organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(Pyrrolidin-1-yl)carbo­thio­ylsulfan­yl]methyl pyrrolidine-1-carbodi­thio­ate

aDepartment of Industrial Safety and Health & Institute Occupational Safety and Hazard Prevention, Hungkuang University, Shalu 433, Taichung, Taiwan, bDepartment of Applied Cosmetology, Hungkuang University, Shalu 433, Taichung, Taiwan, and cInstrumentation Center, College of Science, National Taiwan University, Taipei 106, Taiwan
*Correspondence e-mail: khyih@sunrise.hk.edu.tw, ghlee@ntu.edu.tw

(Received 10 September 2010; accepted 8 November 2010; online 17 November 2010)

The title compound, C11H18N2S4, was unexpectedly obtained during studies on the reactivity of the complex tris­(acac-κ2O,O′)gallium(III) (acac is acetyl­acetonate) with C4H8NCS2H in dichloro­methane. The title compound shows disordered two pyrrolidine rings with major and minor occupancies of 0.546 (4) and 0.454 (4). Two (pyrrolidin-1-yl)carbothio­ylsulfanyl units are linked together through a methyl­ene C atom and weak C—H⋯S inter­actions are found.

Related literature

For bis­(dialkyl­dithio­carbamates), CH2(S2CNR2)2, see: R = Me (Thomas, 1945[Thomas, J. C. (1945). US Patent 2 384 577.], 1946[Thomas, J. C. (1946). Chem. Abstr. 40, 177.]); R = Et (Heckley et al., 1970[Heckley, P. R., Holah, D. G., Hughes, A. N. & Leh, F. (1970). Can. J. Chem. 48, 3827-3830.]); R = C5H10 (Sharma et al., 1991[Sharma, S., Bohra, R. & Mehrotra, R. C. (1991). J. Crystallogr. Spectrosc. Res. 21, 61-66.]). For weak C—H⋯S inter­actions, see: Kayed et al. (2008[Kayed, S. F., Farina, Y., Kassim, M. & Simpson, J. (2008). Acta Cryst. E64, o1022-o1023.]); Pervez et al. (2010[Pervez, H., Iqbal, M. S., Saira, N., Yaqub, M. & Tahir, M. N. (2010). Acta Cryst. E66, o1169-o1170.]); Vangala et al. (2002[Vangala, V. R., Desiraju, G. R., Jetti, R. K. R., Bläser, D. & Boese, R. (2002). Acta Cryst. C58, o635-o636.]); Yaqub et al. (2010[Yaqub, M., Pervez, H., Arif, N., Tahir, M. N. & Hussain, M. (2010). Acta Cryst. E66, o1696.]). For our previous work on the preparation of In(III) complexes, see: Chou et al. (2007[Chou, W. L., Chang, H. H., Yih, K. H. & Lee, G. H. (2007). J. Chin. Chem. Soc. 54, 323-330.]). For C=S double-bond lengths, see: Pauling (1960[Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, New York: Cornell University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C11H18N2S4

  • Mr = 306.51

  • Orthorhombic, P c a 21

  • a = 21.9118 (18) Å

  • b = 4.5705 (4) Å

  • c = 14.3452 (12) Å

  • V = 1436.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 150 K

  • 0.25 × 0.25 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.856, Tmax = 0.910

  • 17016 measured reflections

  • 3292 independent reflections

  • 2759 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.166

  • S = 1.07

  • 3292 reflections

  • 180 parameters

  • 17 restraints

  • H-atom parameters constrained

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1579 Friedel pairs

  • Flack parameter: −0.1 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯S3i 0.99 2.89 3.811 (9) 155
C10—H10B⋯S4ii 0.99 2.99 3.699 (11) 130
C9—H9A⋯S1ii 0.99 2.87 3.740 (8) 147
C9′—H9′A⋯S1ii 0.99 3.50 4.209 (11) 131
C5′—H5′B⋯S2i 0.99 2.94 3.704 (14) 137
Symmetry codes: (i) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Formation of methylene bis(dialkyldithiocarbamates), CH2(S2CNR2)2 [R = Me (Thomas, 1946), Et (Heckley et al., 1970), C5H10 (Sharma et al., 1991)] have been reported in the literature as by-products in the reactions of transition metal halides with anhydrous sodium dialkyldithiocarbamates when methylene chloride was used as solvent or reaction of anhydrous sodium dialkyldithiocarbamates with methylene chloride under refluxing conditions (Sharma et al., 1991).

Our previous report showed complexes [In(S2CNC5H10)3], [In(pyS)3] and [In(pyS)2(acac)] (acac: acetylacetonate; pyS: pyridine-2-thionate) are prepared by reacting the complex tris(acac-κ2O,O')indium(III) with HS2CNC5H10, and pySH with ratios of 1:3, 1:3, and 1:2 in dichloromethane at room temperature, respectively (Chou et al., 2007). To test the generality of this substitution reaction, we studied the reaction of tris(acac-κ2O,O')gallium(III) complex and C4H8NCS2H. During studies on the reactivity of complex tris(acac-κ2O,O')gallium(III), with C4H8NCS2H in dichloromethane, we unexpectedly obtained the white crystals of title compound (I), identified as methylene bis(pyrrolidinyldithiocarbamate) by X-ray structure, NMR and Mass spectroscopic analyses. It consists of two pyrrolidinyldithiocarbamate units, bridged by a methylene group, i.e. C4H8N—CS—S—CH2—S—CS—NC4H8. The 1H NMR spectrum of (I) in CDCl3 shows one singlet at 5.33 ppm., assignable to SCH2S. The IR spectrum shows the following characteristic bands, 1470 cm-1 (νC=N), 1305 cm-1 (νC-N), 990 cm-1 (νC=S), 915 cm-1 (νC-S). The FAB mass spectrum shows the molecular ions C11H18N2S4 with the characteristic isotopic distribution patterns.

The solid-state structure has been established by X-ray crystallography. The molecular structure of the title compound is shown in Fig. 1. In (I), the C1—S2 and C6—S4 bond lengths of 1.725 (10) and 1.693 (8) Å, respectively, are slightly longer than a normal C=S double bond (ca 1.61 Å) (Pauling, 1960), while the C1—S1 and C6—S3 distance of 1.743 (10) and 1.827 (8) Å, respectively, are clearly single bonds. The angle of S3—C11—S1 (114.05 (18)°) is larger than the ideal tetrahedral value of 109.47°, probably due to repulsion between the two C=S bonding electron pairs. Two pyrrolidinyl groups are found to be disordered over two positions (C1, C2, C3, C4, C5, C6, C7, C8, C9, C10) and (C1', C2', C3', C4', C5', C6', C7', C8', C9', C10') and refined ratios of the major and minor components being 0.546 (4): 0.454 (4). As a result of two different packings are shown in Fig. 2(a) and (b). The weak interactions of C—H···S (3.683 (6) - 3.823 (11) Å) in (I) are also found in those of (E)-2-[1-(1-benzothiophen-3-yl)ethylidene]hydrazinecarbothioamide (3.613 (3) - 3.762 (4) Å) (Kayed et al., 2008), 4-(5-chloro-2- methylphenyl)-1-[2-oxo-5-(trifluoromethoxy)indolin-3-ylidene]thiosemicarbazide (3.245 (4) Å) (Pervez et al., 2010), bis(4-aminophenyl)disulfide (3.7387 (18) Å) (Vangala et al., 2002) and 1-[1-(4-bromophenyl)ethylidene]-4-(2,4-dimethoxyphenyl)thiosemicarbazide (3.774 (3) Å) (Yaqub et al., 2010), respectively.

Related literature top

For bis(dialkyldithiocarbamates), CH2(S2CNR2)2, see: R = Me (Thomas, 1945, 1946); R = Et (Heckley et al., 1970); R = C5H10 (Sharma et al., 1991). For weak C—H···S interactions, see: Kayed et al. (2008); Pervez et al. (2010); Vangala et al. (2002); Yaqub et al. (2010). For our previous work on the preparation of In(III) complexes, see: Chou et al. (2007). For C=S double-bond lengths, see: Pauling (1960).

Experimental top

The synthesis of the title compound (I) was carried out as follows. 10 ml of CH2Cl2 was added to a flask of Ga(acac)3 (0.367 g, 1.0 mmol) and C4H8NCS2H (0.345 g, 3.0 mmol). The solution was stirred for 2 days at room temperature. The solution is concentrated under vacuum and n-hexane (10 ml) was added to initiate precipitation. The pale-white solids were isolated by filtration (G4), washed with n-hexane (2 x 10 ml) and subsequently drying under vacuum yielding [CH2(S2CNC4H8)2] (0.459 g, 50%). Further purification was accomplished by recrystallization from 1/10 CH2Cl2/n-hexane. The pale-white crystals of (I) for X-ray structure analysis were obtained by slow diffusion of n-hexane into the CH2Cl2 solution of the title compound at room temperature for 3 days. Spectroscopic analysis: 1H NMR (CDCl3, 298 K, δ, p.p.m.): δ 1.65, 1.74 (m, 4H, NCCH2), δ 2.98, 3.29 (m, 4H, NCH2), 5.33 (s, 2H, SCH2). 13C{1H} NMR (CDCl3, 298 K, δ, p.p.m.): δ 24.8 (s, NCH2CH2), 49.8 (s, NCH2), 50.0 (s, SCH2S), 191.5 (s, CS). MS (m/z): 306.5 (M+). Anal. Calcd for C11H18N2S4: C, 43.10; H, 5.92; N, 9.14. Found: C, 43.31; H, 5.69; N, 9.02.

Refinement top

Two pyrrolidinyl groups are found to be disordered over two positions (C1, C2, C3, C4, C5, C6, C7, C8, C9, C10) and (C1', C2', C3', C4', C5', C6', C7', C8', C9', C10') and the occupancies are refined to 0.546 (4) and 0.454 (4).

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.99 Å and with Uiso(H) = 1.2 times Ueq(C).

Structure description top

Formation of methylene bis(dialkyldithiocarbamates), CH2(S2CNR2)2 [R = Me (Thomas, 1946), Et (Heckley et al., 1970), C5H10 (Sharma et al., 1991)] have been reported in the literature as by-products in the reactions of transition metal halides with anhydrous sodium dialkyldithiocarbamates when methylene chloride was used as solvent or reaction of anhydrous sodium dialkyldithiocarbamates with methylene chloride under refluxing conditions (Sharma et al., 1991).

Our previous report showed complexes [In(S2CNC5H10)3], [In(pyS)3] and [In(pyS)2(acac)] (acac: acetylacetonate; pyS: pyridine-2-thionate) are prepared by reacting the complex tris(acac-κ2O,O')indium(III) with HS2CNC5H10, and pySH with ratios of 1:3, 1:3, and 1:2 in dichloromethane at room temperature, respectively (Chou et al., 2007). To test the generality of this substitution reaction, we studied the reaction of tris(acac-κ2O,O')gallium(III) complex and C4H8NCS2H. During studies on the reactivity of complex tris(acac-κ2O,O')gallium(III), with C4H8NCS2H in dichloromethane, we unexpectedly obtained the white crystals of title compound (I), identified as methylene bis(pyrrolidinyldithiocarbamate) by X-ray structure, NMR and Mass spectroscopic analyses. It consists of two pyrrolidinyldithiocarbamate units, bridged by a methylene group, i.e. C4H8N—CS—S—CH2—S—CS—NC4H8. The 1H NMR spectrum of (I) in CDCl3 shows one singlet at 5.33 ppm., assignable to SCH2S. The IR spectrum shows the following characteristic bands, 1470 cm-1 (νC=N), 1305 cm-1 (νC-N), 990 cm-1 (νC=S), 915 cm-1 (νC-S). The FAB mass spectrum shows the molecular ions C11H18N2S4 with the characteristic isotopic distribution patterns.

The solid-state structure has been established by X-ray crystallography. The molecular structure of the title compound is shown in Fig. 1. In (I), the C1—S2 and C6—S4 bond lengths of 1.725 (10) and 1.693 (8) Å, respectively, are slightly longer than a normal C=S double bond (ca 1.61 Å) (Pauling, 1960), while the C1—S1 and C6—S3 distance of 1.743 (10) and 1.827 (8) Å, respectively, are clearly single bonds. The angle of S3—C11—S1 (114.05 (18)°) is larger than the ideal tetrahedral value of 109.47°, probably due to repulsion between the two C=S bonding electron pairs. Two pyrrolidinyl groups are found to be disordered over two positions (C1, C2, C3, C4, C5, C6, C7, C8, C9, C10) and (C1', C2', C3', C4', C5', C6', C7', C8', C9', C10') and refined ratios of the major and minor components being 0.546 (4): 0.454 (4). As a result of two different packings are shown in Fig. 2(a) and (b). The weak interactions of C—H···S (3.683 (6) - 3.823 (11) Å) in (I) are also found in those of (E)-2-[1-(1-benzothiophen-3-yl)ethylidene]hydrazinecarbothioamide (3.613 (3) - 3.762 (4) Å) (Kayed et al., 2008), 4-(5-chloro-2- methylphenyl)-1-[2-oxo-5-(trifluoromethoxy)indolin-3-ylidene]thiosemicarbazide (3.245 (4) Å) (Pervez et al., 2010), bis(4-aminophenyl)disulfide (3.7387 (18) Å) (Vangala et al., 2002) and 1-[1-(4-bromophenyl)ethylidene]-4-(2,4-dimethoxyphenyl)thiosemicarbazide (3.774 (3) Å) (Yaqub et al., 2010), respectively.

For bis(dialkyldithiocarbamates), CH2(S2CNR2)2, see: R = Me (Thomas, 1945, 1946); R = Et (Heckley et al., 1970); R = C5H10 (Sharma et al., 1991). For weak C—H···S interactions, see: Kayed et al. (2008); Pervez et al. (2010); Vangala et al. (2002); Yaqub et al. (2010). For our previous work on the preparation of In(III) complexes, see: Chou et al. (2007). For C=S double-bond lengths, see: Pauling (1960).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing two independent molecules and the 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of (I), showing two different packing patterns.
[(Pyrrolidin-1-yl)carbothioylsulfanyl]methyl pyrrolidine-1-carbodithioate top
Crystal data top
C11H18N2S4F(000) = 648
Mr = 306.51Dx = 1.417 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2540 reflections
a = 21.9118 (18) Åθ = 2.3–26.6°
b = 4.5705 (4) ŵ = 0.64 mm1
c = 14.3452 (12) ÅT = 150 K
V = 1436.6 (2) Å3Block, light-brown
Z = 40.25 × 0.25 × 0.15 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3292 independent reflections
Radiation source: fine-focus sealed tube2759 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2828
Tmin = 0.856, Tmax = 0.910k = 55
17016 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.1007P)2 + 0.6346P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.003
3292 reflectionsΔρmax = 1.05 e Å3
180 parametersΔρmin = 0.27 e Å3
17 restraintsAbsolute structure: Flack (1983), 1579 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.1 (2)
Crystal data top
C11H18N2S4V = 1436.6 (2) Å3
Mr = 306.51Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 21.9118 (18) ŵ = 0.64 mm1
b = 4.5705 (4) ÅT = 150 K
c = 14.3452 (12) Å0.25 × 0.25 × 0.15 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3292 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2759 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.910Rint = 0.043
17016 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.166Δρmax = 1.05 e Å3
S = 1.07Δρmin = 0.27 e Å3
3292 reflectionsAbsolute structure: Flack (1983), 1579 Friedel pairs
180 parametersAbsolute structure parameter: 0.1 (2)
17 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.34241 (4)0.48896 (18)0.20742 (6)0.0247 (3)
S20.24742 (5)0.4861 (2)0.05150 (8)0.0332 (3)
S30.40977 (4)0.48200 (19)0.02225 (7)0.0292 (3)
S40.50250 (6)0.4996 (2)0.18040 (8)0.0333 (3)
N10.23596 (13)0.7324 (7)0.2179 (2)0.0280 (7)
N20.51532 (12)0.7401 (7)0.0131 (2)0.0292 (7)
C10.2724 (4)0.593 (2)0.1603 (7)0.0232 (12)0.546 (4)
C20.1742 (5)0.840 (3)0.1934 (7)0.0354 (9)0.546 (4)
H2A0.14500.67530.18940.043*0.546 (4)
H2B0.17490.94300.13270.043*0.546 (4)
C30.1558 (4)1.0519 (19)0.2724 (6)0.0388 (19)0.546 (4)
H3A0.16911.25410.25800.047*0.546 (4)
H3B0.11111.05070.28200.047*0.546 (4)
C40.1889 (4)0.935 (2)0.3579 (6)0.039 (2)0.546 (4)
H4A0.16690.76700.38570.047*0.546 (4)
H4B0.19431.08870.40570.047*0.546 (4)
C50.2514 (4)0.838 (2)0.3155 (7)0.0288 (11)0.546 (4)
H5A0.28031.00430.31320.035*0.546 (4)
H5B0.26980.67840.35280.035*0.546 (4)
C1'0.2682 (6)0.549 (3)0.1543 (10)0.0232 (12)0.454 (4)
C2'0.1763 (6)0.843 (4)0.1926 (8)0.0354 (9)0.454 (4)
H2'A0.15200.69480.15890.043*0.454 (4)
H2'B0.17941.02260.15410.043*0.454 (4)
C3'0.1491 (4)0.910 (2)0.2897 (7)0.0388 (19)0.454 (4)
H3'A0.11741.06400.28620.047*0.454 (4)
H3'B0.13140.73210.31840.047*0.454 (4)
C4'0.2053 (4)1.016 (2)0.3437 (9)0.039 (2)0.454 (4)
H4'A0.19851.00580.41190.047*0.454 (4)
H4'B0.21641.21830.32620.047*0.454 (4)
C5'0.2549 (5)0.793 (3)0.3119 (10)0.0288 (11)0.454 (4)
H5'A0.29620.88110.31360.035*0.454 (4)
H5'B0.25440.61450.35080.035*0.454 (4)
C60.4816 (3)0.6102 (15)0.0724 (6)0.0200 (9)*0.546 (4)
C70.5772 (5)0.855 (3)0.0389 (7)0.0366 (10)0.546 (4)
H7A0.60750.69540.04280.044*0.546 (4)
H7B0.57600.96110.09900.044*0.546 (4)
C80.5912 (4)1.0600 (16)0.0409 (6)0.033 (2)0.546 (4)
H8A0.57471.25790.02870.040*0.546 (4)
H8B0.63581.07470.05130.040*0.546 (4)
C90.5603 (4)0.9224 (18)0.1231 (5)0.0301 (17)0.546 (4)
H9A0.58370.75230.14640.036*0.546 (4)
H9B0.55511.06520.17430.036*0.546 (4)
C100.4984 (4)0.827 (3)0.0837 (8)0.0322 (10)0.546 (4)
H10A0.46870.99020.08390.039*0.546 (4)
H10B0.48130.66000.11910.039*0.546 (4)
C6'0.4807 (5)0.551 (2)0.0695 (8)0.0200 (9)*0.454 (4)
C7'0.5740 (6)0.853 (4)0.0417 (8)0.0366 (10)0.454 (4)
H7'A0.59830.70130.07400.044*0.454 (4)
H7'B0.56931.02450.08320.044*0.454 (4)
C8'0.6031 (4)0.939 (2)0.0505 (8)0.033 (2)0.454 (4)
H8'A0.63181.10390.04170.040*0.454 (4)
H8'B0.62560.77170.07780.040*0.454 (4)
C9'0.5511 (5)1.027 (2)0.1120 (8)0.0301 (17)0.454 (4)
H9'A0.56181.00740.17880.036*0.454 (4)
H9'B0.53831.23150.09960.036*0.454 (4)
C10'0.5010 (5)0.808 (4)0.0837 (10)0.0322 (10)0.454 (4)
H10C0.45990.89680.08920.039*0.454 (4)
H10D0.50270.62990.12300.039*0.454 (4)
C110.37625 (18)0.2698 (7)0.1150 (4)0.0358 (8)
H11A0.40810.14260.14230.043*
H11B0.34440.14130.08820.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0171 (4)0.0341 (5)0.0230 (6)0.0012 (3)0.0019 (4)0.0022 (3)
S20.0255 (5)0.0514 (7)0.0228 (6)0.0023 (4)0.0000 (4)0.0059 (4)
S30.0214 (5)0.0404 (6)0.0259 (7)0.0009 (3)0.0048 (4)0.0009 (4)
S40.0291 (5)0.0535 (8)0.0174 (6)0.0030 (4)0.0006 (4)0.0072 (4)
N10.0272 (14)0.0342 (15)0.0226 (15)0.0002 (12)0.0001 (12)0.0005 (12)
N20.0245 (13)0.0388 (17)0.0244 (15)0.0028 (12)0.0007 (12)0.0005 (13)
C10.0175 (18)0.031 (3)0.0217 (19)0.0108 (19)0.0036 (15)0.003 (2)
C20.0293 (18)0.049 (2)0.0284 (18)0.0045 (17)0.0025 (15)0.0022 (18)
C30.044 (3)0.042 (5)0.030 (4)0.011 (3)0.016 (3)0.014 (3)
C40.026 (4)0.059 (5)0.033 (4)0.008 (3)0.008 (3)0.002 (3)
C50.0359 (19)0.025 (3)0.0251 (18)0.0014 (19)0.0016 (16)0.007 (2)
C1'0.0175 (18)0.031 (3)0.0217 (19)0.0108 (19)0.0036 (15)0.003 (2)
C2'0.0293 (18)0.049 (2)0.0284 (18)0.0045 (17)0.0025 (15)0.0022 (18)
C3'0.044 (3)0.042 (5)0.030 (4)0.011 (3)0.016 (3)0.014 (3)
C4'0.026 (4)0.059 (5)0.033 (4)0.008 (3)0.008 (3)0.002 (3)
C5'0.0359 (19)0.025 (3)0.0251 (18)0.0014 (19)0.0016 (16)0.007 (2)
C70.0239 (18)0.053 (3)0.033 (2)0.0054 (17)0.0006 (16)0.0003 (19)
C80.028 (3)0.020 (5)0.052 (5)0.003 (3)0.010 (3)0.009 (3)
C90.039 (3)0.030 (5)0.021 (3)0.005 (3)0.013 (3)0.000 (3)
C100.037 (2)0.036 (2)0.0245 (19)0.0014 (17)0.0037 (15)0.0016 (17)
C7'0.0239 (18)0.053 (3)0.033 (2)0.0054 (17)0.0006 (16)0.0003 (19)
C8'0.028 (3)0.020 (5)0.052 (5)0.003 (3)0.010 (3)0.009 (3)
C9'0.039 (3)0.030 (5)0.021 (3)0.005 (3)0.013 (3)0.000 (3)
C10'0.037 (2)0.036 (2)0.0245 (19)0.0014 (17)0.0037 (15)0.0016 (17)
C110.0294 (15)0.0314 (17)0.047 (2)0.0009 (17)0.0098 (14)0.003 (2)
Geometric parameters (Å, º) top
S1—C11.743 (10)C2'—H2'A0.9900
S1—C1'1.816 (14)C2'—H2'B0.9900
S1—C111.820 (5)C3'—C4'1.533 (12)
S2—C1'1.571 (14)C3'—H3'A0.9900
S2—C11.725 (10)C3'—H3'B0.9900
S3—C6'1.724 (11)C4'—C5'1.556 (12)
S3—C111.802 (5)C4'—H4'A0.9900
S3—C61.827 (8)C4'—H4'B0.9900
S4—C6'1.678 (12)C5'—H5'A0.9900
S4—C61.693 (8)C5'—H5'B0.9900
N1—C11.313 (10)C7—C81.511 (11)
N1—C1'1.426 (13)C7—H7A0.9900
N1—C5'1.438 (13)C7—H7B0.9900
N1—C2'1.448 (14)C8—C91.498 (10)
N1—C21.483 (11)C8—H8A0.9900
N1—C51.520 (10)C8—H8B0.9900
N2—C61.273 (8)C9—C101.531 (10)
N2—C6'1.406 (11)C9—H9A0.9900
N2—C7'1.445 (13)C9—H9B0.9900
N2—C10'1.457 (14)C10—H10A0.9900
N2—C101.491 (11)C10—H10B0.9900
N2—C71.500 (11)C7'—C8'1.520 (12)
C2—C31.543 (11)C7'—H7'A0.9900
C2—H2A0.9900C7'—H7'B0.9900
C2—H2B0.9900C8'—C9'1.498 (11)
C3—C41.522 (10)C8'—H8'A0.9900
C3—H3A0.9900C8'—H8'B0.9900
C3—H3B0.9900C9'—C10'1.541 (12)
C4—C51.563 (10)C9'—H9'A0.9900
C4—H4A0.9900C9'—H9'B0.9900
C4—H4B0.9900C10'—H10C0.9900
C5—H5A0.9900C10'—H10D0.9900
C5—H5B0.9900C11—H11A0.9900
C2'—C3'1.546 (12)C11—H11B0.9900
C1—S1—C1'7.3 (7)C2'—C3'—H3'A111.4
C1—S1—C11103.1 (4)C4'—C3'—H3'B111.4
C1'—S1—C1198.2 (5)C2'—C3'—H3'B111.4
C1'—S2—C16.3 (9)H3'A—C3'—H3'B109.2
C6'—S3—C11100.1 (4)C3'—C4'—C5'101.9 (9)
C6'—S3—C68.2 (4)C3'—C4'—H4'A111.4
C11—S3—C6103.5 (3)C5'—C4'—H4'A111.4
C6'—S4—C69.3 (5)C3'—C4'—H4'B111.4
C1—N1—C1'8.8 (10)C5'—C4'—H4'B111.4
C1—N1—C5'120.5 (7)H4'A—C4'—H4'B109.2
C1'—N1—C5'124.8 (7)N1—C5'—C4'101.6 (8)
C1—N1—C2'124.2 (7)N1—C5'—H5'A111.5
C1'—N1—C2'119.6 (7)C4'—C5'—H5'A111.5
C5'—N1—C2'115.3 (6)N1—C5'—H5'B111.5
C1—N1—C2124.6 (6)C4'—C5'—H5'B111.5
C1'—N1—C2119.8 (7)H5'A—C5'—H5'B109.3
C5'—N1—C2114.9 (6)N2—C6—S4126.4 (5)
C2'—N1—C21.5 (13)N2—C6—S3112.7 (5)
C1—N1—C5126.7 (6)S4—C6—S3119.8 (4)
C1'—N1—C5131.7 (7)N2—C7—C8102.4 (7)
C5'—N1—C58.1 (8)N2—C7—H7A111.3
C2'—N1—C5108.7 (6)C8—C7—H7A111.3
C2—N1—C5108.4 (5)N2—C7—H7B111.3
C6—N2—C6'10.3 (7)C8—C7—H7B111.3
C6—N2—C7'119.5 (6)H7A—C7—H7B109.2
C6'—N2—C7'122.4 (7)C9—C8—C7104.1 (7)
C6—N2—C10'127.7 (6)C9—C8—H8A110.9
C6'—N2—C10'124.3 (7)C7—C8—H8A110.9
C7'—N2—C10'112.7 (6)C9—C8—H8B110.9
C6—N2—C10127.1 (5)C7—C8—H8B110.9
C6'—N2—C10124.5 (6)H8A—C8—H8B109.0
C7'—N2—C10113.0 (6)C8—C9—C10103.3 (7)
C10'—N2—C103.8 (12)C8—C9—H9A111.1
C6—N2—C7121.5 (5)C10—C9—H9A111.1
C6'—N2—C7124.1 (6)C8—C9—H9B111.1
C7'—N2—C72.3 (9)C10—C9—H9B111.1
C10'—N2—C7110.8 (6)H9A—C9—H9B109.1
C10—N2—C7111.1 (5)N2—C10—C9101.5 (6)
N1—C1—S2120.9 (7)N2—C10—H10A111.5
N1—C1—S1115.1 (7)C9—C10—H10A111.5
S2—C1—S1123.6 (6)N2—C10—H10B111.5
N1—C2—C3105.8 (7)C9—C10—H10B111.5
N1—C2—H2A110.6H10A—C10—H10B109.3
C3—C2—H2A110.6N2—C6'—S4118.6 (7)
N1—C2—H2B110.6N2—C6'—S3111.9 (7)
C3—C2—H2B110.6S4—C6'—S3127.1 (6)
H2A—C2—H2B108.7N2—C7'—C8'102.7 (8)
C4—C3—C2104.3 (7)N2—C7'—H7'A111.2
C4—C3—H3A110.9C8'—C7'—H7'A111.2
C2—C3—H3A110.9N2—C7'—H7'B111.2
C4—C3—H3B110.9C8'—C7'—H7'B111.2
C2—C3—H3B110.9H7'A—C7'—H7'B109.1
H3A—C3—H3B108.9C9'—C8'—C7'105.2 (9)
C3—C4—C5101.8 (7)C9'—C8'—H8'A110.7
C3—C4—H4A111.4C7'—C8'—H8'A110.7
C5—C4—H4A111.4C9'—C8'—H8'B110.7
C3—C4—H4B111.4C7'—C8'—H8'B110.7
C5—C4—H4B111.4H8'A—C8'—H8'B108.8
H4A—C4—H4B109.3C8'—C9'—C10'102.2 (9)
N1—C5—C4104.6 (6)C8'—C9'—H9'A111.3
N1—C5—H5A110.8C10'—C9'—H9'A111.3
C4—C5—H5A110.8C8'—C9'—H9'B111.3
N1—C5—H5B110.8C10'—C9'—H9'B111.3
C4—C5—H5B110.8H9'A—C9'—H9'B109.2
H5A—C5—H5B108.9N2—C10'—C9'103.7 (9)
N1—C1'—S2124.3 (9)N2—C10'—H10C111.0
N1—C1'—S1105.3 (8)C9'—C10'—H10C111.0
S2—C1'—S1128.8 (8)N2—C10'—H10D111.0
N1—C2'—C3'101.0 (8)C9'—C10'—H10D111.0
N1—C2'—H2'A111.6H10C—C10'—H10D109.0
C3'—C2'—H2'A111.6S3—C11—S1114.05 (18)
N1—C2'—H2'B111.6S3—C11—H11A108.7
C3'—C2'—H2'B111.6S1—C11—H11A108.7
H2'A—C2'—H2'B109.4S3—C11—H11B108.7
C4'—C3'—C2'102.0 (9)S1—C11—H11B108.7
C4'—C3'—H3'A111.4H11A—C11—H11B107.6
C1'—N1—C1—S252 (6)C10'—N2—C6—S4172.3 (10)
C5'—N1—C1—S2173.4 (8)C10—N2—C6—S4177.1 (8)
C2'—N1—C1—S28.8 (15)C7—N2—C6—S49.9 (11)
C2—N1—C1—S27.1 (13)C6'—N2—C6—S370 (4)
C5—N1—C1—S2179.6 (7)C7'—N2—C6—S3179.6 (10)
C1'—N1—C1—S1120 (7)C10'—N2—C6—S34.0 (12)
C5'—N1—C1—S10.9 (12)C10—N2—C6—S38.7 (10)
C2'—N1—C1—S1178.7 (10)C7—N2—C6—S3178.2 (7)
C2—N1—C1—S1179.6 (8)C6'—S4—C6—N2114 (4)
C5—N1—C1—S17.1 (12)C6'—S4—C6—S354 (3)
C1'—S2—C1—N195 (7)C6'—S3—C6—N2106 (4)
C1'—S2—C1—S177 (7)C11—S3—C6—N2172.9 (4)
C1'—S1—C1—N1126 (6)C6'—S3—C6—S463 (4)
C11—S1—C1—N1173.6 (7)C11—S3—C6—S43.7 (5)
C1'—S1—C1—S247 (6)C6—N2—C7—C8164.2 (6)
C11—S1—C1—S21.4 (8)C6'—N2—C7—C8176.1 (7)
C1—N1—C2—C3166.2 (8)C7'—N2—C7—C8133 (32)
C1'—N1—C2—C3174.8 (9)C10'—N2—C7—C813.9 (13)
C5'—N1—C2—C313.3 (13)C10—N2—C7—C89.8 (12)
C2'—N1—C2—C393 (32)N2—C7—C8—C932.0 (10)
C5—N1—C2—C38.1 (11)C7—C8—C9—C1042.8 (10)
N1—C2—C3—C429.8 (11)C6—N2—C10—C9170.8 (6)
C2—C3—C4—C538.6 (10)C6'—N2—C10—C9158.5 (7)
C1—N1—C5—C4169.9 (8)C7'—N2—C10—C917.1 (13)
C1'—N1—C5—C4160.6 (9)C10'—N2—C10—C970 (11)
C5'—N1—C5—C4128 (7)C7—N2—C10—C915.6 (11)
C2'—N1—C5—C417.5 (11)C8—C9—C10—N235.2 (10)
C2—N1—C5—C415.9 (10)C6—N2—C6'—S466 (4)
C3—C4—C5—N133.6 (9)C7'—N2—C6'—S410.4 (13)
C1—N1—C1'—S2116 (7)C10'—N2—C6'—S4179.0 (9)
C5'—N1—C1'—S2179.4 (10)C10—N2—C6'—S4174.4 (8)
C2'—N1—C1'—S27.9 (17)C7—N2—C6'—S412.3 (12)
C2—N1—C1'—S29.6 (16)C6—N2—C6'—S397 (4)
C5—N1—C1'—S2174.2 (8)C7'—N2—C6'—S3174.0 (10)
C1—N1—C1'—S151 (6)C10'—N2—C6'—S315.4 (12)
C5'—N1—C1'—S112.6 (13)C10—N2—C6'—S310.8 (11)
C2'—N1—C1'—S1174.7 (10)C7—N2—C6'—S3175.9 (8)
C2—N1—C1'—S1176.4 (8)C6—S4—C6'—N249 (3)
C5—N1—C1'—S17.3 (14)C6—S4—C6'—S3111 (4)
C1—S2—C1'—N173 (7)C11—S3—C6'—N2174.7 (6)
C1—S2—C1'—S191 (7)C6—S3—C6'—N260 (4)
C1—S1—C1'—N145 (5)C11—S3—C6'—S412.9 (7)
C11—S1—C1'—N1177.6 (7)C6—S3—C6'—S4102 (4)
C1—S1—C1'—S2121 (7)C6—N2—C7'—C8'170.5 (8)
C11—S1—C1'—S211.6 (12)C6'—N2—C7'—C8'159.0 (8)
C1—N1—C2'—C3'166.3 (8)C10'—N2—C7'—C8'12.6 (16)
C1'—N1—C2'—C3'157.5 (10)C10—N2—C7'—C8'16.7 (15)
C5'—N1—C2'—C3'15.8 (15)C7—N2—C7'—C8'21 (30)
C2—N1—C2'—C3'59 (31)N2—C7'—C8'—C9'31.1 (14)
C5—N1—C2'—C3'20.9 (13)C7'—C8'—C9'—C10'37.1 (14)
N1—C2'—C3'—C4'35.6 (13)C6—N2—C10'—C9'166.5 (7)
C2'—C3'—C4'—C5'42.5 (12)C6'—N2—C10'—C9'178.5 (7)
C1—N1—C5'—C4'167.5 (8)C7'—N2—C10'—C9'10.1 (15)
C1'—N1—C5'—C4'176.6 (9)C10—N2—C10'—C9'84 (11)
C2'—N1—C5'—C4'10.5 (14)C7—N2—C10'—C9'11.4 (14)
C2—N1—C5'—C4'12.0 (12)C8'—C9'—C10'—N228.7 (13)
C5—N1—C5'—C4'26 (6)C6'—S3—C11—S184.1 (4)
C3'—C4'—C5'—N132.6 (11)C6—S3—C11—S176.5 (3)
C6'—N2—C6—S498 (4)C1—S1—C11—S379.2 (4)
C7'—N2—C6—S411.3 (12)C1'—S1—C11—S384.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···S3i0.992.893.811 (9)155
C10—H10B···S4ii0.992.993.699 (11)130
C9—H9A···S1ii0.992.873.740 (8)147
C9—H9A···S1ii0.993.504.209 (11)131
C5—H5B···S2i0.992.943.704 (14)137
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC11H18N2S4
Mr306.51
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)150
a, b, c (Å)21.9118 (18), 4.5705 (4), 14.3452 (12)
V3)1436.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.25 × 0.25 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.856, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
17016, 3292, 2759
Rint0.043
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.166, 1.07
No. of reflections3292
No. of parameters180
No. of restraints17
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.05, 0.27
Absolute structureFlack (1983), 1579 Friedel pairs
Absolute structure parameter0.1 (2)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···S3i0.992.893.811 (9)155
C10—H10B···S4ii0.992.993.699 (11)130
C9—H9A···S1ii0.992.873.740 (8)147
C9'—H9'A···S1ii0.993.504.209 (11)131
C5'—H5'B···S2i0.992.943.704 (14)137
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y+1, z1/2.
 

Acknowledgements

We thank the National Science Council of the Republic of China for financial support (NSC98–2113-M-241–011-MY2).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChou, W. L., Chang, H. H., Yih, K. H. & Lee, G. H. (2007). J. Chin. Chem. Soc. 54, 323–330.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHeckley, P. R., Holah, D. G., Hughes, A. N. & Leh, F. (1970). Can. J. Chem. 48, 3827–3830.  CrossRef CAS Google Scholar
First citationKayed, S. F., Farina, Y., Kassim, M. & Simpson, J. (2008). Acta Cryst. E64, o1022–o1023.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, New York: Cornell University Press.  Google Scholar
First citationPervez, H., Iqbal, M. S., Saira, N., Yaqub, M. & Tahir, M. N. (2010). Acta Cryst. E66, o1169–o1170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSharma, S., Bohra, R. & Mehrotra, R. C. (1991). J. Crystallogr. Spectrosc. Res. 21, 61–66.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, J. C. (1945). US Patent 2 384 577.  Google Scholar
First citationThomas, J. C. (1946). Chem. Abstr. 40, 177.  Google Scholar
First citationVangala, V. R., Desiraju, G. R., Jetti, R. K. R., Bläser, D. & Boese, R. (2002). Acta Cryst. C58, o635–o636.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYaqub, M., Pervez, H., Arif, N., Tahir, M. N. & Hussain, M. (2010). Acta Cryst. E66, o1696.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds