tmin = 0.856, Tmax = 0.910 | k = −5→5 |
17016 measured reflections | l = −18→18 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.062 | H-atom parameters constrained |
wR(F2) = 0.166 | w = 1/[σ2(Fo2) + (0.1007P)2 + 0.6346P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.003 |
3292 reflections | Δρmax = 1.05 e Å−3 |
180 parameters | Δρmin = −0.27 e Å−3 |
17 restraints | Absolute structure: Flack (1983), 1579 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.1 (2) |
C11H18N2S4 | V = 1436.6 (2) Å3 |
Mr = 306.51 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 21.9118 (18) Å | µ = 0.64 mm−1 |
b = 4.5705 (4) Å | T = 150 K |
c = 14.3452 (12) Å | 0.25 × 0.25 × 0.15 mm |
Bruker SMART APEX CCD area-detector diffractometer | 3292 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 2759 reflections with I > 2σ(I) |
Tmin = 0.856, Tmax = 0.910 | Rint = 0.043 |
17016 measured reflections |
R[F2 > 2σ(F2)] = 0.062 | H-atom parameters constrained |
wR(F2) = 0.166 | Δρmax = 1.05 e Å−3 |
S = 1.07 | Δρmin = −0.27 e Å−3 |
3292 reflections | Absolute structure: Flack (1983), 1579 Friedel pairs |
180 parameters | Absolute structure parameter: −0.1 (2) |
17 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.34241 (4) | 0.48896 (18) | 0.20742 (6) | 0.0247 (3) | |
S2 | 0.24742 (5) | 0.4861 (2) | 0.05150 (8) | 0.0332 (3) | |
S3 | 0.40977 (4) | 0.48200 (19) | 0.02225 (7) | 0.0292 (3) | |
S4 | 0.50250 (6) | 0.4996 (2) | 0.18040 (8) | 0.0333 (3) | |
N1 | 0.23596 (13) | 0.7324 (7) | 0.2179 (2) | 0.0280 (7) | |
N2 | 0.51532 (12) | 0.7401 (7) | 0.0131 (2) | 0.0292 (7) | |
C1 | 0.2724 (4) | 0.593 (2) | 0.1603 (7) | 0.0232 (12) | 0.546 (4) |
C2 | 0.1742 (5) | 0.840 (3) | 0.1934 (7) | 0.0354 (9) | 0.546 (4) |
H2A | 0.1450 | 0.6753 | 0.1894 | 0.043* | 0.546 (4) |
H2B | 0.1749 | 0.9430 | 0.1327 | 0.043* | 0.546 (4) |
C3 | 0.1558 (4) | 1.0519 (19) | 0.2724 (6) | 0.0388 (19) | 0.546 (4) |
H3A | 0.1691 | 1.2541 | 0.2580 | 0.047* | 0.546 (4) |
H3B | 0.1111 | 1.0507 | 0.2820 | 0.047* | 0.546 (4) |
C4 | 0.1889 (4) | 0.935 (2) | 0.3579 (6) | 0.039 (2) | 0.546 (4) |
H4A | 0.1669 | 0.7670 | 0.3857 | 0.047* | 0.546 (4) |
H4B | 0.1943 | 1.0887 | 0.4057 | 0.047* | 0.546 (4) |
C5 | 0.2514 (4) | 0.838 (2) | 0.3155 (7) | 0.0288 (11) | 0.546 (4) |
H5A | 0.2803 | 1.0043 | 0.3132 | 0.035* | 0.546 (4) |
H5B | 0.2698 | 0.6784 | 0.3528 | 0.035* | 0.546 (4) |
C1' | 0.2682 (6) | 0.549 (3) | 0.1543 (10) | 0.0232 (12) | 0.454 (4) |
C2' | 0.1763 (6) | 0.843 (4) | 0.1926 (8) | 0.0354 (9) | 0.454 (4) |
H2'A | 0.1520 | 0.6948 | 0.1589 | 0.043* | 0.454 (4) |
H2'B | 0.1794 | 1.0226 | 0.1541 | 0.043* | 0.454 (4) |
C3' | 0.1491 (4) | 0.910 (2) | 0.2897 (7) | 0.0388 (19) | 0.454 (4) |
H3'A | 0.1174 | 1.0640 | 0.2862 | 0.047* | 0.454 (4) |
H3'B | 0.1314 | 0.7321 | 0.3184 | 0.047* | 0.454 (4) |
C4' | 0.2053 (4) | 1.016 (2) | 0.3437 (9) | 0.039 (2) | 0.454 (4) |
H4'A | 0.1985 | 1.0058 | 0.4119 | 0.047* | 0.454 (4) |
H4'B | 0.2164 | 1.2183 | 0.3262 | 0.047* | 0.454 (4) |
C5' | 0.2549 (5) | 0.793 (3) | 0.3119 (10) | 0.0288 (11) | 0.454 (4) |
H5'A | 0.2962 | 0.8811 | 0.3136 | 0.035* | 0.454 (4) |
H5'B | 0.2544 | 0.6145 | 0.3508 | 0.035* | 0.454 (4) |
C6 | 0.4816 (3) | 0.6102 (15) | 0.0724 (6) | 0.0200 (9)* | 0.546 (4) |
C7 | 0.5772 (5) | 0.855 (3) | 0.0389 (7) | 0.0366 (10) | 0.546 (4) |
H7A | 0.6075 | 0.6954 | 0.0428 | 0.044* | 0.546 (4) |
H7B | 0.5760 | 0.9611 | 0.0990 | 0.044* | 0.546 (4) |
C8 | 0.5912 (4) | 1.0600 (16) | −0.0409 (6) | 0.033 (2) | 0.546 (4) |
H8A | 0.5747 | 1.2579 | −0.0287 | 0.040* | 0.546 (4) |
H8B | 0.6358 | 1.0747 | −0.0513 | 0.040* | 0.546 (4) |
C9 | 0.5603 (4) | 0.9224 (18) | −0.1231 (5) | 0.0301 (17) | 0.546 (4) |
H9A | 0.5837 | 0.7523 | −0.1464 | 0.036* | 0.546 (4) |
H9B | 0.5551 | 1.0652 | −0.1743 | 0.036* | 0.546 (4) |
C10 | 0.4984 (4) | 0.827 (3) | −0.0837 (8) | 0.0322 (10) | 0.546 (4) |
H10A | 0.4687 | 0.9902 | −0.0839 | 0.039* | 0.546 (4) |
H10B | 0.4813 | 0.6600 | −0.1191 | 0.039* | 0.546 (4) |
C6' | 0.4807 (5) | 0.551 (2) | 0.0695 (8) | 0.0200 (9)* | 0.454 (4) |
C7' | 0.5740 (6) | 0.853 (4) | 0.0417 (8) | 0.0366 (10) | 0.454 (4) |
H7'A | 0.5983 | 0.7013 | 0.0740 | 0.044* | 0.454 (4) |
H7'B | 0.5693 | 1.0245 | 0.0832 | 0.044* | 0.454 (4) |
C8' | 0.6031 (4) | 0.939 (2) | −0.0505 (8) | 0.033 (2) | 0.454 (4) |
H8'A | 0.6318 | 1.1039 | −0.0417 | 0.040* | 0.454 (4) |
H8'B | 0.6256 | 0.7717 | −0.0778 | 0.040* | 0.454 (4) |
C9' | 0.5511 (5) | 1.027 (2) | −0.1120 (8) | 0.0301 (17) | 0.454 (4) |
H9'A | 0.5618 | 1.0074 | −0.1788 | 0.036* | 0.454 (4) |
H9'B | 0.5383 | 1.2315 | −0.0996 | 0.036* | 0.454 (4) |
C10' | 0.5010 (5) | 0.808 (4) | −0.0837 (10) | 0.0322 (10) | 0.454 (4) |
H10C | 0.4599 | 0.8968 | −0.0892 | 0.039* | 0.454 (4) |
H10D | 0.5027 | 0.6299 | −0.1230 | 0.039* | 0.454 (4) |
C11 | 0.37625 (18) | 0.2698 (7) | 0.1150 (4) | 0.0358 (8) | |
H11A | 0.4081 | 0.1426 | 0.1423 | 0.043* | |
H11B | 0.3444 | 0.1413 | 0.0882 | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0171 (4) | 0.0341 (5) | 0.0230 (6) | 0.0012 (3) | −0.0019 (4) | 0.0022 (3) |
S2 | 0.0255 (5) | 0.0514 (7) | 0.0228 (6) | −0.0023 (4) | 0.0000 (4) | −0.0059 (4) |
S3 | 0.0214 (5) | 0.0404 (6) | 0.0259 (7) | −0.0009 (3) | 0.0048 (4) | −0.0009 (4) |
S4 | 0.0291 (5) | 0.0535 (8) | 0.0174 (6) | 0.0030 (4) | 0.0006 (4) | 0.0072 (4) |
N1 | 0.0272 (14) | 0.0342 (15) | 0.0226 (15) | 0.0002 (12) | 0.0001 (12) | 0.0005 (12) |
N2 | 0.0245 (13) | 0.0388 (17) | 0.0244 (15) | 0.0028 (12) | 0.0007 (12) | 0.0005 (13) |
C1 | 0.0175 (18) | 0.031 (3) | 0.0217 (19) | −0.0108 (19) | 0.0036 (15) | 0.003 (2) |
C2 | 0.0293 (18) | 0.049 (2) | 0.0284 (18) | 0.0045 (17) | −0.0025 (15) | −0.0022 (18) |
C3 | 0.044 (3) | 0.042 (5) | 0.030 (4) | 0.011 (3) | 0.016 (3) | 0.014 (3) |
C4 | 0.026 (4) | 0.059 (5) | 0.033 (4) | −0.008 (3) | 0.008 (3) | −0.002 (3) |
C5 | 0.0359 (19) | 0.025 (3) | 0.0251 (18) | 0.0014 (19) | −0.0016 (16) | −0.007 (2) |
C1' | 0.0175 (18) | 0.031 (3) | 0.0217 (19) | −0.0108 (19) | 0.0036 (15) | 0.003 (2) |
C2' | 0.0293 (18) | 0.049 (2) | 0.0284 (18) | 0.0045 (17) | −0.0025 (15) | −0.0022 (18) |
C3' | 0.044 (3) | 0.042 (5) | 0.030 (4) | 0.011 (3) | 0.016 (3) | 0.014 (3) |
C4' | 0.026 (4) | 0.059 (5) | 0.033 (4) | −0.008 (3) | 0.008 (3) | −0.002 (3) |
C5' | 0.0359 (19) | 0.025 (3) | 0.0251 (18) | 0.0014 (19) | −0.0016 (16) | −0.007 (2) |
C7 | 0.0239 (18) | 0.053 (3) | 0.033 (2) | −0.0054 (17) | −0.0006 (16) | 0.0003 (19) |
C8 | 0.028 (3) | 0.020 (5) | 0.052 (5) | 0.003 (3) | −0.010 (3) | 0.009 (3) |
C9 | 0.039 (3) | 0.030 (5) | 0.021 (3) | 0.005 (3) | 0.013 (3) | 0.000 (3) |
C10 | 0.037 (2) | 0.036 (2) | 0.0245 (19) | 0.0014 (17) | −0.0037 (15) | −0.0016 (17) |
C7' | 0.0239 (18) | 0.053 (3) | 0.033 (2) | −0.0054 (17) | −0.0006 (16) | 0.0003 (19) |
C8' | 0.028 (3) | 0.020 (5) | 0.052 (5) | 0.003 (3) | −0.010 (3) | 0.009 (3) |
C9' | 0.039 (3) | 0.030 (5) | 0.021 (3) | 0.005 (3) | 0.013 (3) | 0.000 (3) |
C10' | 0.037 (2) | 0.036 (2) | 0.0245 (19) | 0.0014 (17) | −0.0037 (15) | −0.0016 (17) |
C11 | 0.0294 (15) | 0.0314 (17) | 0.047 (2) | −0.0009 (17) | 0.0098 (14) | 0.003 (2) |
S1—C1 | 1.743 (10) | C2'—H2'A | 0.9900 |
S1—C1' | 1.816 (14) | C2'—H2'B | 0.9900 |
S1—C11 | 1.820 (5) | C3'—C4' | 1.533 (12) |
S2—C1' | 1.571 (14) | C3'—H3'A | 0.9900 |
S2—C1 | 1.725 (10) | C3'—H3'B | 0.9900 |
S3—C6' | 1.724 (11) | C4'—C5' | 1.556 (12) |
S3—C11 | 1.802 (5) | C4'—H4'A | 0.9900 |
S3—C6 | 1.827 (8) | C4'—H4'B | 0.9900 |
S4—C6' | 1.678 (12) | C5'—H5'A | 0.9900 |
S4—C6 | 1.693 (8) | C5'—H5'B | 0.9900 |
N1—C1 | 1.313 (10) | C7—C8 | 1.511 (11) |
N1—C1' | 1.426 (13) | C7—H7A | 0.9900 |
N1—C5' | 1.438 (13) | C7—H7B | 0.9900 |
N1—C2' | 1.448 (14) | C8—C9 | 1.498 (10) |
N1—C2 | 1.483 (11) | C8—H8A | 0.9900 |
N1—C5 | 1.520 (10) | C8—H8B | 0.9900 |
N2—C6 | 1.273 (8) | C9—C10 | 1.531 (10) |
N2—C6' | 1.406 (11) | C9—H9A | 0.9900 |
N2—C7' | 1.445 (13) | C9—H9B | 0.9900 |
N2—C10' | 1.457 (14) | C10—H10A | 0.9900 |
N2—C10 | 1.491 (11) | C10—H10B | 0.9900 |
N2—C7 | 1.500 (11) | C7'—C8' | 1.520 (12) |
C2—C3 | 1.543 (11) | C7'—H7'A | 0.9900 |
C2—H2A | 0.9900 | C7'—H7'B | 0.9900 |
C2—H2B | 0.9900 | C8'—C9' | 1.498 (11) |
C3—C4 | 1.522 (10) | C8'—H8'A | 0.9900 |
C3—H3A | 0.9900 | C8'—H8'B | 0.9900 |
C3—H3B | 0.9900 | C9'—C10' | 1.541 (12) |
C4—C5 | 1.563 (10) | C9'—H9'A | 0.9900 |
C4—H4A | 0.9900 | C9'—H9'B | 0.9900 |
C4—H4B | 0.9900 | C10'—H10C | 0.9900 |
C5—H5A | 0.9900 | C10'—H10D | 0.9900 |
C5—H5B | 0.9900 | C11—H11A | 0.9900 |
C2'—C3' | 1.546 (12) | C11—H11B | 0.9900 |
C1—S1—C1' | 7.3 (7) | C2'—C3'—H3'A | 111.4 |
C1—S1—C11 | 103.1 (4) | C4'—C3'—H3'B | 111.4 |
C1'—S1—C11 | 98.2 (5) | C2'—C3'—H3'B | 111.4 |
C1'—S2—C1 | 6.3 (9) | H3'A—C3'—H3'B | 109.2 |
C6'—S3—C11 | 100.1 (4) | C3'—C4'—C5' | 101.9 (9) |
C6'—S3—C6 | 8.2 (4) | C3'—C4'—H4'A | 111.4 |
C11—S3—C6 | 103.5 (3) | C5'—C4'—H4'A | 111.4 |
C6'—S4—C6 | 9.3 (5) | C3'—C4'—H4'B | 111.4 |
C1—N1—C1' | 8.8 (10) | C5'—C4'—H4'B | 111.4 |
C1—N1—C5' | 120.5 (7) | H4'A—C4'—H4'B | 109.2 |
C1'—N1—C5' | 124.8 (7) | N1—C5'—C4' | 101.6 (8) |
C1—N1—C2' | 124.2 (7) | N1—C5'—H5'A | 111.5 |
C1'—N1—C2' | 119.6 (7) | C4'—C5'—H5'A | 111.5 |
C5'—N1—C2' | 115.3 (6) | N1—C5'—H5'B | 111.5 |
C1—N1—C2 | 124.6 (6) | C4'—C5'—H5'B | 111.5 |
C1'—N1—C2 | 119.8 (7) | H5'A—C5'—H5'B | 109.3 |
C5'—N1—C2 | 114.9 (6) | N2—C6—S4 | 126.4 (5) |
C2'—N1—C2 | 1.5 (13) | N2—C6—S3 | 112.7 (5) |
C1—N1—C5 | 126.7 (6) | S4—C6—S3 | 119.8 (4) |
C1'—N1—C5 | 131.7 (7) | N2—C7—C8 | 102.4 (7) |
C5'—N1—C5 | 8.1 (8) | N2—C7—H7A | 111.3 |
C2'—N1—C5 | 108.7 (6) | C8—C7—H7A | 111.3 |
C2—N1—C5 | 108.4 (5) | N2—C7—H7B | 111.3 |
C6—N2—C6' | 10.3 (7) | C8—C7—H7B | 111.3 |
C6—N2—C7' | 119.5 (6) | H7A—C7—H7B | 109.2 |
C6'—N2—C7' | 122.4 (7) | C9—C8—C7 | 104.1 (7) |
C6—N2—C10' | 127.7 (6) | C9—C8—H8A | 110.9 |
C6'—N2—C10' | 124.3 (7) | C7—C8—H8A | 110.9 |
C7'—N2—C10' | 112.7 (6) | C9—C8—H8B | 110.9 |
C6—N2—C10 | 127.1 (5) | C7—C8—H8B | 110.9 |
C6'—N2—C10 | 124.5 (6) | H8A—C8—H8B | 109.0 |
C7'—N2—C10 | 113.0 (6) | C8—C9—C10 | 103.3 (7) |
C10'—N2—C10 | 3.8 (12) | C8—C9—H9A | 111.1 |
C6—N2—C7 | 121.5 (5) | C10—C9—H9A | 111.1 |
C6'—N2—C7 | 124.1 (6) | C8—C9—H9B | 111.1 |
C7'—N2—C7 | 2.3 (9) | C10—C9—H9B | 111.1 |
C10'—N2—C7 | 110.8 (6) | H9A—C9—H9B | 109.1 |
C10—N2—C7 | 111.1 (5) | N2—C10—C9 | 101.5 (6) |
N1—C1—S2 | 120.9 (7) | N2—C10—H10A | 111.5 |
N1—C1—S1 | 115.1 (7) | C9—C10—H10A | 111.5 |
S2—C1—S1 | 123.6 (6) | N2—C10—H10B | 111.5 |
N1—C2—C3 | 105.8 (7) | C9—C10—H10B | 111.5 |
N1—C2—H2A | 110.6 | H10A—C10—H10B | 109.3 |
C3—C2—H2A | 110.6 | N2—C6'—S4 | 118.6 (7) |
N1—C2—H2B | 110.6 | N2—C6'—S3 | 111.9 (7) |
C3—C2—H2B | 110.6 | S4—C6'—S3 | 127.1 (6) |
H2A—C2—H2B | 108.7 | N2—C7'—C8' | 102.7 (8) |
C4—C3—C2 | 104.3 (7) | N2—C7'—H7'A | 111.2 |
C4—C3—H3A | 110.9 | C8'—C7'—H7'A | 111.2 |
C2—C3—H3A | 110.9 | N2—C7'—H7'B | 111.2 |
C4—C3—H3B | 110.9 | C8'—C7'—H7'B | 111.2 |
C2—C3—H3B | 110.9 | H7'A—C7'—H7'B | 109.1 |
H3A—C3—H3B | 108.9 | C9'—C8'—C7' | 105.2 (9) |
C3—C4—C5 | 101.8 (7) | C9'—C8'—H8'A | 110.7 |
C3—C4—H4A | 111.4 | C7'—C8'—H8'A | 110.7 |
C5—C4—H4A | 111.4 | C9'—C8'—H8'B | 110.7 |
C3—C4—H4B | 111.4 | C7'—C8'—H8'B | 110.7 |
C5—C4—H4B | 111.4 | H8'A—C8'—H8'B | 108.8 |
H4A—C4—H4B | 109.3 | C8'—C9'—C10' | 102.2 (9) |
N1—C5—C4 | 104.6 (6) | C8'—C9'—H9'A | 111.3 |
N1—C5—H5A | 110.8 | C10'—C9'—H9'A | 111.3 |
C4—C5—H5A | 110.8 | C8'—C9'—H9'B | 111.3 |
N1—C5—H5B | 110.8 | C10'—C9'—H9'B | 111.3 |
C4—C5—H5B | 110.8 | H9'A—C9'—H9'B | 109.2 |
H5A—C5—H5B | 108.9 | N2—C10'—C9' | 103.7 (9) |
N1—C1'—S2 | 124.3 (9) | N2—C10'—H10C | 111.0 |
N1—C1'—S1 | 105.3 (8) | C9'—C10'—H10C | 111.0 |
S2—C1'—S1 | 128.8 (8) | N2—C10'—H10D | 111.0 |
N1—C2'—C3' | 101.0 (8) | C9'—C10'—H10D | 111.0 |
N1—C2'—H2'A | 111.6 | H10C—C10'—H10D | 109.0 |
C3'—C2'—H2'A | 111.6 | S3—C11—S1 | 114.05 (18) |
N1—C2'—H2'B | 111.6 | S3—C11—H11A | 108.7 |
C3'—C2'—H2'B | 111.6 | S1—C11—H11A | 108.7 |
H2'A—C2'—H2'B | 109.4 | S3—C11—H11B | 108.7 |
C4'—C3'—C2' | 102.0 (9) | S1—C11—H11B | 108.7 |
C4'—C3'—H3'A | 111.4 | H11A—C11—H11B | 107.6 |
C1'—N1—C1—S2 | 52 (6) | C10'—N2—C6—S4 | 172.3 (10) |
C5'—N1—C1—S2 | 173.4 (8) | C10—N2—C6—S4 | 177.1 (8) |
C2'—N1—C1—S2 | −8.8 (15) | C7—N2—C6—S4 | −9.9 (11) |
C2—N1—C1—S2 | −7.1 (13) | C6'—N2—C6—S3 | −70 (4) |
C5—N1—C1—S2 | 179.6 (7) | C7'—N2—C6—S3 | −179.6 (10) |
C1'—N1—C1—S1 | −120 (7) | C10'—N2—C6—S3 | 4.0 (12) |
C5'—N1—C1—S1 | 0.9 (12) | C10—N2—C6—S3 | 8.7 (10) |
C2'—N1—C1—S1 | 178.7 (10) | C7—N2—C6—S3 | −178.2 (7) |
C2—N1—C1—S1 | −179.6 (8) | C6'—S4—C6—N2 | −114 (4) |
C5—N1—C1—S1 | 7.1 (12) | C6'—S4—C6—S3 | 54 (3) |
C1'—S2—C1—N1 | −95 (7) | C6'—S3—C6—N2 | 106 (4) |
C1'—S2—C1—S1 | 77 (7) | C11—S3—C6—N2 | 172.9 (4) |
C1'—S1—C1—N1 | 126 (6) | C6'—S3—C6—S4 | −63 (4) |
C11—S1—C1—N1 | 173.6 (7) | C11—S3—C6—S4 | 3.7 (5) |
C1'—S1—C1—S2 | −47 (6) | C6—N2—C7—C8 | −164.2 (6) |
C11—S1—C1—S2 | 1.4 (8) | C6'—N2—C7—C8 | −176.1 (7) |
C1—N1—C2—C3 | −166.2 (8) | C7'—N2—C7—C8 | −133 (32) |
C1'—N1—C2—C3 | −174.8 (9) | C10'—N2—C7—C8 | 13.9 (13) |
C5'—N1—C2—C3 | 13.3 (13) | C10—N2—C7—C8 | 9.8 (12) |
C2'—N1—C2—C3 | −93 (32) | N2—C7—C8—C9 | −32.0 (10) |
C5—N1—C2—C3 | 8.1 (11) | C7—C8—C9—C10 | 42.8 (10) |
N1—C2—C3—C4 | −29.8 (11) | C6—N2—C10—C9 | −170.8 (6) |
C2—C3—C4—C5 | 38.6 (10) | C6'—N2—C10—C9 | −158.5 (7) |
C1—N1—C5—C4 | −169.9 (8) | C7'—N2—C10—C9 | 17.1 (13) |
C1'—N1—C5—C4 | −160.6 (9) | C10'—N2—C10—C9 | −70 (11) |
C5'—N1—C5—C4 | −128 (7) | C7—N2—C10—C9 | 15.6 (11) |
C2'—N1—C5—C4 | 17.5 (11) | C8—C9—C10—N2 | −35.2 (10) |
C2—N1—C5—C4 | 15.9 (10) | C6—N2—C6'—S4 | −66 (4) |
C3—C4—C5—N1 | −33.6 (9) | C7'—N2—C6'—S4 | 10.4 (13) |
C1—N1—C1'—S2 | −116 (7) | C10'—N2—C6'—S4 | −179.0 (9) |
C5'—N1—C1'—S2 | −179.4 (10) | C10—N2—C6'—S4 | −174.4 (8) |
C2'—N1—C1'—S2 | 7.9 (17) | C7—N2—C6'—S4 | 12.3 (12) |
C2—N1—C1'—S2 | 9.6 (16) | C6—N2—C6'—S3 | 97 (4) |
C5—N1—C1'—S2 | −174.2 (8) | C7'—N2—C6'—S3 | 174.0 (10) |
C1—N1—C1'—S1 | 51 (6) | C10'—N2—C6'—S3 | −15.4 (12) |
C5'—N1—C1'—S1 | −12.6 (13) | C10—N2—C6'—S3 | −10.8 (11) |
C2'—N1—C1'—S1 | 174.7 (10) | C7—N2—C6'—S3 | 175.9 (8) |
C2—N1—C1'—S1 | 176.4 (8) | C6—S4—C6'—N2 | 49 (3) |
C5—N1—C1'—S1 | −7.3 (14) | C6—S4—C6'—S3 | −111 (4) |
C1—S2—C1'—N1 | 73 (7) | C11—S3—C6'—N2 | −174.7 (6) |
C1—S2—C1'—S1 | −91 (7) | C6—S3—C6'—N2 | −60 (4) |
C1—S1—C1'—N1 | −45 (5) | C11—S3—C6'—S4 | −12.9 (7) |
C11—S1—C1'—N1 | −177.6 (7) | C6—S3—C6'—S4 | 102 (4) |
C1—S1—C1'—S2 | 121 (7) | C6—N2—C7'—C8' | 170.5 (8) |
C11—S1—C1'—S2 | −11.6 (12) | C6'—N2—C7'—C8' | 159.0 (8) |
C1—N1—C2'—C3' | 166.3 (8) | C10'—N2—C7'—C8' | −12.6 (16) |
C1'—N1—C2'—C3' | 157.5 (10) | C10—N2—C7'—C8' | −16.7 (15) |
C5'—N1—C2'—C3' | −15.8 (15) | C7—N2—C7'—C8' | 21 (30) |
C2—N1—C2'—C3' | 59 (31) | N2—C7'—C8'—C9' | 31.1 (14) |
C5—N1—C2'—C3' | −20.9 (13) | C7'—C8'—C9'—C10' | −37.1 (14) |
N1—C2'—C3'—C4' | 35.6 (13) | C6—N2—C10'—C9' | 166.5 (7) |
C2'—C3'—C4'—C5' | −42.5 (12) | C6'—N2—C10'—C9' | 178.5 (7) |
C1—N1—C5'—C4' | 167.5 (8) | C7'—N2—C10'—C9' | −10.1 (15) |
C1'—N1—C5'—C4' | 176.6 (9) | C10—N2—C10'—C9' | 84 (11) |
C2'—N1—C5'—C4' | −10.5 (14) | C7—N2—C10'—C9' | −11.4 (14) |
C2—N1—C5'—C4' | −12.0 (12) | C8'—C9'—C10'—N2 | 28.7 (13) |
C5—N1—C5'—C4' | 26 (6) | C6'—S3—C11—S1 | 84.1 (4) |
C3'—C4'—C5'—N1 | 32.6 (11) | C6—S3—C11—S1 | 76.5 (3) |
C6'—N2—C6—S4 | 98 (4) | C1—S1—C11—S3 | 79.2 (4) |
C7'—N2—C6—S4 | −11.3 (12) | C1'—S1—C11—S3 | 84.7 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···S3i | 0.99 | 2.89 | 3.811 (9) | 155 |
C10—H10B···S4ii | 0.99 | 2.99 | 3.699 (11) | 130 |
C9—H9A···S1ii | 0.99 | 2.87 | 3.740 (8) | 147 |
C9′—H9′A···S1ii | 0.99 | 3.50 | 4.209 (11) | 131 |
C5′—H5′B···S2i | 0.99 | 2.94 | 3.704 (14) | 137 |
Symmetry codes: (i) −x+1/2, y, z+1/2; (ii) −x+1, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C11H18N2S4 |
Mr | 306.51 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 150 |
a, b, c (Å) | 21.9118 (18), 4.5705 (4), 14.3452 (12) |
V (Å3) | 1436.6 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.64 |
Crystal size (mm) | 0.25 × 0.25 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.856, 0.910 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17016, 3292, 2759 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.062, 0.166, 1.07 |
No. of reflections | 3292 |
No. of parameters | 180 |
No. of restraints | 17 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.05, −0.27 |
Absolute structure | Flack (1983), 1579 Friedel pairs |
Absolute structure parameter | −0.1 (2) |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···S3i | 0.99 | 2.89 | 3.811 (9) | 155 |
C10—H10B···S4ii | 0.99 | 2.99 | 3.699 (11) | 130 |
C9—H9A···S1ii | 0.99 | 2.87 | 3.740 (8) | 147 |
C9'—H9'A···S1ii | 0.99 | 3.50 | 4.209 (11) | 131 |
C5'—H5'B···S2i | 0.99 | 2.94 | 3.704 (14) | 137 |
Symmetry codes: (i) −x+1/2, y, z+1/2; (ii) −x+1, −y+1, z−1/2. |
Acknowledgements
We thank the National Science Council of the Republic of China for financial support (NSC98–2113-M-241–011-MY2).
References
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chou, W. L., Chang, H. H., Yih, K. H. & Lee, G. H. (2007). J. Chin. Chem. Soc. 54, 323–330. CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Heckley, P. R., Holah, D. G., Hughes, A. N. & Leh, F. (1970). Can. J. Chem. 48, 3827–3830. CrossRef CAS Google Scholar
Kayed, S. F., Farina, Y., Kassim, M. & Simpson, J. (2008). Acta Cryst. E64, o1022–o1023. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, New York: Cornell University Press. Google Scholar
Pervez, H., Iqbal, M. S., Saira, N., Yaqub, M. & Tahir, M. N. (2010). Acta Cryst. E66, o1169–o1170. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sharma, S., Bohra, R. & Mehrotra, R. C. (1991). J. Crystallogr. Spectrosc. Res. 21, 61–66. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thomas, J. C. (1945). US Patent 2 384 577. Google Scholar
Thomas, J. C. (1946). Chem. Abstr. 40, 177. Google Scholar
Vangala, V. R., Desiraju, G. R., Jetti, R. K. R., Bläser, D. & Boese, R. (2002). Acta Cryst. C58, o635–o636. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Yaqub, M., Pervez, H., Arif, N., Tahir, M. N. & Hussain, M. (2010). Acta Cryst. E66, o1696. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Formation of methylene bis(dialkyldithiocarbamates), CH2(S2CNR2)2 [R = Me (Thomas, 1946), Et (Heckley et al., 1970), C5H10 (Sharma et al., 1991)] have been reported in the literature as by-products in the reactions of transition metal halides with anhydrous sodium dialkyldithiocarbamates when methylene chloride was used as solvent or reaction of anhydrous sodium dialkyldithiocarbamates with methylene chloride under refluxing conditions (Sharma et al., 1991).
Our previous report showed complexes [In(S2CNC5H10)3], [In(pyS)3] and [In(pyS)2(acac)] (acac: acetylacetonate; pyS: pyridine-2-thionate) are prepared by reacting the complex tris(acac-κ2O,O')indium(III) with HS2CNC5H10, and pySH with ratios of 1:3, 1:3, and 1:2 in dichloromethane at room temperature, respectively (Chou et al., 2007). To test the generality of this substitution reaction, we studied the reaction of tris(acac-κ2O,O')gallium(III) complex and C4H8NCS2H. During studies on the reactivity of complex tris(acac-κ2O,O')gallium(III), with C4H8NCS2H in dichloromethane, we unexpectedly obtained the white crystals of title compound (I), identified as methylene bis(pyrrolidinyldithiocarbamate) by X-ray structure, NMR and Mass spectroscopic analyses. It consists of two pyrrolidinyldithiocarbamate units, bridged by a methylene group, i.e. C4H8N—CS—S—CH2—S—CS—NC4H8. The 1H NMR spectrum of (I) in CDCl3 shows one singlet at 5.33 ppm., assignable to SCH2S. The IR spectrum shows the following characteristic bands, 1470 cm-1 (νC=N), 1305 cm-1 (νC-N), 990 cm-1 (νC=S), 915 cm-1 (νC-S). The FAB mass spectrum shows the molecular ions C11H18N2S4 with the characteristic isotopic distribution patterns.
The solid-state structure has been established by X-ray crystallography. The molecular structure of the title compound is shown in Fig. 1. In (I), the C1—S2 and C6—S4 bond lengths of 1.725 (10) and 1.693 (8) Å, respectively, are slightly longer than a normal C=S double bond (ca 1.61 Å) (Pauling, 1960), while the C1—S1 and C6—S3 distance of 1.743 (10) and 1.827 (8) Å, respectively, are clearly single bonds. The angle of S3—C11—S1 (114.05 (18)°) is larger than the ideal tetrahedral value of 109.47°, probably due to repulsion between the two C=S bonding electron pairs. Two pyrrolidinyl groups are found to be disordered over two positions (C1, C2, C3, C4, C5, C6, C7, C8, C9, C10) and (C1', C2', C3', C4', C5', C6', C7', C8', C9', C10') and refined ratios of the major and minor components being 0.546 (4): 0.454 (4). As a result of two different packings are shown in Fig. 2(a) and (b). The weak interactions of C—H···S (3.683 (6) - 3.823 (11) Å) in (I) are also found in those of (E)-2-[1-(1-benzothiophen-3-yl)ethylidene]hydrazinecarbothioamide (3.613 (3) - 3.762 (4) Å) (Kayed et al., 2008), 4-(5-chloro-2- methylphenyl)-1-[2-oxo-5-(trifluoromethoxy)indolin-3-ylidene]thiosemicarbazide (3.245 (4) Å) (Pervez et al., 2010), bis(4-aminophenyl)disulfide (3.7387 (18) Å) (Vangala et al., 2002) and 1-[1-(4-bromophenyl)ethylidene]-4-(2,4-dimethoxyphenyl)thiosemicarbazide (3.774 (3) Å) (Yaqub et al., 2010), respectively.