metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Chlorido{3-chloro-2-[(1-naphth­yl)imino­meth­yl]phenyl-κ2C1,N}bis­­(tri­methyl­phosphane)nickel(II)

aDepartment of Chemistry, Qilu Normal University, Jinan 250013, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: hjsun@sdu.edu.cn

(Received 15 September 2010; accepted 9 November 2010; online 17 November 2010)

The title compound, [Ni(C17H11ClN)Cl(C3H9P)2], was obtained as a product of the reaction of [Ni(PMe3)4] with a molar equivalent of 2,6-dichloro-N-naphthyl­benzaldehyde­amine in diethyl ether. The τ parameter is 0.3, indicating that the coordination geometry is square-pyramidal. The NiII atom lies in the center of a square pyramidal in which one C, one Cl and two P atoms form the basal plane, with the imine N atom in an apical position. Two P-atom donors are located in trans positions.

Related literature

For related structures of nickel compounds, see: Cao et al. (2008[Cao, R., Sun, H. & Li, X. (2008). Organometallics, 27, 1944-1949.]). For the τ parameter, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C17H11ClN)Cl(C3H9P)2]

  • Mr = 511.02

  • Orthorhombic, P 21 21 21

  • a = 9.0529 (19) Å

  • b = 15.855 (3) Å

  • c = 17.869 (4) Å

  • V = 2564.7 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 273 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.879, Tmax = 0.917

  • 9377 measured reflections

  • 3708 independent reflections

  • 3376 reflections with I > 2σ(I)

  • Rint = 0.045

  • θmax = 23.5°

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.124

  • S = 1.00

  • 3708 reflections

  • 268 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1893 Friedel pairs

  • Flack parameter: −0.03 (2)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the title molecule (Fig.1) the nickel atom lies in the center of a square pyramidal geometry (τ parameter is 0.3, Addison et al. 1984) in which C, Cl and two P atoms form the basal plane withthe imine N in the apical position. Two P-donor atoms are located in trans-positions. A five membered metallacycle is formed through the coordination of the N atom of the imine group and the ortho-chelated C atom. The sum of internal bond angles (540%A) of this chelate ring indicates ideal planarity. The bite angle of the chelating ligand [C1—Ni1—N1 = 80.63 (15) %A] is close to that recently reported (Cao et al., 2008). Similar crystal structures been reported in the literature e.g. N–(o-chlorine-phenyl)-2,6-dichlorobenzaldehydeamine-trans-b is(trimethylphosphine)nickel(II) (Cao et al., 2008). The benzene plane forms an angle of 72.3 (1)%A with five membered metallacycle, which is smaller than the title compound (76.2 (1)%A). The bond lengths and angles of this compound are similar to those in the title compound.

Related literature top

For related structures of nickel compounds, see: Cao et al. (2008). For the τ parameter, see: Addison et al. (1984).

Experimental top

A sample of Ni(PMe3)4 (1.0 g, 2.75 mmol) in 30 ml of diethyl ether was combined with a solution of N-naphthyl-2,6-dichlorobenzaldehydeamine (0.83 g, 2.75 mmol) in diethyl ether (20 ml) at -80%A. The reaction mixture was warmed to ambient temperature and stirred for 18 h to form a brown-yellow solution. The volatiles were removed in vacuo, and the resulting solid was extracted with pentane (60 ml). Crystallization at 4%A afforded brown-yellow crystals suitable for X-ray diffraction analysis (yield 0.59 g, 42%), Mp: 146%A.

Refinement top

All H atoms on C were placed in calculated positions with a C—H bond distance of 0.93 or 0.96 Å and Uiso(H) = 1.2Ueq of the carrier atom.

Structure description top

In the title molecule (Fig.1) the nickel atom lies in the center of a square pyramidal geometry (τ parameter is 0.3, Addison et al. 1984) in which C, Cl and two P atoms form the basal plane withthe imine N in the apical position. Two P-donor atoms are located in trans-positions. A five membered metallacycle is formed through the coordination of the N atom of the imine group and the ortho-chelated C atom. The sum of internal bond angles (540%A) of this chelate ring indicates ideal planarity. The bite angle of the chelating ligand [C1—Ni1—N1 = 80.63 (15) %A] is close to that recently reported (Cao et al., 2008). Similar crystal structures been reported in the literature e.g. N–(o-chlorine-phenyl)-2,6-dichlorobenzaldehydeamine-trans-b is(trimethylphosphine)nickel(II) (Cao et al., 2008). The benzene plane forms an angle of 72.3 (1)%A with five membered metallacycle, which is smaller than the title compound (76.2 (1)%A). The bond lengths and angles of this compound are similar to those in the title compound.

For related structures of nickel compounds, see: Cao et al. (2008). For the τ parameter, see: Addison et al. (1984).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), showing the atmoic numbering scheme and 30% probability displacement ellipsoids.
trans-Chlorido{3-chloro-2-[(1- naphthyl)iminomethyl]phenyl- κ2C1,N}bis(trimethylphosphane)nickel(II) top
Crystal data top
[Ni(C17H11ClN)Cl(C3H9P)2]F(000) = 1064
Mr = 511.02Dx = 1.323 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5708 reflections
a = 9.0529 (19) Åθ = 3.5–27.2°
b = 15.855 (3) ŵ = 1.10 mm1
c = 17.869 (4) ÅT = 273 K
V = 2564.7 (9) Å3Block, brown
Z = 40.12 × 0.10 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
3708 independent reflections
Radiation source: fine-focus sealed tube3376 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
phi and ω scansθmax = 23.5°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 79
Tmin = 0.879, Tmax = 0.917k = 1617
9377 measured reflectionsl = 2014
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.1P)2 + 0.1P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.077
3708 reflectionsΔρmax = 0.30 e Å3
268 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack (1983), 1530 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (2)
Crystal data top
[Ni(C17H11ClN)Cl(C3H9P)2]V = 2564.7 (9) Å3
Mr = 511.02Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.0529 (19) ŵ = 1.10 mm1
b = 15.855 (3) ÅT = 273 K
c = 17.869 (4) Å0.12 × 0.10 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
3708 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3376 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.917Rint = 0.045
9377 measured reflectionsθmax = 23.5°
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.124Δρmax = 0.30 e Å3
S = 1.00Δρmin = 0.24 e Å3
3708 reflectionsAbsolute structure: Flack (1983), 1530 Friedel pairs
268 parametersAbsolute structure parameter: 0.03 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.24052 (6)0.05187 (3)0.99453 (3)0.03814 (19)
P10.35371 (15)0.15563 (8)1.05246 (8)0.0494 (3)
Cl20.17839 (16)0.13255 (7)0.89625 (6)0.0534 (3)
P20.06670 (16)0.03809 (9)0.96442 (8)0.0553 (4)
Cl10.6167 (2)0.17658 (10)1.12882 (9)0.0768 (5)
C10.2869 (5)0.0146 (3)1.0792 (2)0.0414 (11)
C110.6215 (6)0.0827 (3)0.7665 (3)0.0499 (12)
C70.5207 (5)0.0170 (3)0.8785 (2)0.0418 (11)
C60.4108 (5)0.0671 (3)1.0723 (2)0.0407 (10)
C50.4571 (6)0.1144 (3)1.1346 (3)0.0531 (13)
C120.5413 (5)0.0902 (3)0.8345 (2)0.0415 (11)
C130.4820 (6)0.1712 (3)0.8525 (3)0.0549 (13)
H130.42580.17780.89560.066*
C160.6432 (6)0.1554 (4)0.7219 (3)0.0677 (16)
H160.69610.15090.67750.081*
C30.2568 (7)0.0621 (4)1.2072 (3)0.0676 (15)
H30.20480.06111.25200.081*
C80.5727 (6)0.0592 (3)0.8552 (3)0.0540 (12)
H80.55410.10720.88370.065*
C100.6795 (8)0.0025 (4)0.7460 (3)0.0629 (16)
H100.73540.00270.70250.076*
C90.6544 (6)0.0660 (4)0.7886 (3)0.0636 (15)
H90.69140.11810.77390.076*
C40.3816 (7)0.1120 (4)1.2009 (3)0.0625 (15)
H40.41390.14381.24140.075*
C20.2089 (6)0.0139 (3)1.1482 (3)0.0549 (13)
H20.12480.01931.15330.066*
C150.5889 (8)0.2305 (4)0.7425 (3)0.0728 (18)
H150.60660.27760.71290.087*
C140.5063 (7)0.2384 (3)0.8077 (3)0.0656 (17)
H140.46730.29070.82070.079*
C170.4894 (5)0.0668 (3)1.0012 (2)0.0417 (10)
H170.57250.10030.99430.050*
N10.4418 (4)0.0194 (2)0.9485 (2)0.0408 (9)
C200.3896 (9)0.2490 (4)0.9963 (5)0.101 (3)
H20A0.29870.27860.98770.151*
H20B0.43170.23250.94920.151*
H20C0.45740.28521.02230.151*
C220.0628 (10)0.1413 (4)1.0068 (4)0.100 (3)
H22A0.03050.13661.05780.150*
H22B0.16000.16551.00550.150*
H22C0.00430.17690.97970.150*
C190.2610 (11)0.2004 (5)1.1325 (5)0.125 (3)
H19A0.26140.16031.17280.188*
H19B0.16080.21381.11940.188*
H19C0.31130.25081.14780.188*
C210.5326 (7)0.1326 (4)1.0908 (5)0.092 (2)
H21A0.57680.18371.10890.139*
H21B0.59420.10861.05260.139*
H21C0.52250.09321.13130.139*
C230.0528 (11)0.0661 (5)0.8660 (4)0.107 (3)
H23A0.02020.10950.85980.161*
H23B0.14670.08640.84860.161*
H23C0.02470.01730.83750.161*
C240.1127 (8)0.0025 (6)0.9863 (8)0.153 (5)
H24A0.18640.03040.96110.229*
H24B0.11930.06010.97020.229*
H24C0.12850.00051.03940.229*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0381 (3)0.0439 (3)0.0325 (3)0.0004 (2)0.0001 (3)0.0011 (2)
P10.0460 (8)0.0455 (7)0.0568 (8)0.0043 (5)0.0126 (6)0.0108 (6)
Cl20.0715 (9)0.0493 (6)0.0394 (6)0.0043 (6)0.0041 (6)0.0024 (5)
P20.0516 (8)0.0554 (8)0.0588 (8)0.0134 (6)0.0078 (6)0.0076 (6)
Cl10.0980 (12)0.0663 (9)0.0660 (9)0.0286 (8)0.0186 (8)0.0038 (7)
C10.040 (3)0.052 (3)0.032 (2)0.006 (2)0.0020 (18)0.0021 (19)
C110.048 (3)0.067 (3)0.034 (2)0.011 (2)0.005 (2)0.001 (2)
C70.038 (3)0.049 (3)0.038 (2)0.006 (2)0.0041 (19)0.008 (2)
C60.047 (3)0.037 (2)0.037 (2)0.006 (2)0.000 (2)0.0006 (18)
C50.069 (4)0.043 (3)0.047 (3)0.000 (2)0.010 (3)0.000 (2)
C120.040 (3)0.050 (3)0.035 (2)0.006 (2)0.0009 (19)0.001 (2)
C130.063 (3)0.058 (3)0.044 (3)0.000 (3)0.004 (2)0.003 (2)
C160.061 (4)0.092 (5)0.050 (3)0.013 (3)0.012 (3)0.013 (3)
C30.077 (4)0.092 (4)0.034 (3)0.016 (4)0.007 (3)0.008 (3)
C80.059 (3)0.052 (3)0.051 (3)0.003 (3)0.009 (2)0.009 (2)
C100.056 (3)0.083 (4)0.050 (3)0.006 (3)0.014 (2)0.013 (3)
C90.066 (4)0.070 (4)0.055 (3)0.009 (3)0.006 (3)0.016 (3)
C40.080 (4)0.071 (4)0.037 (3)0.002 (3)0.002 (3)0.012 (2)
C20.050 (3)0.076 (3)0.039 (3)0.001 (3)0.007 (2)0.004 (2)
C150.091 (5)0.073 (4)0.055 (3)0.015 (4)0.005 (3)0.020 (3)
C140.094 (5)0.052 (3)0.051 (3)0.003 (3)0.006 (3)0.006 (2)
C170.038 (2)0.045 (2)0.042 (2)0.0057 (19)0.003 (2)0.006 (2)
N10.044 (2)0.043 (2)0.0351 (19)0.0075 (17)0.0027 (17)0.0007 (16)
C200.120 (6)0.060 (4)0.122 (6)0.024 (4)0.063 (6)0.014 (4)
C220.155 (7)0.066 (4)0.080 (4)0.054 (4)0.041 (5)0.024 (4)
C190.130 (7)0.113 (6)0.134 (7)0.009 (6)0.032 (7)0.069 (6)
C210.063 (4)0.065 (4)0.149 (7)0.003 (3)0.045 (4)0.010 (4)
C230.151 (7)0.094 (5)0.078 (4)0.054 (5)0.051 (5)0.005 (4)
C240.042 (4)0.111 (7)0.305 (17)0.021 (4)0.022 (7)0.009 (9)
Geometric parameters (Å, º) top
Ni1—C11.891 (4)C8—C91.405 (7)
Ni1—P22.1908 (15)C8—H80.9300
Ni1—P12.1973 (14)C10—C91.346 (8)
Ni1—Cl22.2443 (13)C10—H100.9300
Ni1—N12.297 (4)C9—H90.9300
P1—C211.796 (6)C4—H40.9300
P1—C191.803 (7)C2—H20.9300
P1—C201.818 (7)C15—C141.391 (9)
P2—C241.790 (8)C15—H150.9300
P2—C221.804 (6)C14—H140.9300
P2—C231.819 (7)C17—N11.279 (6)
Cl1—C51.752 (6)C17—H170.9300
C1—C61.402 (7)C20—H20A0.9600
C1—C21.420 (7)C20—H20B0.9600
C11—C161.415 (8)C20—H20C0.9600
C11—C101.423 (8)C22—H22A0.9600
C11—C121.421 (6)C22—H22B0.9600
C7—C81.362 (7)C22—H22C0.9600
C7—C121.414 (6)C19—H19A0.9600
C7—N11.441 (6)C19—H19B0.9600
C6—C51.406 (7)C19—H19C0.9600
C6—C171.456 (6)C21—H21A0.9600
C5—C41.368 (8)C21—H21B0.9600
C12—C131.428 (7)C21—H21C0.9600
C13—C141.349 (7)C23—H23A0.9600
C13—H130.9300C23—H23B0.9600
C16—C151.339 (9)C23—H23C0.9600
C16—H160.9300C24—H24A0.9600
C3—C21.372 (8)C24—H24B0.9600
C3—C41.384 (8)C24—H24C0.9600
C3—H30.9300
C1—Ni1—P289.63 (14)C10—C9—H9119.8
C1—Ni1—P186.35 (14)C8—C9—H9119.8
P2—Ni1—P1159.73 (6)C5—C4—C3119.6 (5)
C1—Ni1—Cl2177.94 (15)C5—C4—H4120.2
P2—Ni1—Cl289.94 (5)C3—C4—H4120.2
P1—Ni1—Cl293.37 (5)C3—C2—C1120.3 (5)
C1—Ni1—N180.57 (17)C3—C2—H2119.8
P2—Ni1—N199.30 (11)C1—C2—H2119.8
P1—Ni1—N199.62 (10)C16—C15—C14120.5 (5)
Cl2—Ni1—N1101.48 (10)C16—C15—H15119.7
C21—P1—C19101.4 (5)C14—C15—H15119.7
C21—P1—C20102.4 (4)C13—C14—C15120.8 (6)
C19—P1—C20101.6 (5)C13—C14—H14119.6
C21—P1—Ni1116.6 (2)C15—C14—H14119.6
C19—P1—Ni1116.8 (3)N1—C17—C6118.7 (4)
C20—P1—Ni1115.7 (3)N1—C17—H17120.6
C24—P2—C22102.5 (5)C6—C17—H17120.6
C24—P2—C23103.7 (6)C17—N1—C7119.2 (4)
C22—P2—C23100.5 (3)C17—N1—Ni1107.0 (3)
C24—P2—Ni1111.3 (3)C7—N1—Ni1133.7 (3)
C22—P2—Ni1120.1 (2)P1—C20—H20A109.5
C23—P2—Ni1116.5 (3)P1—C20—H20B109.5
C6—C1—C2118.6 (4)H20A—C20—H20B109.5
C6—C1—Ni1116.0 (3)P1—C20—H20C109.5
C2—C1—Ni1125.4 (4)H20A—C20—H20C109.5
C16—C11—C10122.1 (5)H20B—C20—H20C109.5
C16—C11—C12118.9 (5)P2—C22—H22A109.5
C10—C11—C12119.0 (4)P2—C22—H22B109.5
C8—C7—C12120.9 (4)H22A—C22—H22B109.5
C8—C7—N1117.4 (4)P2—C22—H22C109.5
C12—C7—N1121.7 (4)H22A—C22—H22C109.5
C1—C6—C5119.1 (4)H22B—C22—H22C109.5
C1—C6—C17117.7 (4)P1—C19—H19A109.5
C5—C6—C17123.1 (5)P1—C19—H19B109.5
C4—C5—C6121.4 (5)H19A—C19—H19B109.5
C4—C5—Cl1118.6 (4)P1—C19—H19C109.5
C6—C5—Cl1120.0 (4)H19A—C19—H19C109.5
C7—C12—C13124.3 (4)H19B—C19—H19C109.5
C7—C12—C11118.2 (4)P1—C21—H21A109.5
C13—C12—C11117.4 (4)P1—C21—H21B109.5
C14—C13—C12121.0 (5)H21A—C21—H21B109.5
C14—C13—H13119.5P1—C21—H21C109.5
C12—C13—H13119.5H21A—C21—H21C109.5
C15—C16—C11121.2 (5)H21B—C21—H21C109.5
C15—C16—H16119.4P2—C23—H23A109.5
C11—C16—H16119.4P2—C23—H23B109.5
C2—C3—C4120.9 (5)H23A—C23—H23B109.5
C2—C3—H3119.5P2—C23—H23C109.5
C4—C3—H3119.5H23A—C23—H23C109.5
C7—C8—C9120.5 (5)H23B—C23—H23C109.5
C7—C8—H8119.7P2—C24—H24A109.5
C9—C8—H8119.7P2—C24—H24B109.5
C9—C10—C11120.8 (5)H24A—C24—H24B109.5
C9—C10—H10119.6P2—C24—H24C109.5
C11—C10—H10119.6H24A—C24—H24C109.5
C10—C9—C8120.5 (5)H24B—C24—H24C109.5

Experimental details

Crystal data
Chemical formula[Ni(C17H11ClN)Cl(C3H9P)2]
Mr511.02
Crystal system, space groupOrthorhombic, P212121
Temperature (K)273
a, b, c (Å)9.0529 (19), 15.855 (3), 17.869 (4)
V3)2564.7 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.879, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
9377, 3708, 3376
Rint0.045
θmax (°)23.5
(sin θ/λ)max1)0.561
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.124, 1.00
No. of reflections3708
No. of parameters268
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.24
Absolute structureFlack (1983), 1530 Friedel pairs
Absolute structure parameter0.03 (2)

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Department of Education research project of Shandong Province (J10LB52).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, R., Sun, H. & Li, X. (2008). Organometallics, 27, 1944–1949.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds