organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Carbamo­thioyl­amino-7-oxabi­cyclo­[2.2.1]hept-5-ene-2,3-dicarboximide

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ljwfu@163.com

(Received 11 November 2010; accepted 19 November 2010; online 27 November 2010)

The title compound, C9H9N3O3S, comprises a racemic mixture of chiral mol­ecules containing four stereogenic centres. The cyclo­hexane ring tends towards a boat conformation, while the tetra­hydro­furan ring and the dihydro­furan ring adopt envelope conformations. The dihedral angle between the thio­semicarbazide fragment and the fused-ring system is 77.20 (10)°. The crystal structure is stabilized by two inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the use of 7-oxa-bicyclo­[2,2,1]hept-5-ene-2,3-dicarb­oxy­lic anhydride in clinical practice, see: Deng & Hu (2007[Deng, L. P. & Hu, Y. Z. (2007). J. Heterocycl. Chem. 44, 597-601.]). For the pharmacological activity of its derivatives, see: Hart et al. (2004[Hart, M. E., Chamberlin, A. R., Walkom, C., Sakoff, J. A. & McCluskey, A. (2004). Bioorg. Med. Chem. Lett. 14, 1969-1973.]). For bond lengths and angles in related structures, see: Goh et al. (2008[Goh, Y. W., Pool, B. R. & White, J. M. (2008). J. Org. Chem. 73, 151-156.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9N3O3S

  • Mr = 239.25

  • Orthorhombic, P 21 21 21

  • a = 8.3978 (8) Å

  • b = 8.9032 (9) Å

  • c = 13.5930 (14) Å

  • V = 1016.31 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 298 K

  • 0.45 × 0.43 × 0.40 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.872, Tmax = 0.885

  • 5015 measured reflections

  • 1791 independent reflections

  • 1632 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.071

  • S = 1.07

  • 1791 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 728 Friedel pairs

  • Flack parameter: 0.01 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.86 1.96 2.809 (2) 167
N3—H3B⋯O1ii 0.86 2.14 2.958 (2) 160
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

7-Oxa-bicyclo[2,2,1]hept-5-ene-2,3-dicarboxylic anhydride has been widely employed in clinical practice, as it is less toxic and much easier to be synthesized [Deng et al., 2007]. Its derivatives are also pharmacologically active [Hart et al., 2004]. We report here the crystal structure of the title compound, (I) which comprises a racemic mixture of chiral molecules containing four stereogenic centres. The cyclohexane ring tends towards a boat conformation, the tetrahydrofuran ring and the dihydrofuran ring adopt envelope conformations (Fig. 1). The bond lengths and bond angles are normal range and comparable to those in the similar compound [Goh, et al., 2008] as representative example. The dihedral angle between the thiosemicarbazide fragment and fused-ring system is 77.20 (10)°. The crystal structure is stabilized by two intermolecular N—H···O and one intramolecular N—H···N hydrogen bonds (Table 1, Fig. 2).

Related literature top

For the use of 7-oxa-bicyclo[2,2,1]hept-5-ene-2,3-dicarboxylic anhydride in clinical practice, see: Deng & Hu (2007). For the pharmacological activity of its derivatives, see: Hart et al. (2004). For bond lengths and angles in related structures, see: Goh et al. (2008).

Experimental top

A mixture of exo-7-oxa-bicyclo[2,2,1]hept-5-ene-2,3-dicarboxylic anhydride (0.332 g, 2 mmol) and thiocarbanide (0.182 g, 2 mmol) in methanol (5 ml) was stirred for 5 h at room temperature, and then refluxed for 1 h. After cooling the precipitate was filtered and dried, the title compound was obtained. The crude product of 20 mg was dissolved in methanol of 10 ml. The solution was filtered to remove impurities, and then the filtrate was left for crystallization at room temperature. The single-crystal suitable for X-ray determination was obtained by evaporation from the methanol solution after 5 d.

Refinement top

H atoms were initially located from difference maps and then refined in a riding model with C—H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

7-Oxa-bicyclo[2,2,1]hept-5-ene-2,3-dicarboxylic anhydride has been widely employed in clinical practice, as it is less toxic and much easier to be synthesized [Deng et al., 2007]. Its derivatives are also pharmacologically active [Hart et al., 2004]. We report here the crystal structure of the title compound, (I) which comprises a racemic mixture of chiral molecules containing four stereogenic centres. The cyclohexane ring tends towards a boat conformation, the tetrahydrofuran ring and the dihydrofuran ring adopt envelope conformations (Fig. 1). The bond lengths and bond angles are normal range and comparable to those in the similar compound [Goh, et al., 2008] as representative example. The dihedral angle between the thiosemicarbazide fragment and fused-ring system is 77.20 (10)°. The crystal structure is stabilized by two intermolecular N—H···O and one intramolecular N—H···N hydrogen bonds (Table 1, Fig. 2).

For the use of 7-oxa-bicyclo[2,2,1]hept-5-ene-2,3-dicarboxylic anhydride in clinical practice, see: Deng & Hu (2007). For the pharmacological activity of its derivatives, see: Hart et al. (2004). For bond lengths and angles in related structures, see: Goh et al. (2008).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoide are drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along b axis. Dashed lines indicate hydrogen bonds.
N-Carbamothioylamino-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboximide top
Crystal data top
C9H9N3O3SF(000) = 496
Mr = 239.25Dx = 1.564 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2624 reflections
a = 8.3978 (8) Åθ = 2.7–26.3°
b = 8.9032 (9) ŵ = 0.31 mm1
c = 13.5930 (14) ÅT = 298 K
V = 1016.31 (18) Å3Block, light yellow
Z = 40.45 × 0.43 × 0.40 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1791 independent reflections
Radiation source: fine-focus sealed tube1632 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
phi and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 99
Tmin = 0.872, Tmax = 0.885k = 1010
5015 measured reflectionsl = 1611
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0346P)2 + 0.1693P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1791 reflectionsΔρmax = 0.14 e Å3
145 parametersΔρmin = 0.16 e Å3
0 restraintsAbsolute structure: Flack (1983), 728 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (9)
Crystal data top
C9H9N3O3SV = 1016.31 (18) Å3
Mr = 239.25Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.3978 (8) ŵ = 0.31 mm1
b = 8.9032 (9) ÅT = 298 K
c = 13.5930 (14) Å0.45 × 0.43 × 0.40 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1791 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1632 reflections with I > 2σ(I)
Tmin = 0.872, Tmax = 0.885Rint = 0.023
5015 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.071Δρmax = 0.14 e Å3
S = 1.07Δρmin = 0.16 e Å3
1791 reflectionsAbsolute structure: Flack (1983), 728 Friedel pairs
145 parametersAbsolute structure parameter: 0.01 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.97059 (7)0.24096 (7)0.78384 (4)0.04347 (17)
N10.5849 (2)0.39754 (19)0.65892 (11)0.0314 (4)
N20.7287 (2)0.3264 (2)0.67804 (13)0.0407 (5)
H20.77120.27220.63270.049*
N30.7384 (2)0.4298 (2)0.83195 (13)0.0447 (5)
H3A0.65160.47660.81840.054*
H3B0.78260.44130.88850.054*
O10.68615 (19)0.5596 (2)0.54443 (11)0.0466 (4)
O20.4254 (2)0.22814 (19)0.73858 (12)0.0529 (5)
O30.32651 (18)0.33700 (17)0.48808 (10)0.0362 (4)
C10.5731 (3)0.5099 (2)0.58861 (14)0.0321 (5)
C20.4001 (2)0.5466 (2)0.57606 (14)0.0306 (5)
H2A0.37540.65170.59110.037*
C30.3110 (2)0.4351 (2)0.64312 (15)0.0322 (5)
H30.24520.48550.69270.039*
C40.4385 (3)0.3383 (2)0.68800 (14)0.0334 (5)
C50.8043 (3)0.3395 (2)0.76542 (14)0.0298 (5)
C60.3396 (3)0.4970 (3)0.47264 (15)0.0357 (5)
H60.40650.52760.41710.043*
C70.1677 (3)0.5434 (3)0.46640 (18)0.0457 (6)
H70.12520.62070.42870.055*
C80.0896 (3)0.4521 (3)0.52523 (17)0.0450 (6)
H80.01910.45310.53820.054*
C90.2106 (3)0.3459 (3)0.56743 (15)0.0368 (5)
H90.16870.24950.59060.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0357 (3)0.0469 (3)0.0479 (3)0.0058 (3)0.0064 (3)0.0046 (3)
N10.0315 (9)0.0367 (10)0.0261 (8)0.0045 (8)0.0032 (8)0.0030 (8)
N20.0382 (10)0.0540 (12)0.0299 (10)0.0176 (9)0.0048 (8)0.0105 (8)
N30.0447 (11)0.0553 (12)0.0342 (10)0.0059 (10)0.0116 (9)0.0121 (9)
O10.0357 (9)0.0642 (12)0.0399 (9)0.0093 (8)0.0035 (8)0.0077 (8)
O20.0607 (10)0.0508 (10)0.0472 (9)0.0104 (9)0.0100 (8)0.0191 (9)
O30.0405 (8)0.0351 (8)0.0330 (8)0.0003 (7)0.0017 (7)0.0079 (7)
C10.0368 (12)0.0350 (11)0.0245 (10)0.0046 (10)0.0007 (9)0.0048 (9)
C20.0333 (11)0.0257 (11)0.0329 (11)0.0010 (9)0.0030 (10)0.0008 (9)
C30.0324 (11)0.0354 (12)0.0287 (10)0.0009 (9)0.0042 (9)0.0030 (9)
C40.0411 (13)0.0348 (12)0.0243 (10)0.0023 (10)0.0010 (9)0.0046 (9)
C50.0330 (11)0.0283 (10)0.0282 (11)0.0068 (9)0.0014 (9)0.0015 (9)
C60.0360 (11)0.0411 (13)0.0300 (11)0.0061 (11)0.0019 (9)0.0050 (10)
C70.0449 (14)0.0464 (15)0.0459 (13)0.0038 (12)0.0185 (12)0.0023 (11)
C80.0292 (11)0.0590 (17)0.0469 (13)0.0001 (11)0.0064 (11)0.0078 (12)
C90.0352 (12)0.0405 (12)0.0345 (12)0.0095 (10)0.0001 (10)0.0027 (10)
Geometric parameters (Å, º) top
S1—C51.668 (2)C2—C31.542 (3)
N1—C11.387 (3)C2—C61.558 (3)
N1—N21.388 (2)C2—H2A0.9800
N1—C41.395 (3)C3—C41.504 (3)
N2—C51.352 (3)C3—C91.549 (3)
N2—H20.8600C3—H30.9800
N3—C51.331 (3)C6—C71.505 (3)
N3—H3A0.8600C6—H60.9800
N3—H3B0.8600C7—C81.315 (3)
O1—C11.207 (2)C7—H70.9300
O2—C41.203 (2)C8—C91.502 (3)
O3—C61.444 (3)C8—H80.9300
O3—C91.455 (3)C9—H90.9800
C1—C21.499 (3)
C1—N1—N2121.34 (18)O2—C4—N1123.4 (2)
C1—N1—C4113.89 (17)O2—C4—C3129.3 (2)
N2—N1—C4122.77 (17)N1—C4—C3107.21 (16)
C5—N2—N1122.28 (18)N3—C5—N2116.96 (19)
C5—N2—H2118.9N3—C5—S1124.34 (16)
N1—N2—H2118.9N2—C5—S1118.69 (16)
C5—N3—H3A120.0O3—C6—C7101.85 (18)
C5—N3—H3B120.0O3—C6—C299.98 (16)
H3A—N3—H3B120.0C7—C6—C2106.61 (17)
C6—O3—C996.03 (15)O3—C6—H6115.5
O1—C1—N1123.4 (2)C7—C6—H6115.5
O1—C1—C2128.8 (2)C2—C6—H6115.5
N1—C1—C2107.75 (17)C8—C7—C6105.9 (2)
C1—C2—C3105.23 (17)C8—C7—H7127.0
C1—C2—C6110.89 (17)C6—C7—H7127.0
C3—C2—C6101.12 (16)C7—C8—C9106.5 (2)
C1—C2—H2A112.9C7—C8—H8126.7
C3—C2—H2A112.9C9—C8—H8126.7
C6—C2—H2A112.9O3—C9—C8101.75 (17)
C4—C3—C2105.28 (17)O3—C9—C399.01 (15)
C4—C3—C9111.29 (18)C8—C9—C3107.42 (18)
C2—C3—C9101.62 (16)O3—C9—H9115.5
C4—C3—H3112.6C8—C9—H9115.5
C2—C3—H3112.6C3—C9—H9115.5
C9—C3—H3112.6
C1—N1—N2—C5114.5 (2)C9—C3—C4—N1115.12 (18)
C4—N1—N2—C582.6 (3)N1—N2—C5—N33.0 (3)
N2—N1—C1—O14.8 (3)N1—N2—C5—S1176.11 (16)
C4—N1—C1—O1169.10 (19)C9—O3—C6—C749.14 (18)
N2—N1—C1—C2171.97 (16)C9—O3—C6—C260.34 (17)
C4—N1—C1—C27.6 (2)C1—C2—C6—O376.2 (2)
O1—C1—C2—C3173.2 (2)C3—C2—C6—O334.98 (19)
N1—C1—C2—C33.4 (2)C1—C2—C6—C7178.11 (19)
O1—C1—C2—C664.6 (3)C3—C2—C6—C770.7 (2)
N1—C1—C2—C6111.89 (18)O3—C6—C7—C832.6 (2)
C1—C2—C3—C41.5 (2)C2—C6—C7—C871.7 (2)
C6—C2—C3—C4113.97 (17)C6—C7—C8—C91.1 (2)
C1—C2—C3—C9117.64 (18)C6—O3—C9—C848.43 (18)
C6—C2—C3—C92.2 (2)C6—O3—C9—C361.60 (17)
C1—N1—C4—O2170.38 (19)C7—C8—C9—O330.6 (2)
N2—N1—C4—O26.3 (3)C7—C8—C9—C372.9 (2)
C1—N1—C4—C38.6 (2)C4—C3—C9—O373.4 (2)
N2—N1—C4—C3172.69 (17)C2—C3—C9—O338.29 (19)
C2—C3—C4—O2173.1 (2)C4—C3—C9—C8178.77 (18)
C9—C3—C4—O263.8 (3)C2—C3—C9—C867.1 (2)
C2—C3—C4—N15.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.861.962.809 (2)167
N3—H3B···O1ii0.862.142.958 (2)160
N3—H3A···N10.862.352.697 (2)105
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+3/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H9N3O3S
Mr239.25
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)8.3978 (8), 8.9032 (9), 13.5930 (14)
V3)1016.31 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.45 × 0.43 × 0.40
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.872, 0.885
No. of measured, independent and
observed [I > 2σ(I)] reflections
5015, 1791, 1632
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.071, 1.07
No. of reflections1791
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.16
Absolute structureFlack (1983), 728 Friedel pairs
Absolute structure parameter0.01 (9)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.861.962.809 (2)167
N3—H3B···O1ii0.862.142.958 (2)160
N3—H3A···N10.862.352.697 (2)105
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+3/2, y+1, z+1/2.
 

Acknowledgements

Shandong Provincial Natural Science Foundation, China, is thanked for support (ZR2009BL027).

References

First citationBruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, L. P. & Hu, Y. Z. (2007). J. Heterocycl. Chem. 44, 597–601.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoh, Y. W., Pool, B. R. & White, J. M. (2008). J. Org. Chem. 73, 151–156.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHart, M. E., Chamberlin, A. R., Walkom, C., Sakoff, J. A. & McCluskey, A. (2004). Bioorg. Med. Chem. Lett. 14, 1969–1973.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds