organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Phenyl­sulfanyl-4-phenyl­sulfonyl-1,2,5-oxa­diazole 2-oxide

aDipartimento di Chimica I, F.M. e Centro CrisDi, University of Turin, Via P. Giuria 7, 10125, Torino, Italy
*Correspondence e-mail: giuliana.gervasio@unito.it

(Received 15 October 2010; accepted 22 October 2010; online 10 November 2010)

In the title compound, C14H10N2O4S2,the furoxan heterocyclic ring and the two S atoms are almost co-planar, with a mean deviation of 0.036 Å. The bond lengths in the penta­gonal ring show electron delocalization and the furoxan N—O bond length is quite short [1.211 (3) Å]. The dihedral angles between the central ring and pendant phenyl rings are 78.05 (14) and 84.28 (2)°.

Related literature

This is part of a study on phenyl­sulfonyl-substituted furoxans as inter­mediates for the synthesis of new functionalized furoxans with potential biological properties as N,O-donors. For details of the synthesis, see: Sorba et al. (1996[Sorba, G., Ermondi, G., Fruttero, R., Galli, U. & Gasco, A. (1996). J. Heterocycl. Chem. 33, 327-334.]); Tosco et al. (2004[Tosco, P., Bertinaria, M., Di Stilo, A., Marini, E., Rolando, B., Sorba, G., Fruttero, R. & Gasco, A. (2004). Farmaco, 59, 359-371.]). For a related structure, see: Dutov et al.(2007[Dutov, M. D., Serushkina, O. V., Shevelev, S. A. & Lyssenko, K. A. (2007). Mendeleev Commun. 17, 347-348.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10N2O4S2

  • Mr = 334.36

  • Orthorhombic, P n a 21

  • a = 15.0182 (2) Å

  • b = 5.5402 (1) Å

  • c = 17.8280 (2) Å

  • V = 1483.36 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.44 mm−1

  • T = 293 K

  • 0.20 × 0.16 × 0.14 mm

Data collection
  • Gemini R Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.836, Tmax = 1.000

  • 7933 measured reflections

  • 2255 independent reflections

  • 2134 reflections with I > 2σ(I)

  • Rint = 0.023

  • θmax = 62.2°

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.084

  • S = 1.05

  • 2255 reflections

  • 199 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1039 Friedel pairs

  • Flack parameter: 0.010 (17)

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound shows a planar moiety including the two sulfur atoms and the furoxanic ring, with a mean deviation from planarity of 0.036 Å. The planar ring contains also a significant delocalization in the N2C2C1N1O1 fragment, while the O1—N2 bond is quite greater than the corresponding N1—O1 (1.461 (3) Å vs. 1.363 (3) Å). The N2—O2 bond length is quite short (1.211 (3) Å), similar however to that reported by Sorba et al. (1996) and Dutov et al. (2007).

Related literature top

This is part of a study on phenylsulfonyl-substituted furoxans as intermediates for the synthesis of new functionalized furoxans with potential biological properties as N,O-donors. For details of the synthesis, see: Sorba et al. (1996); Tosco et al. (2004). For a related structure, see: Dutov et al.(2007).

Experimental top

The 3-phenylthio-4-phenylsulfonyl-furoxanhas been obtained according to Tosco et al. (2004).

Refinement top

C-bound H atoms have been placed in geometrically idealized positions (C—H = 0.93 Å), and refined as riding, with Uiso(H) = 1.2 Ueq(C).

Structure description top

The title compound shows a planar moiety including the two sulfur atoms and the furoxanic ring, with a mean deviation from planarity of 0.036 Å. The planar ring contains also a significant delocalization in the N2C2C1N1O1 fragment, while the O1—N2 bond is quite greater than the corresponding N1—O1 (1.461 (3) Å vs. 1.363 (3) Å). The N2—O2 bond length is quite short (1.211 (3) Å), similar however to that reported by Sorba et al. (1996) and Dutov et al. (2007).

This is part of a study on phenylsulfonyl-substituted furoxans as intermediates for the synthesis of new functionalized furoxans with potential biological properties as N,O-donors. For details of the synthesis, see: Sorba et al. (1996); Tosco et al. (2004). For a related structure, see: Dutov et al.(2007).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 30% probability displacements ellipsoids.
3-Phenylsulfanyl-4-phenylsulfonyl-1,2,5-oxadiazole 2-oxide top
Crystal data top
C14H10N2O4S2Dx = 1.497 Mg m3
Mr = 334.36Cu Kα radiation, λ = 1.5418 Å
Orthorhombic, Pna21Cell parameters from 5370 reflections
a = 15.0182 (2) Åθ = 3.8–62.0°
b = 5.5402 (1) ŵ = 3.44 mm1
c = 17.8280 (2) ÅT = 293 K
V = 1483.36 (4) Å3Prismatic, colorless
Z = 40.20 × 0.16 × 0.14 mm
F(000) = 688
Data collection top
Gemini R Ultra
diffractometer
2255 independent reflections
Radiation source: Ultra (Cu) X-ray Source2134 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 10.2890 pixels mm-1θmax = 62.2°, θmin = 5.0°
f scansh = 1716
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 65
Tmin = 0.836, Tmax = 1.000l = 2020
7933 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.0158P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2255 reflectionsΔρmax = 0.20 e Å3
199 parametersΔρmin = 0.13 e Å3
1 restraintAbsolute structure: Flack (1983), 1039 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.010 (17)
Crystal data top
C14H10N2O4S2V = 1483.36 (4) Å3
Mr = 334.36Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 15.0182 (2) ŵ = 3.44 mm1
b = 5.5402 (1) ÅT = 293 K
c = 17.8280 (2) Å0.20 × 0.16 × 0.14 mm
Data collection top
Gemini R Ultra
diffractometer
2255 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
2134 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 1.000Rint = 0.023
7933 measured reflectionsθmax = 62.2°
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.084Δρmax = 0.20 e Å3
S = 1.05Δρmin = 0.13 e Å3
2255 reflectionsAbsolute structure: Flack (1983), 1039 Friedel pairs
199 parametersAbsolute structure parameter: 0.010 (17)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.35417 (17)0.1230 (4)0.94838 (14)0.0566 (5)
C20.39856 (16)0.1654 (4)1.01631 (14)0.0538 (5)
C30.47584 (18)0.0455 (5)0.83468 (14)0.0581 (6)
C40.4633 (2)0.2458 (5)0.78924 (16)0.0724 (7)
H4A0.40650.30800.78140.087*
C50.5353 (3)0.3495 (7)0.7563 (2)0.0918 (11)
H5A0.52770.48270.72520.110*
C60.6182 (3)0.2605 (8)0.7684 (2)0.0959 (11)
H6A0.66700.33510.74610.115*
C70.6311 (2)0.0621 (9)0.8129 (2)0.0975 (12)
H7A0.68810.00140.82030.117*
C80.5582 (2)0.0488 (6)0.84725 (17)0.0777 (8)
H8A0.56580.18320.87780.093*
C90.56551 (16)0.2429 (4)1.07525 (13)0.0555 (6)
C100.58306 (19)0.4240 (5)1.02395 (18)0.0676 (7)
H10A0.55030.43560.97980.081*
C110.6499 (2)0.5868 (5)1.0393 (2)0.0762 (8)
H11A0.66130.71121.00560.091*
C120.6999 (2)0.5685 (5)1.1036 (2)0.0766 (8)
H12A0.74480.67971.11340.092*
C130.6829 (2)0.3840 (6)1.15337 (19)0.0788 (8)
H13A0.71750.36881.19640.095*
C140.6155 (2)0.2229 (6)1.14018 (17)0.0684 (7)
H14A0.60350.10101.17460.082*
O10.28139 (13)0.4102 (3)0.99925 (13)0.0742 (5)
O20.36323 (16)0.4572 (4)1.10686 (15)0.0875 (7)
O30.4114 (2)0.3036 (4)0.91510 (14)0.0920 (7)
O40.31016 (18)0.0940 (5)0.82679 (15)0.1039 (8)
N10.28650 (15)0.2629 (5)0.93815 (14)0.0701 (6)
N20.35456 (14)0.3441 (4)1.04923 (14)0.0635 (5)
S10.48529 (5)0.01160 (11)1.05918 (5)0.0699 (2)
S20.38327 (5)0.08944 (13)0.87725 (4)0.0696 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0491 (13)0.0607 (12)0.0600 (14)0.0109 (10)0.0043 (11)0.0001 (12)
C20.0525 (12)0.0502 (11)0.0587 (14)0.0059 (10)0.0079 (10)0.0043 (10)
C30.0677 (16)0.0610 (14)0.0456 (13)0.0054 (11)0.0020 (11)0.0079 (10)
C40.0842 (18)0.0719 (16)0.0610 (15)0.0049 (14)0.0063 (14)0.0019 (14)
C50.120 (3)0.080 (2)0.0751 (19)0.008 (2)0.030 (2)0.0072 (16)
C60.091 (2)0.120 (3)0.076 (2)0.030 (2)0.0235 (18)0.008 (2)
C70.067 (2)0.151 (4)0.075 (2)0.0048 (19)0.0035 (16)0.001 (2)
C80.0695 (19)0.101 (2)0.0628 (16)0.0053 (16)0.0018 (13)0.0043 (15)
C90.0526 (13)0.0510 (11)0.0631 (15)0.0039 (9)0.0033 (11)0.0003 (10)
C100.0629 (16)0.0666 (14)0.0731 (17)0.0052 (12)0.0055 (13)0.0093 (13)
C110.0633 (17)0.0614 (14)0.104 (2)0.0004 (13)0.0009 (17)0.0146 (15)
C120.0595 (16)0.0703 (16)0.100 (2)0.0051 (13)0.0000 (16)0.0116 (18)
C130.0634 (16)0.104 (2)0.0688 (17)0.0045 (15)0.0104 (14)0.0098 (16)
C140.0734 (17)0.0754 (17)0.0564 (14)0.0003 (14)0.0004 (12)0.0070 (13)
O10.0579 (10)0.0763 (11)0.0884 (14)0.0081 (9)0.0033 (9)0.0055 (10)
O20.0837 (14)0.0954 (15)0.0832 (14)0.0031 (11)0.0031 (12)0.0354 (13)
O30.136 (2)0.0522 (10)0.0875 (15)0.0183 (11)0.0244 (13)0.0049 (10)
O40.0855 (15)0.139 (2)0.0869 (17)0.0348 (15)0.0055 (13)0.0339 (14)
N10.0576 (12)0.0834 (14)0.0693 (13)0.0066 (11)0.0004 (11)0.0002 (12)
N20.0566 (12)0.0684 (12)0.0653 (13)0.0045 (10)0.0050 (10)0.0112 (11)
S10.0718 (4)0.0536 (3)0.0843 (5)0.0042 (3)0.0134 (4)0.0067 (3)
S20.0740 (4)0.0725 (4)0.0624 (4)0.0216 (3)0.0049 (3)0.0155 (3)
Geometric parameters (Å, º) top
C1—N11.291 (4)C9—C101.383 (4)
C1—C21.402 (4)C9—C141.384 (4)
C1—S21.784 (3)C9—S11.782 (2)
C2—N21.327 (3)C10—C111.377 (4)
C2—S11.734 (3)C10—H10A0.9300
C3—C81.362 (4)C11—C121.374 (5)
C3—C41.387 (4)C11—H11A0.9300
C3—S21.752 (3)C12—C131.378 (5)
C4—C51.358 (4)C12—H12A0.9300
C4—H4A0.9300C13—C141.370 (4)
C5—C61.357 (6)C13—H13A0.9300
C5—H5A0.9300C14—H14A0.9300
C6—C71.370 (6)O1—N11.363 (3)
C6—H6A0.9300O1—N21.461 (3)
C7—C81.396 (5)O2—N21.211 (3)
C7—H7A0.9300O3—S21.429 (3)
C8—H8A0.9300O4—S21.420 (3)
N1—C1—C2113.3 (2)C11—C10—C9118.9 (3)
N1—C1—S2119.2 (2)C11—C10—H10A120.6
C2—C1—S2127.4 (2)C9—C10—H10A120.6
N2—C2—C1105.7 (2)C12—C11—C10121.1 (3)
N2—C2—S1123.1 (2)C12—C11—H11A119.5
C1—C2—S1130.9 (2)C10—C11—H11A119.5
C8—C3—C4121.8 (3)C11—C12—C13119.4 (3)
C8—C3—S2119.1 (2)C11—C12—H12A120.3
C4—C3—S2119.1 (2)C13—C12—H12A120.3
C5—C4—C3118.9 (3)C14—C13—C12120.6 (3)
C5—C4—H4A120.6C14—C13—H13A119.7
C3—C4—H4A120.6C12—C13—H13A119.7
C6—C5—C4120.6 (4)C13—C14—C9119.5 (3)
C6—C5—H5A119.7C13—C14—H14A120.3
C4—C5—H5A119.7C9—C14—H14A120.3
C5—C6—C7120.9 (3)N1—O1—N2107.14 (18)
C5—C6—H6A119.6C1—N1—O1106.9 (2)
C7—C6—H6A119.6O2—N2—C2135.1 (2)
C6—C7—C8119.8 (4)O2—N2—O1117.9 (2)
C6—C7—H7A120.1C2—N2—O1107.0 (2)
C8—C7—H7A120.1C2—S1—C9103.02 (11)
C3—C8—C7118.1 (3)O4—S2—O3120.89 (17)
C3—C8—H8A120.9O4—S2—C3110.29 (15)
C7—C8—H8A120.9O3—S2—C3108.92 (15)
C10—C9—C14120.5 (2)O4—S2—C1105.81 (14)
C10—C9—S1123.0 (2)O3—S2—C1106.53 (13)
C14—C9—S1116.3 (2)C3—S2—C1102.76 (12)

Experimental details

Crystal data
Chemical formulaC14H10N2O4S2
Mr334.36
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)15.0182 (2), 5.5402 (1), 17.8280 (2)
V3)1483.36 (4)
Z4
Radiation typeCu Kα
µ (mm1)3.44
Crystal size (mm)0.20 × 0.16 × 0.14
Data collection
DiffractometerGemini R Ultra
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.836, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7933, 2255, 2134
Rint0.023
θmax (°)62.2
(sin θ/λ)max1)0.574
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.084, 1.05
No. of reflections2255
No. of parameters199
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.13
Absolute structureFlack (1983), 1039 Friedel pairs
Absolute structure parameter0.010 (17)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank Professor A. Gasco for supplying crystals of the title compound.

References

First citationDutov, M. D., Serushkina, O. V., Shevelev, S. A. & Lyssenko, K. A. (2007). Mendeleev Commun. 17, 347–348.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSorba, G., Ermondi, G., Fruttero, R., Galli, U. & Gasco, A. (1996). J. Heterocycl. Chem. 33, 327–334.  CrossRef CAS Google Scholar
First citationTosco, P., Bertinaria, M., Di Stilo, A., Marini, E., Rolando, B., Sorba, G., Fruttero, R. & Gasco, A. (2004). Farmaco, 59, 359–371.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds