organic compounds
Bis[(5-phenyl-1,3,4-thiadiazol-2-yl)sulfanyl]methane
aCollege of Chemistry and Applied Chemistry, Huanggang Normal University, Huanggang 438000, People's Republic of China, bSchool of Chemical Engineering, University of Science and Technology LiaoNing, Anshan 114051, People's Republic of China, and cSchool of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 200235, People's Republic of China
*Correspondence e-mail: wanghewenll@yahoo.com.cn
The 17H12N4S4, contains one half-molecule situated on a twofold rotational axis. In the molecule, the thiadiazole and attached phenyl rings are twisted by 5.8 (3)°.
of the title compound, CRelated literature
For biological activity of 1,3,4-thiadiazole derivatives, see: Nakagawa et al. (1996); Wang et al. (1999); Carvalho et al. (2004); Riente et al. (2009); Poorrajab et al. (2009).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku/MSC, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810044442/cv2783sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810044442/cv2783Isup2.hkl
A suspension of 5-diphenyl-1,3,4-thiadiazol-2-thiol (2.0 mmol) and 1,1-dibromomethane (1.0 mmol) in ethanol (10 ml) was stirred at room temperature. The reaction progress was monitored via TLC. The resulting precipitate was filtered off, washed with cold ethanol, dried and purified to give the target product as light yellow solid in 95% yield. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform-ethanol (1:1).
All H atoms were positioned geometrically and refined as riding (C—H = 0.95–0.99 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent).
1,3,4-Thiadiazole derivatives attracted considerable attention due to their broad spectrum of chemical and pharmaceutical properties (Nakagawa et al., 1996; Wang et al., 1999), with particular attention being paid to the anti-trypanosomal activities of Megazol and related compounds (Carvalho et al., 2004; Riente et al., 2009; Poorrajab et al., 2009). Herewith we report the synthesis and
of the title compound, (I), a new 1,3,4-thiadiazole derivative.The molecular structure of (I) is shown in Fig.1. In the π-π conjugation, the Csp2-S bond length [S2—C8 = 1.751 (3) Å] is significantly shorter than the Csp3-S bond length [S2—C9 = 1.810 (2) Å].
the molecule is situated on a two-fold rotational axis so contains a half of the molecule. 1,3,4-Thiadiazole ring is planar with an r.m.s. deviation of 0.0048 (2)Å and maximum deviation of 0.0072 (2)Å for atom C7. The dihedral angle between the thiadiazole and attached phenyl rings is 5.8 (3)°. As a result ofFor biological activity of 1,3,4-thiadiazole derivatives, see: Nakagawa et al. (1996); Wang et al. (1999); Carvalho et al. (2004); Riente et al. (2009); Poorrajab et al. (2009).
Data collection: CrystalClear (Rigaku/MSC, 2005); cell
CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. View of (I) showing the atom-labelling scheme and 35% probability displacement ellipsoids [symmetry code: (A) = -x,-y + 1,z]. |
C17H12N4S4 | F(000) = 412 |
Mr = 400.55 | Dx = 1.567 Mg m−3 |
Orthorhombic, P21212 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2 2ab | Cell parameters from 2856 reflections |
a = 10.805 (2) Å | θ = 2.1–27.9° |
b = 19.287 (4) Å | µ = 0.57 mm−1 |
c = 4.0738 (8) Å | T = 113 K |
V = 848.9 (3) Å3 | Prism, colourless |
Z = 2 | 0.20 × 0.18 × 0.10 mm |
Rigaku Saturn CCD area-detector diffractometer | 1477 independent reflections |
Radiation source: rotating anode | 1421 reflections with I > 2σ(I) |
Confocal monochromator | Rint = 0.028 |
Detector resolution: 7.31 pixels mm-1 | θmax = 25.0°, θmin = 2.1° |
φ and ω scans | h = −12→12 |
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) | k = −22→22 |
Tmin = 0.895, Tmax = 0.945 | l = −4→4 |
6754 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.029 | w = 1/[σ2(Fo2) + (0.110P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.124 | (Δ/σ)max = 0.001 |
S = 1.03 | Δρmax = 0.54 e Å−3 |
1477 reflections | Δρmin = −0.55 e Å−3 |
115 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.049 (10) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 554 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.16 (14) |
C17H12N4S4 | V = 848.9 (3) Å3 |
Mr = 400.55 | Z = 2 |
Orthorhombic, P21212 | Mo Kα radiation |
a = 10.805 (2) Å | µ = 0.57 mm−1 |
b = 19.287 (4) Å | T = 113 K |
c = 4.0738 (8) Å | 0.20 × 0.18 × 0.10 mm |
Rigaku Saturn CCD area-detector diffractometer | 1477 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) | 1421 reflections with I > 2σ(I) |
Tmin = 0.895, Tmax = 0.945 | Rint = 0.028 |
6754 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.124 | Δρmax = 0.54 e Å−3 |
S = 1.03 | Δρmin = −0.55 e Å−3 |
1477 reflections | Absolute structure: Flack (1983), 554 Friedel pairs |
115 parameters | Absolute structure parameter: 0.16 (14) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.19317 (6) | 0.33910 (3) | 0.3294 (2) | 0.0215 (3) | |
S2 | 0.13644 (6) | 0.47579 (4) | 0.6577 (2) | 0.0216 (3) | |
N1 | −0.0251 (2) | 0.29797 (13) | 0.4770 (7) | 0.0223 (6) | |
N2 | −0.0161 (2) | 0.36481 (13) | 0.6002 (7) | 0.0231 (6) | |
C1 | −0.0141 (3) | 0.16581 (16) | 0.1495 (9) | 0.0260 (7) | |
H1 | −0.0904 | 0.1795 | 0.2453 | 0.031* | |
C2 | −0.0048 (3) | 0.10272 (16) | −0.0079 (9) | 0.0289 (8) | |
H2 | −0.0748 | 0.0731 | −0.0206 | 0.035* | |
C3 | 0.1073 (3) | 0.08236 (15) | −0.1485 (9) | 0.0279 (7) | |
H3 | 0.1136 | 0.0389 | −0.2568 | 0.033* | |
C4 | 0.2085 (3) | 0.12546 (15) | −0.1299 (9) | 0.0262 (7) | |
H4 | 0.2847 | 0.1117 | −0.2264 | 0.031* | |
C5 | 0.1999 (3) | 0.18852 (16) | 0.0284 (8) | 0.0234 (7) | |
H5 | 0.2704 | 0.2178 | 0.0420 | 0.028* | |
C6 | 0.0885 (3) | 0.20960 (14) | 0.1682 (8) | 0.0196 (6) | |
C7 | 0.0747 (2) | 0.27771 (15) | 0.3277 (7) | 0.0181 (6) | |
C8 | 0.0919 (3) | 0.39217 (14) | 0.5395 (8) | 0.0192 (7) | |
C9 | 0.0000 | 0.5000 | 0.8888 (11) | 0.0229 (10) | |
H9A | 0.0223 | 0.5394 | 1.0330 | 0.027* | 0.50 |
H9B | −0.0223 | 0.4606 | 1.0330 | 0.027* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0163 (4) | 0.0229 (4) | 0.0252 (5) | −0.0010 (3) | 0.0012 (4) | −0.0011 (3) |
S2 | 0.0221 (4) | 0.0204 (4) | 0.0223 (5) | −0.0011 (3) | −0.0018 (4) | 0.0005 (3) |
N1 | 0.0199 (12) | 0.0197 (12) | 0.0273 (14) | 0.0005 (9) | −0.0006 (12) | 0.0018 (12) |
N2 | 0.0229 (12) | 0.0200 (12) | 0.0263 (15) | 0.0006 (10) | 0.0035 (11) | −0.0007 (12) |
C1 | 0.0198 (14) | 0.0279 (15) | 0.0303 (18) | 0.0002 (11) | 0.0039 (16) | 0.0029 (17) |
C2 | 0.0258 (14) | 0.0254 (15) | 0.036 (2) | −0.0019 (12) | −0.0060 (17) | −0.0012 (16) |
C3 | 0.0374 (17) | 0.0206 (13) | 0.0257 (17) | 0.0052 (13) | 0.0029 (17) | −0.0019 (15) |
C4 | 0.0244 (14) | 0.0254 (14) | 0.0289 (18) | 0.0079 (12) | 0.0013 (15) | 0.0031 (16) |
C5 | 0.0208 (14) | 0.0232 (14) | 0.0260 (17) | 0.0012 (12) | −0.0002 (15) | 0.0041 (14) |
C6 | 0.0189 (14) | 0.0209 (14) | 0.0191 (15) | 0.0028 (11) | −0.0046 (13) | 0.0043 (14) |
C7 | 0.0162 (13) | 0.0216 (13) | 0.0166 (14) | 0.0000 (11) | −0.0015 (13) | 0.0033 (13) |
C8 | 0.0206 (14) | 0.0198 (12) | 0.0170 (15) | 0.0038 (11) | −0.0010 (13) | −0.0001 (12) |
C9 | 0.029 (2) | 0.0235 (19) | 0.016 (2) | −0.0003 (17) | 0.000 | 0.000 |
S1—C8 | 1.726 (3) | C2—H2 | 0.9500 |
S1—C7 | 1.744 (3) | C3—C4 | 1.376 (5) |
S2—C8 | 1.751 (3) | C3—H3 | 0.9500 |
S2—C9 | 1.810 (2) | C4—C5 | 1.380 (5) |
N1—C7 | 1.298 (4) | C4—H4 | 0.9500 |
N1—N2 | 1.387 (4) | C5—C6 | 1.391 (4) |
N2—C8 | 1.304 (4) | C5—H5 | 0.9500 |
C1—C2 | 1.379 (5) | C6—C7 | 1.473 (4) |
C1—C6 | 1.396 (4) | C9—S2i | 1.810 (2) |
C1—H1 | 0.9500 | C9—H9A | 0.9900 |
C2—C3 | 1.396 (4) | C9—H9B | 0.9900 |
C8—S1—C7 | 86.51 (14) | C4—C5—H5 | 119.8 |
C8—S2—C9 | 99.02 (10) | C6—C5—H5 | 119.8 |
C7—N1—N2 | 113.0 (2) | C5—C6—C1 | 119.2 (3) |
C8—N2—N1 | 111.8 (2) | C5—C6—C7 | 121.9 (3) |
C2—C1—C6 | 120.1 (3) | C1—C6—C7 | 118.9 (3) |
C2—C1—H1 | 119.9 | N1—C7—C6 | 124.0 (3) |
C6—C1—H1 | 119.9 | N1—C7—S1 | 113.8 (2) |
C1—C2—C3 | 120.1 (3) | C6—C7—S1 | 122.2 (2) |
C1—C2—H2 | 119.9 | N2—C8—S1 | 114.9 (2) |
C3—C2—H2 | 119.9 | N2—C8—S2 | 124.5 (2) |
C4—C3—C2 | 119.8 (3) | S1—C8—S2 | 120.57 (17) |
C4—C3—H3 | 120.1 | S2—C9—S2i | 117.3 (2) |
C2—C3—H3 | 120.1 | S2—C9—H9A | 108.0 |
C3—C4—C5 | 120.3 (3) | S2i—C9—H9A | 108.0 |
C3—C4—H4 | 119.9 | S2—C9—H9B | 108.0 |
C5—C4—H4 | 119.9 | S2i—C9—H9B | 108.0 |
C4—C5—C6 | 120.5 (3) | H9A—C9—H9B | 107.2 |
C7—N1—N2—C8 | −0.5 (4) | C1—C6—C7—N1 | 5.7 (5) |
C6—C1—C2—C3 | 0.1 (5) | C5—C6—C7—S1 | 4.3 (4) |
C1—C2—C3—C4 | 0.0 (5) | C1—C6—C7—S1 | −173.9 (3) |
C2—C3—C4—C5 | 0.3 (6) | C8—S1—C7—N1 | −1.1 (2) |
C3—C4—C5—C6 | −0.6 (5) | C8—S1—C7—C6 | 178.6 (3) |
C4—C5—C6—C1 | 0.7 (5) | N1—N2—C8—S1 | −0.4 (3) |
C4—C5—C6—C7 | −177.6 (3) | N1—N2—C8—S2 | 179.9 (2) |
C2—C1—C6—C5 | −0.4 (5) | C7—S1—C8—N2 | 0.8 (3) |
C2—C1—C6—C7 | 177.9 (3) | C7—S1—C8—S2 | −179.5 (2) |
N2—N1—C7—C6 | −178.6 (2) | C9—S2—C8—N2 | 4.3 (3) |
N2—N1—C7—S1 | 1.1 (3) | C9—S2—C8—S1 | −175.34 (19) |
C5—C6—C7—N1 | −176.0 (3) | C8—S2—C9—S2i | −76.74 (11) |
Symmetry code: (i) −x, −y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C17H12N4S4 |
Mr | 400.55 |
Crystal system, space group | Orthorhombic, P21212 |
Temperature (K) | 113 |
a, b, c (Å) | 10.805 (2), 19.287 (4), 4.0738 (8) |
V (Å3) | 848.9 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.57 |
Crystal size (mm) | 0.20 × 0.18 × 0.10 |
Data collection | |
Diffractometer | Rigaku Saturn CCD area-detector |
Absorption correction | Multi-scan (CrystalClear; Rigaku/MSC, 2005) |
Tmin, Tmax | 0.895, 0.945 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6754, 1477, 1421 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.124, 1.03 |
No. of reflections | 1477 |
No. of parameters | 115 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.54, −0.55 |
Absolute structure | Flack (1983), 554 Friedel pairs |
Absolute structure parameter | 0.16 (14) |
Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
We thank the Doctoral Foundation of Huanggang Normal University (grant No. 09CD155).
References
Carvalho, S. A., da Silva, E. F., Santa-Rita, R. M., de Castro, S. L. & Fraga, C. A. M. (2004). Bioorg. Med. Chem. Lett. 14, 5967–5970. Web of Science CrossRef PubMed CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195–201. CrossRef CAS Google Scholar
Poorrajab, F., Ardestani, S. K., Emami, S., Behrouzi-Fardmoghadam, M., Shafiee, A. & Foroumadi, A. (2009). Eur. J. Med. Chem. 44, 1758–1762. Web of Science CrossRef PubMed CAS Google Scholar
Riente, R. R., Souza, V. P., Carvalho, S. A., Kaiser, M., Brum, R. & Silva, E. F. (2009). J. Med. Chem. 4, 392–397. CrossRef Google Scholar
Rigaku/MSC (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903–1905. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,3,4-Thiadiazole derivatives attracted considerable attention due to their broad spectrum of chemical and pharmaceutical properties (Nakagawa et al., 1996; Wang et al., 1999), with particular attention being paid to the anti-trypanosomal activities of Megazol and related compounds (Carvalho et al., 2004; Riente et al., 2009; Poorrajab et al., 2009). Herewith we report the synthesis and crystal structure of the title compound, (I), a new 1,3,4-thiadiazole derivative.
The molecular structure of (I) is shown in Fig.1. In the crystal structure, the molecule is situated on a two-fold rotational axis so asymmetric unit contains a half of the molecule. 1,3,4-Thiadiazole ring is planar with an r.m.s. deviation of 0.0048 (2)Å and maximum deviation of 0.0072 (2)Å for atom C7. The dihedral angle between the thiadiazole and attached phenyl rings is 5.8 (3)°. As a result of π-π conjugation, the Csp2-S bond length [S2—C8 = 1.751 (3) Å] is significantly shorter than the Csp3-S bond length [S2—C9 = 1.810 (2) Å].