metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2-Hy­droxy-N′-(4-oxo-4-phenyl­butan-2-yl­­idene)benzohydrazidato(2−)]pyridine­copper(II)

aDepartment of Chemistry, Fuyang Normal College, Fuyang, Anhui 236041, People's Republic of China
*Correspondence e-mail: shaosic@fync.edu.cn

(Received 28 October 2010; accepted 17 November 2010; online 24 November 2010)

The mononuclear title complex, [Cu(C17H14N2O3)(C5H5N)], was synthesized by the reaction of CuCl2·2H2O with N-(4-oxo-4-phenyl­butan-2-yl­idene)benzohydrazide (H2L). The central CuII atom exhibits a distorted square-planar coordination geometry, defined by two O atoms, one N atom from the ligand and one pyridine N atom with Cu—N distances of 1.874 (4) and 1.963 (4) Å, while the Cu—O distances are 1.857 (3) and 1.890 (3) Å. An intra­molecular O—H⋯N inter­action occurs.

Related literature

For the biological properties of Schiff base–metal complexes, see: Cozzi (2004[Cozzi, P. G. (2004). Chem. Soc. Rev. 33, 410-421.]). For metallobiomolecules, see: Singh et al. (2007[Singh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem. 42, 394-402.]). For metal ions bonded to biologically active compounds, see: Canpolat & Kaya (2004[Canpolat, E. & Kaya, M. (2004). J. Coord. Chem. 57, 1217-1223.]); Yildiz et al. (2004[Yildiz, M., Dulger, B., Koyuncu, S. Y. & Yapici, B. M. (2004). J. Indian Chem. Soc. 81, 7-12.]). For a related structure, see: Shen et al. (1997[Shen, X., Wu, D., Huang, X., Liu, Q., Huang, Z. & Kang, B. (1997). Polyhedron, 16, 1477-1482.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C17H14N2O3)(C5H5N)]

  • Mr = 436.94

  • Orthorhombic, C 2221

  • a = 7.7096 (8) Å

  • b = 22.906 (2) Å

  • c = 20.983 (2) Å

  • V = 3705.6 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 298 K

  • 0.28 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.]) Tmin = 0.728, Tmax = 0.794

  • 13526 measured reflections

  • 4034 independent reflections

  • 3340 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.131

  • S = 1.08

  • 4034 reflections

  • 252 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.56 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1761 Friedel pairs

  • Flack parameter: 0.08 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.78 2.500 (5) 146

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base metal complexes have been widely studied because they have industrial, antifungal, antibacterial, anticancer and herbicidal applications (Cozzi, 2004). It is well known that N atoms play a key role in the coordination of metals at the active sites of numerous metallobiomolecules (Singh, et al., 2007). They serve as models for biological important species and find applications in biomimetic catalytic reactions. Chelating ligands containing N and O donor atoms show broad biological activity and are of special interest because of the variety of ways in which they are bonded to metal ions. It is known that the existence of metal ions bonded to biologically active compounds may enhance their activities (Canpolat, et al., 2004; Yildiz, et al., 2004). Therefore, it is an important study to design and synthesis of new multidentate ligands cotaining N and O atoms and apply to synthesize complexes.

The asymmetric unit is composed of one mononuclear complex, (Fig.1). The central CuII atom exhibits a distorted square-plannar coordination geometry, defined by two O atoms, one N atom from the ligand molecule and one N atom of the pyridine molecule with Cu—N distances of 1.874 (4) and 1.963 (4) Å while Cu—O distances are 1.857 (3) and 1.890 (3) Å respectively. The Cu—N and Cu—O distances are comparable to those found in other crystallographically characterized CuII complex (Shen, et al. 1997). The crystal structure of the title compound is stabilized by one intramolecular O—H···N interactions with average H···N distances 1.78Å and O—H···N angle 146.3°.

Related literature top

For the biological properties of Schiff base–metal complexes, see: Cozzi (2004). For metallobiomolecules, see: Singh et al. (2007). For metal ions bonded to biologically active compounds, see: Canpolat et al. (2004); Yildiz et al. (2004). For a related structure, see: Shen et al. (1997).

Experimental top

All reagents and solvents were used as obtained commercially without further purification. CuCl2.2H2O (0.170 mg, 0.1 mmol) was dissolved in 6 ml deionized water, giving a transparent solution, and 1 mL pyridine solution dissolved with L (28.2 mg, 0.1 mmol) was dropwised for 0.5 h. After stirring for 8 h, the solution was filtered. Black single crystals of the title compound were obtained from the filtrate after 3 weeks. Analysis calculated (%): C, 60.47; H, 4.38; N, 9.62%; Found: C, 60.15; H, 4.59; N, 9.49%.

Refinement top

H atoms bonded to C atoms were placed geometrically and treated as riding, with C—H distances 0.93–0.96Å and Uiso(H) = 1.2Ueq(C) for the CH while Uiso(H) = 1.5Ueq(C) for the CH3 groups. The hydroxyl H atoms were located from difference maps and refined with the O—H distances restrained to 0.82 Å and Uiso(H) = 1.5Ueq(O).

Structure description top

Schiff base metal complexes have been widely studied because they have industrial, antifungal, antibacterial, anticancer and herbicidal applications (Cozzi, 2004). It is well known that N atoms play a key role in the coordination of metals at the active sites of numerous metallobiomolecules (Singh, et al., 2007). They serve as models for biological important species and find applications in biomimetic catalytic reactions. Chelating ligands containing N and O donor atoms show broad biological activity and are of special interest because of the variety of ways in which they are bonded to metal ions. It is known that the existence of metal ions bonded to biologically active compounds may enhance their activities (Canpolat, et al., 2004; Yildiz, et al., 2004). Therefore, it is an important study to design and synthesis of new multidentate ligands cotaining N and O atoms and apply to synthesize complexes.

The asymmetric unit is composed of one mononuclear complex, (Fig.1). The central CuII atom exhibits a distorted square-plannar coordination geometry, defined by two O atoms, one N atom from the ligand molecule and one N atom of the pyridine molecule with Cu—N distances of 1.874 (4) and 1.963 (4) Å while Cu—O distances are 1.857 (3) and 1.890 (3) Å respectively. The Cu—N and Cu—O distances are comparable to those found in other crystallographically characterized CuII complex (Shen, et al. 1997). The crystal structure of the title compound is stabilized by one intramolecular O—H···N interactions with average H···N distances 1.78Å and O—H···N angle 146.3°.

For the biological properties of Schiff base–metal complexes, see: Cozzi (2004). For metallobiomolecules, see: Singh et al. (2007). For metal ions bonded to biologically active compounds, see: Canpolat et al. (2004); Yildiz et al. (2004). For a related structure, see: Shen et al. (1997).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[2-Hydroxy-N'-(4-oxo-4-phenylbutan-2- ylidene)benzohydrazidato(2-)]pyridinecopper(II) top
Crystal data top
[Cu(C17H14N2O3)(C5H5N)]F(000) = 1800
Mr = 436.94Dx = 1.566 Mg m3
Orthorhombic, C2221Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c 2Cell parameters from 3542 reflections
a = 7.7096 (8) Åθ = 2.1–23.1°
b = 22.906 (2) ŵ = 1.21 mm1
c = 20.983 (2) ÅT = 298 K
V = 3705.6 (7) Å3Block, dark green
Z = 80.28 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4034 independent reflections
Radiation source: fine-focus sealed tube3340 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
phi and ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.728, Tmax = 0.794k = 2927
13526 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0614P)2 + 1.8583P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.003
4034 reflectionsΔρmax = 0.45 e Å3
252 parametersΔρmin = 0.56 e Å3
0 restraintsAbsolute structure: Flack (1983), 1761 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (3)
Crystal data top
[Cu(C17H14N2O3)(C5H5N)]V = 3705.6 (7) Å3
Mr = 436.94Z = 8
Orthorhombic, C2221Mo Kα radiation
a = 7.7096 (8) ŵ = 1.21 mm1
b = 22.906 (2) ÅT = 298 K
c = 20.983 (2) Å0.28 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4034 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3340 reflections with I > 2σ(I)
Tmin = 0.728, Tmax = 0.794Rint = 0.050
13526 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.131Δρmax = 0.45 e Å3
S = 1.08Δρmin = 0.56 e Å3
4034 reflectionsAbsolute structure: Flack (1983), 1761 Friedel pairs
252 parametersAbsolute structure parameter: 0.08 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.26164 (7)0.56424 (2)0.75389 (2)0.03955 (17)
C10.4395 (6)0.4324 (2)0.8613 (2)0.0396 (11)
C20.5248 (7)0.4551 (2)0.9121 (2)0.0496 (13)
H20.53220.49550.91650.059*
C30.5994 (7)0.4205 (3)0.9567 (2)0.0558 (14)
H30.65690.43700.99130.067*
C40.5895 (8)0.3611 (3)0.9504 (3)0.0653 (17)
H40.64010.33690.98070.078*
C50.5071 (9)0.3384 (2)0.9008 (2)0.0534 (12)
H50.50210.29800.89640.064*
C60.4294 (7)0.3728 (2)0.8558 (2)0.0440 (12)
C70.3627 (6)0.4715 (2)0.8143 (2)0.0386 (11)
C80.0179 (5)0.60424 (13)0.58645 (12)0.0411 (11)
C90.0827 (5)0.66043 (14)0.57885 (14)0.0524 (13)
H9A0.16310.67510.60780.063*
C100.0275 (5)0.69465 (12)0.52805 (16)0.0589 (15)
H10A0.07090.73220.52300.071*
C110.0925 (5)0.67268 (15)0.48484 (14)0.0617 (16)
H11A0.12950.69560.45090.074*
C120.1574 (4)0.61649 (16)0.49245 (15)0.0614 (15)
H12A0.23770.60180.46350.074*
C130.1022 (5)0.58227 (12)0.54325 (16)0.0589 (15)
H13A0.14560.54470.54830.071*
C140.0822 (6)0.5682 (2)0.6383 (2)0.0423 (11)
C150.0672 (6)0.5104 (2)0.6359 (2)0.0435 (12)
H150.00740.49540.60110.052*
C160.1308 (6)0.4698 (2)0.6795 (2)0.0391 (11)
C170.1033 (7)0.4076 (2)0.6673 (2)0.0476 (12)
H17A0.03840.39080.70170.071*
H17B0.21340.38830.66380.071*
H17C0.03990.40290.62820.071*
C180.3924 (7)0.6464 (2)0.8448 (2)0.0532 (14)
H180.43660.61280.86360.064*
C190.4202 (9)0.6974 (3)0.8736 (3)0.0635 (17)
H190.48470.69890.91100.076*
C200.3560 (11)0.7459 (3)0.8488 (3)0.080 (2)
H200.37520.78180.86820.096*
C210.2630 (12)0.7419 (2)0.7953 (3)0.085 (2)
H210.21390.77500.77710.102*
C220.2413 (9)0.6887 (2)0.7680 (2)0.0658 (17)
H220.17690.68620.73070.079*
N10.2780 (5)0.44657 (14)0.76881 (16)0.0376 (8)
N20.2134 (4)0.48748 (16)0.72866 (15)0.0353 (8)
N30.3066 (5)0.64115 (17)0.79176 (17)0.0400 (9)
O10.3475 (6)0.34649 (15)0.80904 (17)0.0602 (10)
H10.30700.37100.78480.090*
O20.3808 (5)0.52533 (13)0.82017 (15)0.0428 (8)
O30.1558 (5)0.59686 (14)0.68281 (15)0.0499 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0412 (3)0.0412 (3)0.0363 (3)0.0042 (3)0.0104 (3)0.0039 (2)
C10.034 (2)0.045 (3)0.039 (2)0.004 (2)0.0083 (18)0.008 (2)
C20.058 (4)0.050 (3)0.041 (3)0.005 (3)0.000 (2)0.002 (2)
C30.059 (4)0.066 (4)0.043 (3)0.008 (3)0.006 (2)0.007 (2)
C40.056 (4)0.085 (5)0.055 (3)0.014 (4)0.005 (3)0.027 (3)
C50.058 (3)0.050 (3)0.052 (3)0.007 (3)0.010 (3)0.011 (2)
C60.050 (3)0.041 (3)0.041 (3)0.006 (2)0.014 (2)0.003 (2)
C70.030 (2)0.050 (3)0.036 (2)0.002 (2)0.004 (2)0.004 (2)
C80.035 (3)0.058 (3)0.031 (2)0.005 (3)0.005 (2)0.008 (2)
C90.060 (3)0.056 (3)0.041 (3)0.003 (3)0.004 (2)0.005 (2)
C100.064 (4)0.061 (3)0.052 (3)0.005 (3)0.001 (3)0.003 (3)
C110.064 (4)0.082 (5)0.039 (3)0.018 (3)0.002 (3)0.002 (3)
C120.058 (3)0.075 (4)0.051 (3)0.007 (3)0.018 (3)0.007 (3)
C130.049 (3)0.074 (4)0.054 (3)0.006 (3)0.021 (3)0.003 (3)
C140.034 (2)0.056 (3)0.036 (2)0.012 (3)0.0044 (19)0.003 (2)
C150.040 (3)0.057 (3)0.034 (2)0.002 (2)0.008 (2)0.013 (2)
C160.032 (2)0.042 (3)0.043 (2)0.002 (2)0.007 (2)0.009 (2)
C170.050 (3)0.047 (3)0.046 (3)0.004 (3)0.011 (2)0.008 (2)
C180.061 (4)0.051 (3)0.048 (3)0.003 (3)0.019 (3)0.007 (2)
C190.084 (4)0.049 (3)0.057 (3)0.007 (3)0.026 (3)0.006 (3)
C200.124 (7)0.044 (3)0.072 (4)0.005 (4)0.018 (4)0.013 (3)
C210.133 (7)0.045 (3)0.078 (4)0.028 (4)0.036 (5)0.012 (3)
C220.097 (5)0.053 (3)0.048 (3)0.014 (4)0.028 (4)0.002 (2)
N10.038 (2)0.0335 (19)0.0408 (17)0.0034 (16)0.0008 (17)0.0041 (14)
N20.0283 (19)0.045 (2)0.0327 (16)0.0030 (16)0.0005 (15)0.0042 (15)
N30.043 (2)0.042 (2)0.0355 (18)0.0042 (18)0.0054 (16)0.0018 (17)
O10.081 (3)0.040 (2)0.059 (2)0.003 (2)0.015 (2)0.0024 (18)
O20.051 (2)0.0356 (19)0.0417 (17)0.0018 (15)0.0138 (16)0.0037 (14)
O30.064 (2)0.044 (2)0.0417 (17)0.0059 (18)0.0178 (16)0.0048 (16)
Geometric parameters (Å, º) top
Cu1—O31.857 (3)C11—H11A0.9300
Cu1—N21.874 (4)C12—C131.3900
Cu1—O21.890 (3)C12—H12A0.9300
Cu1—N31.963 (4)C13—H13A0.9300
C1—C21.357 (7)C14—O31.276 (5)
C1—C61.373 (7)C14—C151.328 (7)
C1—C71.457 (7)C15—C161.394 (7)
C2—C31.355 (7)C15—H150.9300
C2—H20.9300C16—N21.278 (6)
C3—C41.369 (9)C16—C171.462 (7)
C3—H30.9300C17—H17A0.9600
C4—C51.327 (8)C17—H17B0.9600
C4—H40.9300C17—H17C0.9600
C5—C61.367 (7)C18—N31.300 (6)
C5—H50.9300C18—C191.332 (8)
C6—O11.314 (6)C18—H180.9300
C7—O21.247 (5)C19—C201.323 (8)
C7—N11.291 (6)C19—H190.9300
C8—C91.3900C20—C211.335 (9)
C8—C131.3900C20—H200.9300
C8—C141.453 (5)C21—C221.356 (7)
C9—C101.3900C21—H210.9300
C9—H9A0.9300C22—N31.300 (6)
C10—C111.3900C22—H220.9300
C10—H10A0.9300N1—N21.355 (5)
C11—C121.3900O1—H10.8200
O3—Cu1—N293.64 (15)C12—C13—H13A120.0
O3—Cu1—O2173.85 (15)C8—C13—H13A120.0
N2—Cu1—O282.05 (14)O3—C14—C15125.4 (4)
O3—Cu1—N392.39 (15)O3—C14—C8114.0 (4)
N2—Cu1—N3172.50 (15)C15—C14—C8120.6 (4)
O2—Cu1—N392.27 (14)C14—C15—C16127.5 (4)
C2—C1—C6118.3 (5)C14—C15—H15116.2
C2—C1—C7119.5 (5)C16—C15—H15116.2
C6—C1—C7122.1 (5)N2—C16—C15119.6 (4)
C3—C2—C1121.6 (5)N2—C16—C17121.5 (4)
C3—C2—H2119.2C15—C16—C17118.9 (4)
C1—C2—H2119.2C16—C17—H17A109.5
C2—C3—C4119.4 (5)C16—C17—H17B109.5
C2—C3—H3120.3H17A—C17—H17B109.5
C4—C3—H3120.3C16—C17—H17C109.5
C5—C4—C3119.5 (5)H17A—C17—H17C109.5
C5—C4—H4120.2H17B—C17—H17C109.5
C3—C4—H4120.2N3—C18—C19123.4 (5)
C4—C5—C6121.7 (5)N3—C18—H18118.3
C4—C5—H5119.2C19—C18—H18118.3
C6—C5—H5119.2C20—C19—C18119.9 (6)
O1—C6—C5117.5 (5)C20—C19—H19120.0
O1—C6—C1123.1 (5)C18—C19—H19120.0
C5—C6—C1119.4 (5)C19—C20—C21118.3 (6)
O2—C7—N1124.5 (4)C19—C20—H20120.9
O2—C7—C1119.7 (4)C21—C20—H20120.9
N1—C7—C1115.7 (4)C20—C21—C22118.9 (6)
C9—C8—C13120.0C20—C21—H21120.6
C9—C8—C14119.3 (3)C22—C21—H21120.6
C13—C8—C14120.6 (3)N3—C22—C21122.9 (5)
C10—C9—C8120.0N3—C22—H22118.5
C10—C9—H9A120.0C21—C22—H22118.5
C8—C9—H9A120.0C7—N1—N2109.9 (4)
C9—C10—C11120.0C16—N2—N1117.8 (4)
C9—C10—H10A120.0C16—N2—Cu1128.6 (3)
C11—C10—H10A120.0N1—N2—Cu1113.6 (3)
C12—C11—C10120.0C22—N3—C18116.6 (4)
C12—C11—H11A120.0C22—N3—Cu1122.0 (3)
C10—C11—H11A120.0C18—N3—Cu1121.2 (4)
C11—C12—C13120.0C6—O1—H1109.5
C11—C12—H12A120.0C7—O2—Cu1109.9 (3)
C13—C12—H12A120.0C14—O3—Cu1125.2 (3)
C12—C13—C8120.0
C6—C1—C2—C30.2 (8)N3—C18—C19—C201.4 (10)
C7—C1—C2—C3179.5 (5)C18—C19—C20—C210.5 (12)
C1—C2—C3—C40.2 (9)C19—C20—C21—C221.4 (13)
C2—C3—C4—C50.1 (9)C20—C21—C22—N30.3 (13)
C3—C4—C5—C60.9 (10)O2—C7—N1—N20.3 (6)
C4—C5—C6—O1178.5 (5)C1—C7—N1—N2180.0 (3)
C4—C5—C6—C11.3 (9)C15—C16—N2—N1177.9 (4)
C2—C1—C6—O1178.9 (5)C17—C16—N2—N11.1 (6)
C7—C1—C6—O11.5 (8)C15—C16—N2—Cu11.6 (6)
C2—C1—C6—C51.0 (7)C17—C16—N2—Cu1179.4 (4)
C7—C1—C6—C5178.7 (5)C7—N1—N2—C16177.6 (4)
C2—C1—C7—O22.3 (7)C7—N1—N2—Cu11.9 (4)
C6—C1—C7—O2177.4 (5)O3—Cu1—N2—C161.8 (4)
C2—C1—C7—N1177.4 (4)O2—Cu1—N2—C16177.4 (4)
C6—C1—C7—N13.0 (7)O3—Cu1—N2—N1177.7 (3)
C13—C8—C9—C100.0O2—Cu1—N2—N12.1 (3)
C14—C8—C9—C10177.5 (4)C21—C22—N3—C181.5 (10)
C8—C9—C10—C110.0C21—C22—N3—Cu1176.4 (6)
C9—C10—C11—C120.0C19—C18—N3—C222.4 (8)
C10—C11—C12—C130.0C19—C18—N3—Cu1177.3 (5)
C11—C12—C13—C80.0O2—Cu1—N3—C22175.0 (5)
C9—C8—C13—C120.0O3—Cu1—N3—C18176.3 (4)
C14—C8—C13—C12177.4 (4)O2—Cu1—N3—C180.3 (4)
C9—C8—C14—O319.2 (5)N1—C7—O2—Cu11.4 (6)
C13—C8—C14—O3163.4 (3)C1—C7—O2—Cu1178.3 (3)
C9—C8—C14—C15158.8 (4)N2—Cu1—O2—C71.8 (3)
C13—C8—C14—C1518.7 (6)N3—Cu1—O2—C7173.3 (4)
O3—C14—C15—C161.8 (9)C15—C14—O3—Cu11.0 (7)
C8—C14—C15—C16175.9 (4)C8—C14—O3—Cu1176.8 (3)
C14—C15—C16—N20.4 (8)N2—Cu1—O3—C140.5 (4)
C14—C15—C16—C17178.7 (5)N3—Cu1—O3—C14175.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.782.500 (5)146

Experimental details

Crystal data
Chemical formula[Cu(C17H14N2O3)(C5H5N)]
Mr436.94
Crystal system, space groupOrthorhombic, C2221
Temperature (K)298
a, b, c (Å)7.7096 (8), 22.906 (2), 20.983 (2)
V3)3705.6 (7)
Z8
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.28 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.728, 0.794
No. of measured, independent and
observed [I > 2σ(I)] reflections
13526, 4034, 3340
Rint0.050
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.131, 1.08
No. of reflections4034
No. of parameters252
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.56
Absolute structureFlack (1983), 1761 Friedel pairs
Absolute structure parameter0.08 (3)

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.782.500 (5)146
 

Acknowledgements

This work was supported by the Natural Science Foundation of Anhui Provincial Education Commission (No. KJ2009A047Z)

References

First citationBruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCanpolat, E. & Kaya, M. (2004). J. Coord. Chem. 57, 1217–1223.  Web of Science CrossRef CAS Google Scholar
First citationCozzi, P. G. (2004). Chem. Soc. Rev. 33, 410–421.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, X., Wu, D., Huang, X., Liu, Q., Huang, Z. & Kang, B. (1997). Polyhedron, 16, 1477–1482.  CSD CrossRef CAS Web of Science Google Scholar
First citationSingh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem. 42, 394–402.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYildiz, M., Dulger, B., Koyuncu, S. Y. & Yapici, B. M. (2004). J. Indian Chem. Soc. 81, 7–12.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds