organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzyl­pyridin-2-amine

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: zhaohong@seu.edu.cn

(Received 26 October 2010; accepted 29 October 2010; online 6 November 2010)

In the title compound, C12H12N2, the dihedral angle between the benzene and pyridine rings is 67.63 (8)°. Mol­ecules are linked into centrosymmetric dimers by a simple inter­molecular N—H⋯N hydrogen bond with graph-set motif R22(8).

Related literature

For the application of Schiff base compounds in coordination chemistry, see: Garnovskii et al. (1993[Garnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Gong & Xu (2008[Gong, X.-X. & Xu, H.-J. (2008). Acta Cryst. E64, o1188.]). For the synthesis, see: Xu et al. (2009[Xu, H.-J., Tan, Q.-Y., Cui, L.-J. & Qian, K. (2009). Acta Cryst. E65, o945.]). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For another report on the structure of N-benzyl­pyridin-2-amine, see: Wang et al. (2010[Wang, J., Dai, C. & Nie, J. (2010). Acta Cryst. E66, o3076.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2

  • Mr = 184.24

  • Triclinic, [P \overline 1]

  • a = 5.9233 (10) Å

  • b = 8.0984 (15) Å

  • c = 10.602 (2) Å

  • α = 94.916 (15)°

  • β = 91.36 (1)°

  • γ = 94.451 (15)°

  • V = 504.95 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.980, Tmax = 0.997

  • 4612 measured reflections

  • 1955 independent reflections

  • 1039 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.183

  • S = 1.06

  • 1955 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.86 2.26 3.070 (3) 158
Symmetry code: (i) -x+1, -y, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Schiff base compounds have attracted great attention due to their application in coordination chemistry (Garnovskii et al., 1993; Gong & Xu, 2008), and also offer a simple method of synthesis novel amine compounds. The title compound is synthesized from the Schiff base (E)-N-benzylidenepyridin-2-amine, and the crystal structure is reported here.

In the molecule of the title compound (Fig. 1) bond lengths and angles have normal values. The dihedral angle between the benzene ring and pyridine ring is 67.63 (8)°. In the solid state the molecules are linked into centrosymmetric dimers by a simple N—H···N interaction with set graph-motif R22(8) (Bernstein et al., 1995), (Fig. 2; Table 1).

Related literature top

For the application of Schiff base compounds in coordination chemistry, see: Garnovskii et al. (1993); Gong & Xu (2008). For the synthesis, see: Xu et al. (2009). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995). [Please check amended text]

Experimental top

The (E)-N-benzylidenepyridin-2-amine was prepared from benzaldehyde and pyridin-2-amine according to the reported method (Xu et al., 2009). To a mixture of (E)-N-benzylidenepyridin-2-amine (20 mmol), NaBH4 (100 mmol) in 1,4-dioxane (50 ml), acetic acid (100 mmol) in 1,4-dioxane was added dropwise at 0°C. Then the mixture was heated at 120°C for 2 h then cooled and the solvent removed under vacuum. The residue was poured into water (20 ml) and extracted with chloroform three times (50 ml). The extract was dried (CaCl2) and the solvent removed under vacuum to give the crude title compound. Pale yellow crystals suitable for X-ray analysis were obtained by slow evaporation of a 95% ethanol/water solution.

Refinement top

All H atoms were detected in a difference map, but were placed in calculated positions and refined using a riding motion approxmation, with C—H = 0.93–0.97 Å, with Uiso(H) = 1.2Ueq(C); N—H = 0.86 Å, with Uiso(H) = 1.2Ueq(N).

Structure description top

Schiff base compounds have attracted great attention due to their application in coordination chemistry (Garnovskii et al., 1993; Gong & Xu, 2008), and also offer a simple method of synthesis novel amine compounds. The title compound is synthesized from the Schiff base (E)-N-benzylidenepyridin-2-amine, and the crystal structure is reported here.

In the molecule of the title compound (Fig. 1) bond lengths and angles have normal values. The dihedral angle between the benzene ring and pyridine ring is 67.63 (8)°. In the solid state the molecules are linked into centrosymmetric dimers by a simple N—H···N interaction with set graph-motif R22(8) (Bernstein et al., 1995), (Fig. 2; Table 1).

For the application of Schiff base compounds in coordination chemistry, see: Garnovskii et al. (1993); Gong & Xu (2008). For the synthesis, see: Xu et al. (2009). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995). [Please check amended text]

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The diagram of the dimer linked by the intermolecular hydrogen bonds. The H atoms not involved in hydrogen bonds have been omitted for charity. Symmetry code: (a) -x + 1, -y, -z.
N-Benzylpyridin-2-amine top
Crystal data top
C12H12N2Z = 2
Mr = 184.24F(000) = 196
Triclinic, P1Dx = 1.212 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9233 (10) ÅCell parameters from 904 reflections
b = 8.0984 (15) Åθ = 2.5–27.4°
c = 10.602 (2) ŵ = 0.07 mm1
α = 94.916 (15)°T = 295 K
β = 91.36 (1)°Block, pale yellow
γ = 94.451 (15)°0.25 × 0.20 × 0.18 mm
V = 504.95 (16) Å3
Data collection top
Rigaku SCXmini
diffractometer
1955 independent reflections
Radiation source: fine-focus sealed tube1039 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.1°
CCD profile fitting scansh = 77
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.980, Tmax = 0.997l = 1313
4612 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0676P)2]
where P = (Fo2 + 2Fc2)/3
1955 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C12H12N2γ = 94.451 (15)°
Mr = 184.24V = 504.95 (16) Å3
Triclinic, P1Z = 2
a = 5.9233 (10) ÅMo Kα radiation
b = 8.0984 (15) ŵ = 0.07 mm1
c = 10.602 (2) ÅT = 295 K
α = 94.916 (15)°0.25 × 0.20 × 0.18 mm
β = 91.36 (1)°
Data collection top
Rigaku SCXmini
diffractometer
1955 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1039 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.997Rint = 0.062
4612 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.183H-atom parameters constrained
S = 1.06Δρmax = 0.14 e Å3
1955 reflectionsΔρmin = 0.16 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4259 (5)0.1591 (3)0.1743 (3)0.0497 (7)
C20.3612 (5)0.2317 (4)0.2902 (3)0.0606 (9)
H20.23840.29660.29460.073*
C30.4814 (6)0.2060 (4)0.3978 (3)0.0729 (10)
H30.43990.25330.47600.087*
C40.6631 (6)0.1104 (4)0.3901 (3)0.0688 (9)
H40.74940.09400.46170.083*
C50.7120 (5)0.0399 (4)0.2725 (3)0.0616 (9)
H50.83230.02740.26670.074*
C60.1290 (5)0.2807 (4)0.0538 (3)0.0609 (9)
H6A0.16240.38740.10220.073*
H6B0.00120.22450.09030.073*
C70.0728 (5)0.3080 (3)0.0806 (3)0.0487 (7)
C80.2253 (5)0.3955 (4)0.1514 (3)0.0616 (8)
H80.36530.43670.11550.074*
C90.1723 (6)0.4224 (4)0.2746 (3)0.0702 (10)
H90.27630.48230.32100.084*
C100.0325 (6)0.3617 (4)0.3297 (3)0.0712 (10)
H100.06700.37850.41350.085*
C110.1851 (6)0.2764 (4)0.2600 (3)0.0686 (10)
H110.32570.23620.29580.082*
C120.1314 (5)0.2501 (4)0.1371 (3)0.0587 (8)
H120.23670.19110.09100.070*
N10.3211 (4)0.1824 (3)0.0631 (2)0.0584 (7)
H1A0.37150.13640.00550.070*
N20.5982 (4)0.0617 (3)0.1662 (2)0.0553 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0601 (19)0.0431 (16)0.0460 (18)0.0067 (15)0.0030 (14)0.0010 (13)
C20.075 (2)0.0526 (19)0.055 (2)0.0143 (17)0.0093 (16)0.0009 (14)
C30.100 (3)0.071 (2)0.047 (2)0.012 (2)0.0090 (18)0.0041 (15)
C40.082 (2)0.068 (2)0.055 (2)0.007 (2)0.0131 (17)0.0029 (16)
C50.067 (2)0.060 (2)0.058 (2)0.0129 (17)0.0012 (16)0.0041 (15)
C60.063 (2)0.060 (2)0.061 (2)0.0195 (17)0.0017 (15)0.0045 (15)
C70.0485 (18)0.0403 (16)0.0586 (19)0.0120 (14)0.0035 (14)0.0031 (13)
C80.0514 (19)0.059 (2)0.073 (2)0.0014 (16)0.0016 (16)0.0005 (16)
C90.077 (3)0.063 (2)0.071 (2)0.0001 (19)0.0092 (19)0.0130 (17)
C100.085 (3)0.069 (2)0.061 (2)0.011 (2)0.0070 (19)0.0054 (17)
C110.061 (2)0.071 (2)0.072 (2)0.0066 (19)0.0091 (18)0.0034 (18)
C120.054 (2)0.0490 (18)0.071 (2)0.0012 (15)0.0063 (16)0.0000 (15)
N10.0655 (17)0.0619 (17)0.0499 (16)0.0249 (14)0.0036 (12)0.0015 (11)
N20.0594 (16)0.0534 (15)0.0547 (16)0.0156 (13)0.0023 (12)0.0045 (11)
Geometric parameters (Å, º) top
C1—N21.338 (3)C6—H6B0.9700
C1—N11.354 (3)C7—C121.368 (4)
C1—C21.391 (4)C7—C81.381 (4)
C2—C31.369 (4)C8—C91.376 (4)
C2—H20.9300C8—H80.9300
C3—C41.374 (4)C9—C101.370 (4)
C3—H30.9300C9—H90.9300
C4—C51.373 (4)C10—C111.365 (4)
C4—H40.9300C10—H100.9300
C5—N21.331 (3)C11—C121.372 (4)
C5—H50.9300C11—H110.9300
C6—N11.444 (3)C12—H120.9300
C6—C71.495 (4)N1—H1A0.8600
C6—H6A0.9700
N2—C1—N1115.7 (2)C12—C7—C6121.6 (3)
N2—C1—C2121.5 (3)C8—C7—C6120.7 (3)
N1—C1—C2122.7 (3)C9—C8—C7120.7 (3)
C3—C2—C1118.9 (3)C9—C8—H8119.7
C3—C2—H2120.5C7—C8—H8119.7
C1—C2—H2120.5C10—C9—C8120.6 (3)
C2—C3—C4120.0 (3)C10—C9—H9119.7
C2—C3—H3120.0C8—C9—H9119.7
C4—C3—H3120.0C11—C10—C9119.1 (3)
C5—C4—C3117.3 (3)C11—C10—H10120.4
C5—C4—H4121.3C9—C10—H10120.4
C3—C4—H4121.3C10—C11—C12120.0 (3)
N2—C5—C4124.2 (3)C10—C11—H11120.0
N2—C5—H5117.9C12—C11—H11120.0
C4—C5—H5117.9C7—C12—C11121.9 (3)
N1—C6—C7111.6 (2)C7—C12—H12119.1
N1—C6—H6A109.3C11—C12—H12119.1
C7—C6—H6A109.3C1—N1—C6123.4 (2)
N1—C6—H6B109.3C1—N1—H1A118.3
C7—C6—H6B109.3C6—N1—H1A118.3
H6A—C6—H6B108.0C5—N2—C1118.0 (3)
C12—C7—C8117.7 (3)
N2—C1—C2—C31.8 (4)C9—C10—C11—C121.0 (5)
N1—C1—C2—C3177.8 (3)C8—C7—C12—C110.2 (4)
C1—C2—C3—C40.3 (5)C6—C7—C12—C11179.2 (3)
C2—C3—C4—C51.9 (5)C10—C11—C12—C70.4 (5)
C3—C4—C5—N21.6 (5)N2—C1—N1—C6178.6 (2)
N1—C6—C7—C12117.9 (3)C2—C1—N1—C61.7 (5)
N1—C6—C7—C863.1 (4)C7—C6—N1—C1170.6 (3)
C12—C7—C8—C90.2 (4)C4—C5—N2—C10.3 (5)
C6—C7—C8—C9179.2 (3)N1—C1—N2—C5177.6 (3)
C7—C8—C9—C100.5 (5)C2—C1—N2—C52.0 (4)
C8—C9—C10—C111.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.263.070 (3)158
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H12N2
Mr184.24
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)5.9233 (10), 8.0984 (15), 10.602 (2)
α, β, γ (°)94.916 (15), 91.36 (1), 94.451 (15)
V3)504.95 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.980, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
4612, 1955, 1039
Rint0.062
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.183, 1.06
No. of reflections1955
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.16

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.263.070 (3)157.6
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was supported financially by a Southeast University grant for Young Researchers (No. 4007041027).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationGarnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef CAS Web of Science Google Scholar
First citationGong, X.-X. & Xu, H.-J. (2008). Acta Cryst. E64, o1188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J., Dai, C. & Nie, J. (2010). Acta Cryst. E66, o3076.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, H.-J., Tan, Q.-Y., Cui, L.-J. & Qian, K. (2009). Acta Cryst. E65, o945.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds