organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(3-Methyl­piperidin-1-yl)(3-nitro­phen­yl)meth­yl]naphthalen-2-ol

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: zhaohong@seu.edu.cn

(Received 3 November 2010; accepted 4 November 2010; online 10 November 2010)

The title compound, C23H24N2O3, was synthesized from naphthalen-2-ol, 3-nitro­benzaldehyde and 3-methyl­piperidine. The dihedral angles between the naphthalene system and the nitro­benzene and methyl­piperidine rings are 78.53 (13) and 64.14 (15)°, respectively. The mol­ecular conformation is stabilized by a strong intra­molecular O—H⋯N hydrogen bond.

Related literature

For applications of naphthalen-2-ol derivatives in catalytic asymmetric synthesis, see: Szatmari & Fulop (2004[Szatmari, I. & Fulop, F. (2004). Curr. Org. Synth. 1, 155-165.]). For related structures, see: Zhao & Sun (2005[Zhao, B. & Sun, Y.-X. (2005). Acta Cryst. E61, m652-m653.]); Wang & Zhao (2009[Wang, W. X. & Zhao, H. (2009). Acta Cryst. E65, o1277.]); Xiao & Zhao (2010[Xiao, J. & Zhao, H. (2010). Acta Cryst. E66, o2938.]);

[Scheme 1]

Experimental

Crystal data
  • C23H24N2O3

  • Mr = 376.44

  • Orthorhombic, P b c a

  • a = 11.980 (2) Å

  • b = 10.965 (2) Å

  • c = 30.30 (3) Å

  • V = 3980 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.25 × 0.22 × 0.18 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.982, Tmax = 0.992

  • 34080 measured reflections

  • 3877 independent reflections

  • 2409 reflections with I > 2σ(I)

  • Rint = 0.110

Refinement
  • R[F2 > 2σ(F2)] = 0.083

  • wR(F2) = 0.174

  • S = 1.12

  • 3877 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.86 2.579 (3) 147

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Compounds derived from naphthalen-2-ol have been of great interest in organic chemistry due to their application in catalytic asymmetric synthesis (Szatmari & Fulop, 2004; Zhao & Sun, 2005). As an extension of our work on the structural characterization of naphthol compounds (Wang & Zhao, 2009; Xiao & Zhao, 2010), we report here the structure of (I). In the title compound (Fig. 1) bond lengths and angles have normal values.The dihedral angle between the naphthylen fragment with the nitrobenzene and methyl piperidine rings are 78.53 (13) and 64.14 (15)° respectively. The molecular conformation is stabilized by one strong intramolecular O—H···N hydrogen bonding (Table 1).

Related literature top

For applications of naphthalen-2-ol derivatives in catalytic asymmetric synthesis, see: Szatmari & Fulop (2004). For related structures, see: Zhao & Sun (2005); Wang & Zhao (2009); Xiao & Zhao (2010);

Experimental top

A dry 50 ml flask was charged with 3-nitrobenzaldehyde (10 mmol), naphthalen-2-ol (10 mmol) and 3-methylpiperidine (10 mmol). The mixture was stirred at 100°C for 12 h and then added ethanol (15 ml), after heated under reflux for 1 h, the precipitate was filtrated out and washed with ethanol for three times to give (I). Colourless crystals suitable for X-ray diffraction were obtained by slow evaporation of a dichloromethane solution.

Refinement top

All H atoms were detected in a difference map, but were placed in calculated positions and refined using a riding motion approxmation, with C—H=0.93–0.98 Å, with Uiso(H)=1.2Ueq(C) and Uiso(Hmethyl)=1.2Ueq(Cmethyl); O—H=0.82 Å, with Uiso(H)=1.5Ueq(O).

Structure description top

Compounds derived from naphthalen-2-ol have been of great interest in organic chemistry due to their application in catalytic asymmetric synthesis (Szatmari & Fulop, 2004; Zhao & Sun, 2005). As an extension of our work on the structural characterization of naphthol compounds (Wang & Zhao, 2009; Xiao & Zhao, 2010), we report here the structure of (I). In the title compound (Fig. 1) bond lengths and angles have normal values.The dihedral angle between the naphthylen fragment with the nitrobenzene and methyl piperidine rings are 78.53 (13) and 64.14 (15)° respectively. The molecular conformation is stabilized by one strong intramolecular O—H···N hydrogen bonding (Table 1).

For applications of naphthalen-2-ol derivatives in catalytic asymmetric synthesis, see: Szatmari & Fulop (2004). For related structures, see: Zhao & Sun (2005); Wang & Zhao (2009); Xiao & Zhao (2010);

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: SHELXS97 (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
1-[(3-Methylpiperidin-1-yl)(3-nitrophenyl)methyl]naphthalen-2-ol top
Crystal data top
C23H24N2O3F(000) = 1600
Mr = 376.44Dx = 1.256 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4541 reflections
a = 11.980 (2) Åθ = 2.3–27.5°
b = 10.965 (2) ŵ = 0.08 mm1
c = 30.30 (3) ÅT = 295 K
V = 3980 (4) Å3Prism, colourless
Z = 80.25 × 0.22 × 0.18 mm
Data collection top
Rigaku SCXmini
diffractometer
3877 independent reflections
Radiation source: fine-focus sealed tube2409 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 2.6°
CCD_Profile_fitting scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1313
Tmin = 0.982, Tmax = 0.992l = 3737
34080 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0563P)2 + 1.4193P]
where P = (Fo2 + 2Fc2)/3
3877 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C23H24N2O3V = 3980 (4) Å3
Mr = 376.44Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.980 (2) ŵ = 0.08 mm1
b = 10.965 (2) ÅT = 295 K
c = 30.30 (3) Å0.25 × 0.22 × 0.18 mm
Data collection top
Rigaku SCXmini
diffractometer
3877 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2409 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.992Rint = 0.110
34080 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0830 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.12Δρmax = 0.14 e Å3
3877 reflectionsΔρmin = 0.15 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7000 (2)0.9558 (2)0.65000 (10)0.0433 (7)
C20.6194 (2)1.0425 (3)0.64171 (11)0.0523 (8)
C30.5315 (3)1.0634 (3)0.67144 (13)0.0659 (9)
H30.47691.12060.66460.079*
C40.5255 (3)1.0015 (4)0.70975 (13)0.0707 (10)
H40.46611.01610.72880.085*
C50.6075 (3)0.9147 (3)0.72156 (11)0.0584 (9)
C60.6961 (2)0.8920 (3)0.69134 (10)0.0478 (7)
C70.7785 (3)0.8061 (3)0.70421 (10)0.0552 (8)
H70.83810.79050.68540.066*
C80.7725 (3)0.7459 (3)0.74356 (11)0.0708 (10)
H80.82790.69040.75130.085*
C90.6840 (3)0.7671 (4)0.77209 (12)0.0820 (12)
H90.67960.72460.79860.098*
C100.6041 (3)0.8493 (4)0.76161 (12)0.0774 (11)
H100.54570.86300.78120.093*
C110.7905 (2)0.9244 (2)0.61686 (9)0.0422 (7)
H110.80330.83630.61890.051*
C120.6680 (3)0.8576 (3)0.55808 (11)0.0599 (9)
H12A0.61060.85290.58060.072*
H12B0.70440.77870.55640.072*
C130.6143 (3)0.8861 (3)0.51400 (13)0.0728 (11)
H130.57760.96570.51660.087*
C140.7021 (4)0.8968 (4)0.47882 (13)0.0945 (14)
H14A0.66800.92420.45150.113*
H14B0.73530.81750.47360.113*
C150.7918 (3)0.9860 (4)0.49260 (11)0.0828 (12)
H15A0.85130.98510.47090.099*
H15B0.76051.06760.49330.099*
C160.8395 (3)0.9559 (3)0.53738 (10)0.0633 (9)
H16A0.87760.87800.53610.076*
H16B0.89361.01760.54570.076*
C170.5250 (4)0.7925 (3)0.50331 (16)0.1061 (16)
H17A0.48760.81530.47650.159*
H17B0.47190.78920.52700.159*
H17C0.55900.71390.49960.159*
C180.9014 (2)0.9868 (3)0.62676 (9)0.0428 (7)
C191.0000 (2)0.9224 (3)0.62142 (9)0.0472 (7)
H190.99880.84100.61280.057*
C201.0999 (3)0.9808 (3)0.62900 (10)0.0553 (8)
C211.1060 (3)1.1004 (4)0.64166 (12)0.0710 (10)
H211.17461.13790.64630.085*
C221.0079 (3)1.1635 (3)0.64731 (13)0.0748 (10)
H221.00991.24480.65600.090*
C230.9067 (3)1.1075 (3)0.64020 (11)0.0584 (8)
H230.84101.15120.64450.070*
N10.7505 (2)0.9505 (2)0.57076 (7)0.0469 (6)
N21.2039 (3)0.9098 (4)0.62304 (11)0.0788 (9)
O10.61885 (19)1.11174 (19)0.60442 (8)0.0645 (6)
H10.66311.08330.58650.097*
O21.1967 (2)0.8052 (3)0.61087 (11)0.1051 (10)
O31.2920 (2)0.9589 (3)0.63113 (13)0.1305 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0363 (15)0.0400 (15)0.0536 (18)0.0022 (13)0.0002 (13)0.0087 (13)
C20.0470 (18)0.0457 (17)0.064 (2)0.0034 (15)0.0002 (15)0.0073 (15)
C30.047 (2)0.066 (2)0.085 (3)0.0061 (17)0.0059 (18)0.010 (2)
C40.048 (2)0.084 (3)0.079 (3)0.0049 (19)0.0190 (18)0.019 (2)
C50.0454 (19)0.068 (2)0.062 (2)0.0110 (17)0.0083 (16)0.0132 (17)
C60.0440 (17)0.0445 (16)0.0550 (19)0.0103 (14)0.0010 (14)0.0083 (14)
C70.057 (2)0.0570 (19)0.0515 (19)0.0080 (16)0.0011 (15)0.0019 (15)
C80.072 (2)0.086 (3)0.054 (2)0.001 (2)0.0013 (18)0.0116 (19)
C90.080 (3)0.109 (3)0.057 (2)0.012 (3)0.004 (2)0.020 (2)
C100.064 (2)0.110 (3)0.058 (2)0.017 (2)0.0178 (19)0.006 (2)
C110.0437 (17)0.0387 (15)0.0443 (16)0.0001 (13)0.0026 (13)0.0012 (12)
C120.067 (2)0.0439 (17)0.069 (2)0.0014 (16)0.0200 (17)0.0041 (15)
C130.086 (3)0.0478 (19)0.085 (3)0.0037 (19)0.040 (2)0.0030 (18)
C140.134 (4)0.089 (3)0.060 (3)0.004 (3)0.028 (3)0.002 (2)
C150.105 (3)0.090 (3)0.053 (2)0.001 (2)0.009 (2)0.006 (2)
C160.072 (2)0.067 (2)0.051 (2)0.0067 (19)0.0002 (17)0.0001 (16)
C170.115 (4)0.070 (3)0.134 (4)0.009 (2)0.071 (3)0.004 (2)
C180.0425 (17)0.0462 (17)0.0397 (16)0.0016 (14)0.0008 (13)0.0007 (12)
C190.0503 (18)0.0472 (17)0.0441 (17)0.0015 (15)0.0022 (14)0.0004 (13)
C200.0444 (19)0.069 (2)0.0522 (19)0.0005 (17)0.0015 (15)0.0060 (16)
C210.054 (2)0.076 (2)0.083 (3)0.022 (2)0.0081 (19)0.005 (2)
C220.071 (3)0.058 (2)0.095 (3)0.013 (2)0.002 (2)0.0178 (19)
C230.053 (2)0.0474 (18)0.075 (2)0.0015 (16)0.0026 (17)0.0117 (16)
N10.0488 (14)0.0447 (13)0.0472 (14)0.0003 (12)0.0068 (12)0.0026 (11)
N20.0454 (19)0.101 (3)0.090 (2)0.009 (2)0.0059 (16)0.011 (2)
O10.0670 (16)0.0489 (13)0.0775 (17)0.0158 (11)0.0021 (12)0.0042 (12)
O20.0703 (19)0.106 (2)0.139 (3)0.0348 (18)0.0131 (17)0.027 (2)
O30.0440 (17)0.134 (3)0.214 (4)0.0033 (18)0.020 (2)0.008 (3)
Geometric parameters (Å, º) top
C1—C21.379 (4)C13—H130.9800
C1—C61.435 (4)C14—C151.511 (5)
C1—C111.517 (4)C14—H14A0.9700
C2—O11.361 (4)C14—H14B0.9700
C2—C31.404 (4)C15—C161.509 (5)
C3—C41.347 (5)C15—H15A0.9700
C3—H30.9300C15—H15B0.9700
C4—C51.413 (5)C16—N11.471 (4)
C4—H40.9300C16—H16A0.9700
C5—C101.410 (5)C16—H16B0.9700
C5—C61.424 (4)C17—H17A0.9600
C6—C71.419 (4)C17—H17B0.9600
C7—C81.365 (4)C17—H17C0.9600
C7—H70.9300C18—C191.386 (4)
C8—C91.387 (5)C18—C231.387 (4)
C8—H80.9300C19—C201.376 (4)
C9—C101.353 (5)C19—H190.9300
C9—H90.9300C20—C211.368 (5)
C10—H100.9300C20—N21.481 (4)
C11—N11.505 (4)C21—C221.375 (5)
C11—C181.524 (4)C21—H210.9300
C11—H110.9800C22—C231.376 (4)
C12—N11.471 (4)C22—H220.9300
C12—C131.515 (5)C23—H230.9300
C12—H12A0.9700N2—O21.207 (4)
C12—H12B0.9700N2—O31.210 (4)
C13—C141.502 (5)O1—H10.8200
C13—C171.518 (5)
C2—C1—C6118.2 (3)C13—C14—H14A109.5
C2—C1—C11122.5 (3)C15—C14—H14A109.5
C6—C1—C11119.3 (2)C13—C14—H14B109.5
O1—C2—C1122.6 (3)C15—C14—H14B109.5
O1—C2—C3116.0 (3)H14A—C14—H14B108.1
C1—C2—C3121.4 (3)C16—C15—C14112.1 (3)
C4—C3—C2120.7 (3)C16—C15—H15A109.2
C4—C3—H3119.6C14—C15—H15A109.2
C2—C3—H3119.6C16—C15—H15B109.2
C3—C4—C5121.3 (3)C14—C15—H15B109.2
C3—C4—H4119.3H15A—C15—H15B107.9
C5—C4—H4119.3N1—C16—C15110.6 (3)
C10—C5—C4122.7 (3)N1—C16—H16A109.5
C10—C5—C6119.0 (3)C15—C16—H16A109.5
C4—C5—C6118.3 (3)N1—C16—H16B109.5
C7—C6—C5117.3 (3)C15—C16—H16B109.5
C7—C6—C1122.8 (3)H16A—C16—H16B108.1
C5—C6—C1120.0 (3)C13—C17—H17A109.5
C8—C7—C6121.7 (3)C13—C17—H17B109.5
C8—C7—H7119.2H17A—C17—H17B109.5
C6—C7—H7119.2C13—C17—H17C109.5
C7—C8—C9120.2 (4)H17A—C17—H17C109.5
C7—C8—H8119.9H17B—C17—H17C109.5
C9—C8—H8119.9C19—C18—C23118.8 (3)
C10—C9—C8120.4 (3)C19—C18—C11119.5 (3)
C10—C9—H9119.8C23—C18—C11121.7 (3)
C8—C9—H9119.8C20—C19—C18119.0 (3)
C9—C10—C5121.4 (3)C20—C19—H19120.5
C9—C10—H10119.3C18—C19—H19120.5
C5—C10—H10119.3C21—C20—C19122.6 (3)
N1—C11—C1110.1 (2)C21—C20—N2119.6 (3)
N1—C11—C18112.0 (2)C19—C20—N2117.8 (3)
C1—C11—C18113.0 (2)C20—C21—C22118.1 (3)
N1—C11—H11107.1C20—C21—H21120.9
C1—C11—H11107.1C22—C21—H21120.9
C18—C11—H11107.1C21—C22—C23120.6 (3)
N1—C12—C13111.9 (3)C21—C22—H22119.7
N1—C12—H12A109.2C23—C22—H22119.7
C13—C12—H12A109.2C22—C23—C18120.8 (3)
N1—C12—H12B109.2C22—C23—H23119.6
C13—C12—H12B109.2C18—C23—H23119.6
H12A—C12—H12B107.9C12—N1—C16109.6 (2)
C14—C13—C12110.1 (3)C12—N1—C11109.0 (2)
C14—C13—C17113.3 (4)C16—N1—C11114.5 (2)
C12—C13—C17110.3 (3)O2—N2—O3123.2 (4)
C14—C13—H13107.6O2—N2—C20118.5 (3)
C12—C13—H13107.6O3—N2—C20118.3 (4)
C17—C13—H13107.6C2—O1—H1109.5
C13—C14—C15110.6 (3)
C6—C1—C2—O1176.9 (3)C12—C13—C14—C1552.7 (4)
C11—C1—C2—O14.2 (4)C17—C13—C14—C15176.8 (3)
C6—C1—C2—C33.8 (4)C13—C14—C15—C1653.0 (4)
C11—C1—C2—C3175.1 (3)C14—C15—C16—N156.1 (4)
O1—C2—C3—C4178.7 (3)N1—C11—C18—C1995.4 (3)
C1—C2—C3—C42.0 (5)C1—C11—C18—C19139.5 (3)
C2—C3—C4—C50.7 (5)N1—C11—C18—C2383.3 (3)
C3—C4—C5—C10179.3 (3)C1—C11—C18—C2341.7 (4)
C3—C4—C5—C61.4 (5)C23—C18—C19—C200.9 (4)
C10—C5—C6—C71.8 (4)C11—C18—C19—C20177.8 (3)
C4—C5—C6—C7178.9 (3)C18—C19—C20—C210.0 (5)
C10—C5—C6—C1178.8 (3)C18—C19—C20—N2180.0 (3)
C4—C5—C6—C10.5 (4)C19—C20—C21—C220.6 (5)
C2—C1—C6—C7176.4 (3)N2—C20—C21—C22179.4 (3)
C11—C1—C6—C74.7 (4)C20—C21—C22—C230.2 (6)
C2—C1—C6—C53.0 (4)C21—C22—C23—C180.7 (6)
C11—C1—C6—C5175.9 (2)C19—C18—C23—C221.3 (5)
C5—C6—C7—C81.1 (4)C11—C18—C23—C22177.5 (3)
C1—C6—C7—C8179.5 (3)C13—C12—N1—C1660.4 (3)
C6—C7—C8—C90.4 (5)C13—C12—N1—C11173.6 (3)
C7—C8—C9—C101.3 (6)C15—C16—N1—C1258.8 (3)
C8—C9—C10—C50.6 (6)C15—C16—N1—C11178.4 (3)
C4—C5—C10—C9179.8 (4)C1—C11—N1—C1272.9 (3)
C6—C5—C10—C91.0 (5)C18—C11—N1—C12160.5 (2)
C2—C1—C11—N126.7 (3)C1—C11—N1—C16164.0 (2)
C6—C1—C11—N1152.2 (2)C18—C11—N1—C1637.3 (3)
C2—C1—C11—C1899.5 (3)C21—C20—N2—O2178.3 (4)
C6—C1—C11—C1881.7 (3)C19—C20—N2—O21.7 (5)
N1—C12—C13—C1457.6 (4)C21—C20—N2—O32.6 (5)
N1—C12—C13—C17176.7 (3)C19—C20—N2—O3177.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.579 (3)147

Experimental details

Crystal data
Chemical formulaC23H24N2O3
Mr376.44
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)11.980 (2), 10.965 (2), 30.30 (3)
V3)3980 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.22 × 0.18
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.982, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
34080, 3877, 2409
Rint0.110
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.083, 0.174, 1.12
No. of reflections3877
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.579 (3)146.5
 

Acknowledgements

This work was supported financially by a Southeast University grant for young researchers (4007041027).

References

First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzatmari, I. & Fulop, F. (2004). Curr. Org. Synth. 1, 155–165.  Web of Science CrossRef CAS Google Scholar
First citationWang, W. X. & Zhao, H. (2009). Acta Cryst. E65, o1277.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, J. & Zhao, H. (2010). Acta Cryst. E66, o2938.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, B. & Sun, Y.-X. (2005). Acta Cryst. E61, m652–m653.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds