organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Oxo-2-(2-thien­yl)acetic acid

aDepartment of Chemistry and Biochemistry, Central Connecticut State University, 1619 Stanley Street, New Britain, CT 06053, USA
*Correspondence e-mail: crundwellg@ccsu.edu

(Received 13 October 2010; accepted 27 October 2010; online 6 November 2010)

The structure of the title compound, C6H4O3S, displays inter­molecular hydrogen-bonding dimers. The structure exhibits a thienyl-ring flip disorder of the main mol­ecule [occupancy ratio = 91.3 (2):8.7 (2)].

Related literature

For a discussion of ring-flip disorder in unsubstituted 2- and 3-thienyl rings, see: Crundwell et al. (2003[Crundwell, G., Sullivan, J., Pelto, R. & Kantardjieff, K. (2003). J. Chem. Crystallogr. 33, 239-244.]). For information on simple O—H⋯O interactions, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C6H4O3S

  • Mr = 156.15

  • Monoclinic, P 21 /c

  • a = 3.7481 (10) Å

  • b = 15.314 (3) Å

  • c = 10.727 (3) Å

  • β = 93.30 (2)°

  • V = 614.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 293 K

  • 0.34 × 0.21 × 0.11 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.944, Tmax = 1.000

  • 6475 measured reflections

  • 1927 independent reflections

  • 1512 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.106

  • S = 1.09

  • 1927 reflections

  • 104 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.82 2.637 (2) 176
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The structure of 2-oxo-2-(2-thienyl)acetic acid, C6H4O3S, has monoclinic (P21/c) symmetry. The structure displays intermolecular hydrogen bonding dimers. The structure exhibits a thienyl-ring flip disorder of the main molecule.

The structure of the title compound displays centrosymmetric R22(8) dimers by a simple O—H···O interactions (Bernstein et al., 1995). The structure exhibits a thienyl-ring flip disorder of the main molecule with occupancy ratios of 91.3 (2)% to 8.7 (2)%.

Related literature top

For a discussion of ring-flip disorder in unsubstituted 2- and 3-thienyl rings, see: Crundwell et al. (2003). For related literature [please provide some indication of what these references refer to], Steel & Fitchett (2000, 2006).

For related literature, see: Spek (2009).

Experimental top

The title compound was purchased as 2-thiopheneglyoxylic acid from Aldrich (95% purity). Crystals for this x-ray diffraction study were harvested from methanol during routine recrystallization.

Refinement top

During refinement, the thienyl ring showed evidence of ring-flip disorder which is common for unsubstituted 2- and 3-thienyl rings (Crundwell et al., 2003). After finding three of the flipped disordered atoms in the difference map, the rest of the ring was generated and modeled. The final model suggested that the thienyl ring disorder was 8.7 (2)%.

Hydrogen atoms on carbons were included in calculated positions with a C—H distance of 0.93 Å and were included in the refinement in riding motion approximation with Uiso = 1.2Ueq of the carrier atom.

The hydroxyl hydrogen was included in a calculated position with a O—H distance of 0.82 Å and was included in the refinement in riding motion approximation with Uiso = 1.2Ueq of the carrier atom.

Structure description top

The structure of 2-oxo-2-(2-thienyl)acetic acid, C6H4O3S, has monoclinic (P21/c) symmetry. The structure displays intermolecular hydrogen bonding dimers. The structure exhibits a thienyl-ring flip disorder of the main molecule.

The structure of the title compound displays centrosymmetric R22(8) dimers by a simple O—H···O interactions (Bernstein et al., 1995). The structure exhibits a thienyl-ring flip disorder of the main molecule with occupancy ratios of 91.3 (2)% to 8.7 (2)%.

For a discussion of ring-flip disorder in unsubstituted 2- and 3-thienyl rings, see: Crundwell et al. (2003). For related literature [please provide some indication of what these references refer to], Steel & Fitchett (2000, 2006).

For related literature, see: Spek (2009).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound (Farrugia, 1997). Displacement ellipsoids are drawn at the 50% probability level.
2-Oxo-2-(2-thienyl)acetic acid top
Crystal data top
C6H4O3SF(000) = 320
Mr = 156.15Dx = 1.687 Mg m3
Monoclinic, P21/cMelting point: 361 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 3.7481 (10) ÅCell parameters from 6632 reflections
b = 15.314 (3) Åθ = 3.8–32.0°
c = 10.727 (3) ŵ = 0.46 mm1
β = 93.30 (2)°T = 293 K
V = 614.7 (3) Å3Plate, yellow
Z = 40.34 × 0.21 × 0.11 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1927 independent reflections
Radiation source: Enhance (Mo) X-ray Source1512 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 16.1790 pixels mm-1θmax = 32.0°, θmin = 3.8°
ω scansh = 55
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 2216
Tmin = 0.944, Tmax = 1.000l = 1515
6475 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.018P]
where P = (Fo2 + 2Fc2)/3
1927 reflections(Δ/σ)max = 0.002
104 parametersΔρmax = 0.51 e Å3
12 restraintsΔρmin = 0.29 e Å3
Crystal data top
C6H4O3SV = 614.7 (3) Å3
Mr = 156.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.7481 (10) ŵ = 0.46 mm1
b = 15.314 (3) ÅT = 293 K
c = 10.727 (3) Å0.34 × 0.21 × 0.11 mm
β = 93.30 (2)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1927 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1512 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 1.000Rint = 0.032
6475 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03712 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.09Δρmax = 0.51 e Å3
1927 reflectionsΔρmin = 0.29 e Å3
104 parameters
Special details top

Experimental. Hydrogen atoms on carbons were included in calculated positions with a C—H distance of 0.93 Å and were included in the refinement in riding motion approximation with Uiso = 1.2Ueq of the carrier atom.

The hydroxyl hydrogen was included in a calculated position with a O—H distance of 0.82 Å and was included in the refinement in riding motion approximation with Uiso = 1.2Ueq of the carrier atom.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.1858 (3)0.98317 (6)0.36658 (10)0.0261 (3)
H10.27591.02080.41280.039*
O20.5095 (3)0.89316 (7)0.49326 (9)0.0207 (2)
C10.2916 (4)0.90590 (8)0.40596 (12)0.0167 (3)
C20.1123 (4)0.83170 (8)0.32857 (12)0.0156 (3)
O30.0839 (3)0.85113 (7)0.23733 (9)0.0207 (2)
C30.1813 (3)0.74199 (8)0.36784 (12)0.0153 (3)0.9131 (17)
C40.3362 (8)0.70703 (19)0.4767 (2)0.0176 (4)0.9131 (17)
H40.43680.74120.54130.021*0.9131 (17)
C50.3282 (10)0.61491 (14)0.4812 (2)0.0158 (3)0.9131 (17)
H50.41760.58150.54840.019*0.9131 (17)
C60.1687 (5)0.58091 (10)0.37166 (15)0.0158 (3)0.9131 (17)
H60.14170.52140.35640.019*0.9131 (17)
S10.02766 (10)0.65987 (2)0.26826 (3)0.01633 (14)0.9131 (17)
C3B0.1813 (3)0.74199 (8)0.36784 (12)0.0153 (3)0.0869 (17)
C4B0.057 (4)0.6842 (10)0.2959 (14)0.01633 (14)0.0869 (17)
H4B0.06090.69470.21870.020*0.0869 (17)
C5B0.122 (6)0.5982 (11)0.350 (2)0.0158 (3)0.0869 (17)
H5B0.05390.54540.31270.019*0.0869 (17)
C6B0.303 (13)0.6081 (13)0.464 (3)0.0158 (3)0.0869 (17)
H6B0.37390.56120.51510.019*0.0869 (17)
S1B0.384 (3)0.7158 (6)0.5057 (7)0.0176 (4)0.0869 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0349 (6)0.0124 (4)0.0291 (6)0.0006 (4)0.0140 (4)0.0003 (4)
O20.0264 (5)0.0153 (5)0.0193 (5)0.0004 (4)0.0080 (4)0.0003 (4)
C10.0180 (6)0.0151 (6)0.0170 (6)0.0003 (5)0.0004 (5)0.0007 (5)
C20.0166 (6)0.0150 (6)0.0152 (6)0.0009 (5)0.0005 (4)0.0003 (5)
O30.0245 (5)0.0203 (5)0.0166 (5)0.0016 (4)0.0060 (4)0.0009 (4)
C30.0159 (6)0.0132 (6)0.0165 (6)0.0006 (5)0.0005 (5)0.0015 (5)
C40.0204 (11)0.0172 (9)0.0147 (13)0.0002 (7)0.0017 (9)0.0020 (9)
C50.0181 (9)0.0144 (7)0.0147 (10)0.0001 (6)0.0009 (7)0.0009 (6)
C60.0160 (8)0.0128 (7)0.0184 (8)0.0012 (6)0.0017 (6)0.0023 (6)
S10.0178 (2)0.0142 (2)0.0167 (2)0.00080 (14)0.00148 (14)0.00162 (13)
C3B0.0159 (6)0.0132 (6)0.0165 (6)0.0006 (5)0.0005 (5)0.0015 (5)
C4B0.0178 (2)0.0142 (2)0.0167 (2)0.00080 (14)0.00148 (14)0.00162 (13)
C5B0.0160 (8)0.0128 (7)0.0184 (8)0.0012 (6)0.0017 (6)0.0023 (6)
C6B0.0181 (9)0.0144 (7)0.0147 (10)0.0001 (6)0.0009 (7)0.0009 (6)
S1B0.0204 (11)0.0172 (9)0.0147 (13)0.0002 (7)0.0017 (9)0.0020 (9)
Geometric parameters (Å, º) top
O1—C11.3102 (16)C5—C61.389 (2)
O1—H10.8200C5—H50.9300
O2—C11.2223 (16)C6—S11.7041 (15)
C1—C21.5387 (19)C6—H60.9300
C2—O31.2265 (17)C4B—C5B1.452 (16)
C2—C31.4558 (18)C4B—H4B0.9300
C3—C41.382 (3)C5B—C6B1.380 (17)
C3—S11.7272 (13)C5B—H5B0.9300
C4—C51.412 (3)C6B—S1B1.730 (18)
C4—H40.9300C6B—H6B0.9300
C1—O1—H1109.5C6—C5—H5124.6
O2—C1—O1124.58 (12)C4—C5—H5124.6
O2—C1—C2123.18 (12)C5—C6—S1112.77 (15)
O1—C1—C2112.23 (11)C5—C6—H6123.6
O3—C2—C3123.25 (12)S1—C6—H6123.6
O3—C2—C1118.33 (12)C6—S1—C391.96 (7)
C3—C2—C1118.42 (11)C5B—C4B—H4B124.7
C4—C3—C2132.00 (15)C6B—C5B—C4B108.5 (16)
C4—C3—S1110.46 (14)C6B—C5B—H5B125.8
C2—C3—S1117.44 (10)C4B—C5B—H5B125.8
C3—C4—C5114.04 (18)C5B—C6B—S1B113.7 (16)
C3—C4—H4123.0C5B—C6B—H6B123.1
C5—C4—H4123.0S1B—C6B—H6B123.1
C6—C5—C4110.76 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.822.637 (2)176
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC6H4O3S
Mr156.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)3.7481 (10), 15.314 (3), 10.727 (3)
β (°) 93.30 (2)
V3)614.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.34 × 0.21 × 0.11
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.944, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6475, 1927, 1512
Rint0.032
(sin θ/λ)max1)0.746
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.106, 1.09
No. of reflections1927
No. of parameters104
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.29

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.822.637 (2)176
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

This work was funded by a CSU-AAUP Faculty Research Grant.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCrundwell, G., Sullivan, J., Pelto, R. & Kantardjieff, K. (2003). J. Chem. Crystallogr. 33, 239–244.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds