organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Hy­dr­oxy­benzo­yl)thio­semicarbazide hemihydrate

aCollege of Chemistry and Chemical Technology, Binzhou University, Binzhou 256600, Shandong, People's Republic of China
*Correspondence e-mail: fanchuangang2009@163.com

(Received 14 October 2010; accepted 29 October 2010; online 6 November 2010)

The asymmetric unit of the title compound, C8H9N3O2S·0.5H2O, contains two thiosemicarbazide mol­ecules with the short distance of 3.521 (3) Å between the centroids of the benzene rings, and one water mol­ecule. In the two independent mol­ecules, the benzene rings and the thio­semicarbazone fragments are twisted at 9.2 (3) and 18.5 (3)°. An extensive three-dimensional hydrogen-bonding network, formed by inter­molecular N—H⋯O, N—H⋯S and O—H⋯O hydrogen bonds, consolidates the crystal packing.

Related literature

For the biological activities of thio­semicarbazide derivatives, see: Desai et al. (1984[Desai, N. C., Shukla, H. K., Paresh, B. P. & Thaker, K. A. (1984). J. Indian Chem. Soc. pp. 455-457.]); Shukla et al. (1984[Shukla, H. K., Desai, N. C., Astik, R. R. & Thaker, K. A. (1984). J. Indian Chem. Soc. pp. 168-196.]). For related structures, see: Gors et al. (1979[Gors, C., Baert, F., Henichart, J. P. & Houssin, R. (1979). J. Mol. Struct. 55, 223-233.]); Jin (2007[Jin, L.-F. (2007). Acta Cryst. E63, o3465.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9N3O2S·0.5H2O

  • Mr = 440.50

  • Monoclinic, P 21 /n

  • a = 9.0718 (11) Å

  • b = 21.608 (2) Å

  • c = 10.1035 (13) Å

  • β = 90.173 (1)°

  • V = 1980.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 298 K

  • 0.45 × 0.20 × 0.17 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.873, Tmax = 0.949

  • 9862 measured reflections

  • 3487 independent reflections

  • 2202 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.122

  • S = 1.01

  • 3487 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S1i 0.86 2.58 3.361 (3) 151
N5—H5⋯S1ii 0.86 2.83 3.404 (3) 125
N6—H6A⋯O2iii 0.86 2.16 2.984 (3) 160
N6—H6B⋯S2iv 0.86 2.85 3.647 (3) 156
O4—H4⋯O1ii 0.82 1.93 2.724 (3) 162
O5—H5B⋯O5v 0.85 1.95 2.728 (10) 152
N3—H3A⋯O3 0.86 2.12 2.918 (3) 154
N3—H3B⋯O5 0.86 2.30 3.110 (5) 156
N5—H5⋯O4 0.86 1.99 2.629 (3) 130
O2—H2A⋯O1 0.82 1.83 2.552 (3) 146
O5—H5D⋯S1 0.85 2.66 3.398 (4) 147
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y, z; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x+2, -y, -z; (v) -x+1, -y, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiosemicarbazide compounds exhibit various biological activities such as anti-bacterial, anti-fungal and especially anti-tuberculosis (Shukla et al., 1984; Desai et al., 1984). Herewith we present the title compound (I), a new thiosemicarbazide compound.

The asymmetric unit of (I) contains two independent molecules and one crystalline water molecule (Fig. 1). The bond lengths and angles are normal and comparable to the values observed in similar compounds (Gors et al., 1979; Jin, 2007). In two independent molecules, the benzene rings and the thiosemicarbazone fragments (C/N/N) are twisted at 9.2 (3)° and 18.5 (3)°, respectively.

In the crystal structure, the three-dimensional network structure was formed by the intermolecular N—H···O, N—H···S and O—H···O hydrogen bonds (Table 1).

Related literature top

For the biological activities of thiosemicarbazide derivatives, see: Desai et al. (1984); Shukla et al. (1984). For the crystal structures of related compounds, see: Gors et al. (1979); Jin (2007).

Experimental top

Salicylyl hydrazine (10 mmol), potassium thiocyanate (12 mmol) and 10 ml me thanol-water (1:1) were mixed in 50 ml flask. After refluxing 12 h at 373 K, the resulting mixture was recrystalized from solution, affording the title compound as a colorless crystalline solid.

Refinement top

All H atoms were placed in geometrically idealized positions (N—H = 0.86, O—H= 0.82-0.85 and C—H = 0.93 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2U-1.5 Ueq of the parent atom.

Structure description top

Thiosemicarbazide compounds exhibit various biological activities such as anti-bacterial, anti-fungal and especially anti-tuberculosis (Shukla et al., 1984; Desai et al., 1984). Herewith we present the title compound (I), a new thiosemicarbazide compound.

The asymmetric unit of (I) contains two independent molecules and one crystalline water molecule (Fig. 1). The bond lengths and angles are normal and comparable to the values observed in similar compounds (Gors et al., 1979; Jin, 2007). In two independent molecules, the benzene rings and the thiosemicarbazone fragments (C/N/N) are twisted at 9.2 (3)° and 18.5 (3)°, respectively.

In the crystal structure, the three-dimensional network structure was formed by the intermolecular N—H···O, N—H···S and O—H···O hydrogen bonds (Table 1).

For the biological activities of thiosemicarbazide derivatives, see: Desai et al. (1984); Shukla et al. (1984). For the crystal structures of related compounds, see: Gors et al. (1979); Jin (2007).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of the title compound showing the atomic numbering scheme and 30% probability displacement ellipsoids.
1-(2-Hydroxybenzoyl)thiosemicarbazide hemihydrate top
Crystal data top
C16H20N6O5S2F(000) = 916
Mr = 440.50Dx = 1.474 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.0718 (11) ÅCell parameters from 2367 reflections
b = 21.608 (2) Åθ = 2.2–25.7°
c = 10.1035 (13) ŵ = 0.31 mm1
β = 90.173 (1)°T = 298 K
V = 1980.5 (4) Å3Block, yellow
Z = 40.45 × 0.20 × 0.17 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3487 independent reflections
Radiation source: fine-focus sealed tube2202 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.873, Tmax = 0.949k = 2125
9862 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0468P)2 + 1.2463P]
where P = (Fo2 + 2Fc2)/3
3487 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C16H20N6O5S2V = 1980.5 (4) Å3
Mr = 440.50Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0718 (11) ŵ = 0.31 mm1
b = 21.608 (2) ÅT = 298 K
c = 10.1035 (13) Å0.45 × 0.20 × 0.17 mm
β = 90.173 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3487 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2202 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.949Rint = 0.041
9862 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.01Δρmax = 0.37 e Å3
3487 reflectionsΔρmin = 0.33 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.4021 (3)0.07227 (12)0.5682 (3)0.0401 (7)
H10.33300.06340.62310.048*
N20.5273 (3)0.10117 (11)0.6152 (3)0.0392 (7)
H20.60330.07940.63540.047*
N30.4849 (3)0.07466 (12)0.3544 (3)0.0443 (7)
H3A0.56120.09500.38060.053*
H3B0.47460.06550.27210.053*
N40.8800 (3)0.06010 (11)0.3372 (3)0.0399 (7)
H4'0.82750.03850.39080.048*
N50.9398 (3)0.11556 (11)0.3803 (3)0.0362 (7)
H51.03220.11770.39920.043*
N60.9674 (3)0.07614 (13)0.1292 (3)0.0527 (8)
H6A0.99490.11250.15340.063*
H6B0.98270.06390.04950.063*
O10.4251 (2)0.19444 (10)0.5943 (2)0.0386 (6)
O20.5712 (3)0.29296 (10)0.6415 (2)0.0441 (6)
H2A0.50420.27220.61000.066*
O30.7237 (2)0.16510 (10)0.3629 (2)0.0439 (6)
O41.1396 (2)0.17295 (9)0.5240 (2)0.0408 (6)
H41.21800.18060.56120.061*
O50.3935 (7)0.0087 (2)0.0932 (4)0.172 (2)
H5D0.35750.00630.16380.206*0.50
H5B0.47800.00300.05910.206*0.50
S10.23175 (9)0.01686 (4)0.39559 (9)0.0415 (3)
S20.84286 (14)0.03260 (5)0.17448 (11)0.0703 (4)
C10.3839 (4)0.05757 (13)0.4406 (3)0.0336 (8)
C20.5320 (3)0.16295 (14)0.6297 (3)0.0307 (7)
C30.6647 (3)0.19040 (13)0.6870 (3)0.0287 (7)
C40.6763 (3)0.25507 (14)0.6910 (3)0.0315 (7)
C50.7998 (4)0.28273 (16)0.7474 (3)0.0404 (8)
H5A0.80660.32560.75130.049*
C60.9113 (4)0.24687 (18)0.7971 (3)0.0448 (9)
H60.99380.26570.83420.054*
C70.9031 (4)0.18322 (17)0.7929 (3)0.0445 (9)
H70.97970.15930.82670.053*
C80.7813 (3)0.15549 (15)0.7387 (3)0.0377 (8)
H80.77610.11250.73610.045*
C90.9021 (4)0.03945 (15)0.2138 (4)0.0412 (8)
C100.8546 (3)0.16613 (14)0.3929 (3)0.0307 (7)
C110.9288 (3)0.22405 (13)0.4381 (3)0.0288 (7)
C121.0660 (3)0.22665 (13)0.5004 (3)0.0303 (7)
C131.1241 (4)0.28340 (14)0.5386 (3)0.0370 (8)
H131.21420.28490.58260.044*
C141.0501 (4)0.33711 (15)0.5122 (3)0.0425 (9)
H141.09100.37490.53650.051*
C150.9147 (4)0.33536 (15)0.4495 (3)0.0431 (9)
H150.86420.37190.43140.052*
C160.8552 (4)0.27936 (14)0.4143 (3)0.0373 (8)
H160.76330.27840.37330.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0370 (17)0.0357 (16)0.0475 (18)0.0102 (13)0.0024 (14)0.0063 (14)
N20.0284 (16)0.0278 (15)0.0613 (19)0.0024 (12)0.0136 (13)0.0030 (13)
N30.0396 (18)0.0449 (17)0.0485 (18)0.0078 (14)0.0004 (15)0.0042 (14)
N40.0388 (17)0.0296 (15)0.0514 (18)0.0092 (12)0.0036 (14)0.0057 (13)
N50.0256 (15)0.0272 (14)0.0558 (18)0.0054 (12)0.0035 (13)0.0093 (13)
N60.078 (2)0.0351 (17)0.0453 (18)0.0171 (16)0.0066 (16)0.0064 (15)
O10.0281 (13)0.0323 (12)0.0555 (14)0.0039 (10)0.0091 (11)0.0004 (11)
O20.0432 (15)0.0294 (12)0.0596 (15)0.0017 (10)0.0031 (12)0.0032 (11)
O30.0241 (13)0.0436 (14)0.0639 (16)0.0005 (10)0.0073 (11)0.0033 (12)
O40.0315 (13)0.0331 (13)0.0577 (15)0.0027 (10)0.0120 (11)0.0027 (11)
O50.299 (7)0.114 (3)0.102 (3)0.017 (4)0.030 (4)0.006 (3)
S10.0350 (5)0.0327 (5)0.0567 (6)0.0036 (4)0.0089 (4)0.0056 (4)
S20.1012 (9)0.0420 (6)0.0677 (7)0.0309 (6)0.0138 (6)0.0172 (5)
C10.0309 (19)0.0198 (16)0.050 (2)0.0055 (13)0.0033 (16)0.0016 (15)
C20.0303 (18)0.0316 (18)0.0302 (17)0.0006 (15)0.0035 (14)0.0010 (14)
C30.0264 (17)0.0303 (17)0.0293 (17)0.0022 (13)0.0012 (13)0.0030 (14)
C40.0308 (19)0.0325 (18)0.0313 (18)0.0019 (14)0.0051 (14)0.0033 (15)
C50.041 (2)0.0376 (19)0.043 (2)0.0130 (16)0.0075 (17)0.0115 (16)
C60.030 (2)0.064 (3)0.040 (2)0.0169 (18)0.0041 (16)0.0147 (19)
C70.030 (2)0.058 (2)0.045 (2)0.0004 (17)0.0064 (16)0.0021 (18)
C80.036 (2)0.0357 (19)0.0410 (19)0.0022 (15)0.0036 (16)0.0021 (16)
C90.040 (2)0.0313 (19)0.052 (2)0.0035 (15)0.0020 (17)0.0036 (17)
C100.0270 (19)0.0315 (18)0.0337 (18)0.0003 (14)0.0046 (14)0.0012 (14)
C110.0253 (17)0.0284 (17)0.0328 (17)0.0003 (13)0.0068 (14)0.0011 (14)
C120.0288 (18)0.0285 (17)0.0338 (18)0.0000 (14)0.0034 (14)0.0009 (14)
C130.0326 (19)0.0354 (19)0.043 (2)0.0050 (15)0.0012 (16)0.0043 (16)
C140.048 (2)0.0285 (19)0.051 (2)0.0053 (17)0.0093 (18)0.0096 (16)
C150.046 (2)0.0274 (18)0.056 (2)0.0080 (16)0.0064 (18)0.0025 (16)
C160.034 (2)0.0360 (19)0.042 (2)0.0057 (15)0.0076 (15)0.0017 (16)
Geometric parameters (Å, º) top
N1—C11.338 (4)S1—C11.697 (3)
N1—N21.379 (3)S2—C91.694 (3)
N1—H10.8600C2—C31.460 (4)
N2—C21.344 (4)C3—C81.399 (4)
N2—H20.8600C3—C41.402 (4)
N3—C11.319 (4)C4—C51.391 (4)
N3—H3A0.8600C5—C61.369 (5)
N3—H3B0.8600C5—H5A0.9300
N4—C91.340 (4)C6—C71.378 (5)
N4—N51.385 (3)C6—H60.9300
N4—H4'0.8600C7—C81.370 (4)
N5—C101.345 (4)C7—H70.9300
N5—H50.8600C8—H80.9300
N6—C91.308 (4)C10—C111.492 (4)
N6—H6A0.8600C11—C161.390 (4)
N6—H6B0.8600C11—C121.394 (4)
O1—C21.237 (3)C12—C131.389 (4)
O2—C41.351 (4)C13—C141.367 (4)
O2—H2A0.8200C13—H130.9300
O3—C101.225 (3)C14—C151.381 (5)
O4—C121.359 (3)C14—H140.9300
O4—H40.8200C15—C161.371 (4)
O5—H5D0.8496C15—H150.9300
O5—H5B0.8500C16—H160.9300
C1—N1—N2122.6 (3)C4—C5—H5A120.0
C1—N1—H1118.7C5—C6—C7120.9 (3)
N2—N1—H1118.7C5—C6—H6119.5
C2—N2—N1120.9 (3)C7—C6—H6119.5
C2—N2—H2119.5C8—C7—C6119.5 (3)
N1—N2—H2119.5C8—C7—H7120.3
C1—N3—H3A120.0C6—C7—H7120.3
C1—N3—H3B120.0C7—C8—C3121.4 (3)
H3A—N3—H3B120.0C7—C8—H8119.3
C9—N4—N5121.4 (3)C3—C8—H8119.3
C9—N4—H4'119.3N6—C9—N4118.4 (3)
N5—N4—H4'119.3N6—C9—S2123.2 (3)
C10—N5—N4120.5 (3)N4—C9—S2118.4 (3)
C10—N5—H5119.7O3—C10—N5121.3 (3)
N4—N5—H5119.7O3—C10—C11121.8 (3)
C9—N6—H6A120.0N5—C10—C11116.8 (3)
C9—N6—H6B120.0C16—C11—C12118.1 (3)
H6A—N6—H6B120.0C16—C11—C10116.9 (3)
C4—O2—H2A109.5C12—C11—C10125.0 (3)
C12—O4—H4109.5O4—C12—C13121.3 (3)
H5D—O5—H5B129.4O4—C12—C11118.8 (3)
N3—C1—N1119.1 (3)C13—C12—C11119.9 (3)
N3—C1—S1122.3 (3)C14—C13—C12120.6 (3)
N1—C1—S1118.6 (3)C14—C13—H13119.7
O1—C2—N2119.4 (3)C12—C13—H13119.7
O1—C2—C3122.4 (3)C13—C14—C15120.2 (3)
N2—C2—C3118.2 (3)C13—C14—H14119.9
C8—C3—C4118.1 (3)C15—C14—H14119.9
C8—C3—C2123.4 (3)C16—C15—C14119.5 (3)
C4—C3—C2118.5 (3)C16—C15—H15120.3
O2—C4—C5117.2 (3)C14—C15—H15120.3
O2—C4—C3122.7 (3)C15—C16—C11121.7 (3)
C5—C4—C3120.0 (3)C15—C16—H16119.2
C6—C5—C4120.1 (3)C11—C16—H16119.2
C6—C5—H5A120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.862.583.361 (3)151
N5—H5···S1ii0.862.833.404 (3)125
N6—H6A···O2iii0.862.162.984 (3)160
N6—H6B···S2iv0.862.853.647 (3)156
O4—H4···O1ii0.821.932.724 (3)162
O5—H5B···O5v0.851.952.728 (10)152
N3—H3A···O30.862.122.918 (3)154
N3—H3B···O50.862.303.110 (5)156
N5—H5···O40.861.992.629 (3)130
O2—H2A···O10.821.832.552 (3)146
O5—H5D···S10.852.663.398 (4)147
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z1/2; (iv) x+2, y, z; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H20N6O5S2
Mr440.50
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.0718 (11), 21.608 (2), 10.1035 (13)
β (°) 90.173 (1)
V3)1980.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.45 × 0.20 × 0.17
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.873, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
9862, 3487, 2202
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.122, 1.01
No. of reflections3487
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.33

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.862.583.361 (3)151.4
N5—H5···S1ii0.862.833.404 (3)125.4
N6—H6A···O2iii0.862.162.984 (3)160.3
N6—H6B···S2iv0.862.853.647 (3)155.5
O4—H4···O1ii0.821.932.724 (3)162.3
O5—H5B···O5v0.851.952.728 (10)151.7
N3—H3A···O30.862.122.918 (3)153.7
N3—H3B···O50.862.303.110 (5)156.3
N5—H5···O40.861.992.629 (3)130.3
O2—H2A···O10.821.832.552 (3)145.6
O5—H5D···S10.852.663.398 (4)146.7
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z1/2; (iv) x+2, y, z; (v) x+1, y, z.
 

Acknowledgements

The authors acknowledge the financial support of the Foundation of Binzhou University (grant No. BZXYQNLG200501).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesai, N. C., Shukla, H. K., Paresh, B. P. & Thaker, K. A. (1984). J. Indian Chem. Soc. pp. 455–457.  Google Scholar
First citationGors, C., Baert, F., Henichart, J. P. & Houssin, R. (1979). J. Mol. Struct. 55, 223–233.  CSD CrossRef CAS Web of Science Google Scholar
First citationJin, L.-F. (2007). Acta Cryst. E63, o3465.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShukla, H. K., Desai, N. C., Astik, R. R. & Thaker, K. A. (1984). J. Indian Chem. Soc. pp. 168–196.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds