organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[(5-phenyl-1,3,4-thia­diazol-2-yl)sulfan­yl]methane

aCollege of Chemistry and Applied Chemistry, Huanggang Normal University, Huanggang 438000, People's Republic of China, bSchool of Chemical Engineering, University of Science and Technology LiaoNing, Anshan 114051, People's Republic of China, and cSchool of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 200235, People's Republic of China
*Correspondence e-mail: wanghewenll@yahoo.com.cn

(Received 24 October 2010; accepted 31 October 2010; online 6 November 2010)

The asymmetric unit of the title compound, C17H12N4S4, contains one half-mol­ecule situated on a twofold rotational axis. In the mol­ecule, the thia­diazole and attached phenyl rings are twisted by 5.8 (3)°.

Related literature

For biological activity of 1,3,4-thia­diazole derivatives, see: Nakagawa et al. (1996[Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195-201.]); Wang et al. (1999[Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903-1905.]); Carvalho et al. (2004[Carvalho, S. A., da Silva, E. F., Santa-Rita, R. M., de Castro, S. L. & Fraga, C. A. M. (2004). Bioorg. Med. Chem. Lett. 14, 5967-5970.]); Riente et al. (2009[Riente, R. R., Souza, V. P., Carvalho, S. A., Kaiser, M., Brum, R. & Silva, E. F. (2009). J. Med. Chem. 4, 392-397.]); Poorrajab et al. (2009[Poorrajab, F., Ardestani, S. K., Emami, S., Behrouzi-Fardmoghadam, M., Shafiee, A. & Foroumadi, A. (2009). Eur. J. Med. Chem. 44, 1758-1762.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12N4S4

  • Mr = 400.55

  • Orthorhombic, P 21 21 2

  • a = 10.805 (2) Å

  • b = 19.287 (4) Å

  • c = 4.0738 (8) Å

  • V = 848.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.10 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.895, Tmax = 0.945

  • 6754 measured reflections

  • 1477 independent reflections

  • 1421 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.124

  • S = 1.03

  • 1477 reflections

  • 115 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.55 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 554 Friedel pairs

  • Flack parameter: 0.16 (14)

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,3,4-Thiadiazole derivatives attracted considerable attention due to their broad spectrum of chemical and pharmaceutical properties (Nakagawa et al., 1996; Wang et al., 1999), with particular attention being paid to the anti-trypanosomal activities of Megazol and related compounds (Carvalho et al., 2004; Riente et al., 2009; Poorrajab et al., 2009). Herewith we report the synthesis and crystal structure of the title compound, (I), a new 1,3,4-thiadiazole derivative.

The molecular structure of (I) is shown in Fig.1. In the crystal structure, the molecule is situated on a two-fold rotational axis so asymmetric unit contains a half of the molecule. 1,3,4-Thiadiazole ring is planar with an r.m.s. deviation of 0.0048 (2)Å and maximum deviation of 0.0072 (2)Å for atom C7. The dihedral angle between the thiadiazole and attached phenyl rings is 5.8 (3)°. As a result of π-π conjugation, the Csp2-S bond length [S2—C8 = 1.751 (3) Å] is significantly shorter than the Csp3-S bond length [S2—C9 = 1.810 (2) Å].

Related literature top

For biological activity of 1,3,4-thiadiazole derivatives, see: Nakagawa et al. (1996); Wang et al. (1999); Carvalho et al. (2004); Riente et al. (2009); Poorrajab et al. (2009).

Experimental top

A suspension of 5-diphenyl-1,3,4-thiadiazol-2-thiol (2.0 mmol) and 1,1-dibromomethane (1.0 mmol) in ethanol (10 ml) was stirred at room temperature. The reaction progress was monitored via TLC. The resulting precipitate was filtered off, washed with cold ethanol, dried and purified to give the target product as light yellow solid in 95% yield. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform-ethanol (1:1).

Refinement top

All H atoms were positioned geometrically and refined as riding (C—H = 0.95–0.99 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent).

Structure description top

1,3,4-Thiadiazole derivatives attracted considerable attention due to their broad spectrum of chemical and pharmaceutical properties (Nakagawa et al., 1996; Wang et al., 1999), with particular attention being paid to the anti-trypanosomal activities of Megazol and related compounds (Carvalho et al., 2004; Riente et al., 2009; Poorrajab et al., 2009). Herewith we report the synthesis and crystal structure of the title compound, (I), a new 1,3,4-thiadiazole derivative.

The molecular structure of (I) is shown in Fig.1. In the crystal structure, the molecule is situated on a two-fold rotational axis so asymmetric unit contains a half of the molecule. 1,3,4-Thiadiazole ring is planar with an r.m.s. deviation of 0.0048 (2)Å and maximum deviation of 0.0072 (2)Å for atom C7. The dihedral angle between the thiadiazole and attached phenyl rings is 5.8 (3)°. As a result of π-π conjugation, the Csp2-S bond length [S2—C8 = 1.751 (3) Å] is significantly shorter than the Csp3-S bond length [S2—C9 = 1.810 (2) Å].

For biological activity of 1,3,4-thiadiazole derivatives, see: Nakagawa et al. (1996); Wang et al. (1999); Carvalho et al. (2004); Riente et al. (2009); Poorrajab et al. (2009).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atom-labelling scheme and 35% probability displacement ellipsoids [symmetry code: (A) = -x,-y + 1,z].
Bis[(5-phenyl-1,3,4-thiadiazol-2-yl)sulfanyl]methane top
Crystal data top
C17H12N4S4F(000) = 412
Mr = 400.55Dx = 1.567 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 2856 reflections
a = 10.805 (2) Åθ = 2.1–27.9°
b = 19.287 (4) ŵ = 0.57 mm1
c = 4.0738 (8) ÅT = 113 K
V = 848.9 (3) Å3Prism, colourless
Z = 20.20 × 0.18 × 0.10 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1477 independent reflections
Radiation source: rotating anode1421 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.028
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.1°
φ and ω scansh = 1212
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 2222
Tmin = 0.895, Tmax = 0.945l = 44
6754 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.110P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.124(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.54 e Å3
1477 reflectionsΔρmin = 0.55 e Å3
115 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.049 (10)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 554 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.16 (14)
Crystal data top
C17H12N4S4V = 848.9 (3) Å3
Mr = 400.55Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 10.805 (2) ŵ = 0.57 mm1
b = 19.287 (4) ÅT = 113 K
c = 4.0738 (8) Å0.20 × 0.18 × 0.10 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1477 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1421 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.945Rint = 0.028
6754 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.124Δρmax = 0.54 e Å3
S = 1.03Δρmin = 0.55 e Å3
1477 reflectionsAbsolute structure: Flack (1983), 554 Friedel pairs
115 parametersAbsolute structure parameter: 0.16 (14)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.19317 (6)0.33910 (3)0.3294 (2)0.0215 (3)
S20.13644 (6)0.47579 (4)0.6577 (2)0.0216 (3)
N10.0251 (2)0.29797 (13)0.4770 (7)0.0223 (6)
N20.0161 (2)0.36481 (13)0.6002 (7)0.0231 (6)
C10.0141 (3)0.16581 (16)0.1495 (9)0.0260 (7)
H10.09040.17950.24530.031*
C20.0048 (3)0.10272 (16)0.0079 (9)0.0289 (8)
H20.07480.07310.02060.035*
C30.1073 (3)0.08236 (15)0.1485 (9)0.0279 (7)
H30.11360.03890.25680.033*
C40.2085 (3)0.12546 (15)0.1299 (9)0.0262 (7)
H40.28470.11170.22640.031*
C50.1999 (3)0.18852 (16)0.0284 (8)0.0234 (7)
H50.27040.21780.04200.028*
C60.0885 (3)0.20960 (14)0.1682 (8)0.0196 (6)
C70.0747 (2)0.27771 (15)0.3277 (7)0.0181 (6)
C80.0919 (3)0.39217 (14)0.5395 (8)0.0192 (7)
C90.00000.50000.8888 (11)0.0229 (10)
H9A0.02230.53941.03300.027*0.50
H9B0.02230.46061.03300.027*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0163 (4)0.0229 (4)0.0252 (5)0.0010 (3)0.0012 (4)0.0011 (3)
S20.0221 (4)0.0204 (4)0.0223 (5)0.0011 (3)0.0018 (4)0.0005 (3)
N10.0199 (12)0.0197 (12)0.0273 (14)0.0005 (9)0.0006 (12)0.0018 (12)
N20.0229 (12)0.0200 (12)0.0263 (15)0.0006 (10)0.0035 (11)0.0007 (12)
C10.0198 (14)0.0279 (15)0.0303 (18)0.0002 (11)0.0039 (16)0.0029 (17)
C20.0258 (14)0.0254 (15)0.036 (2)0.0019 (12)0.0060 (17)0.0012 (16)
C30.0374 (17)0.0206 (13)0.0257 (17)0.0052 (13)0.0029 (17)0.0019 (15)
C40.0244 (14)0.0254 (14)0.0289 (18)0.0079 (12)0.0013 (15)0.0031 (16)
C50.0208 (14)0.0232 (14)0.0260 (17)0.0012 (12)0.0002 (15)0.0041 (14)
C60.0189 (14)0.0209 (14)0.0191 (15)0.0028 (11)0.0046 (13)0.0043 (14)
C70.0162 (13)0.0216 (13)0.0166 (14)0.0000 (11)0.0015 (13)0.0033 (13)
C80.0206 (14)0.0198 (12)0.0170 (15)0.0038 (11)0.0010 (13)0.0001 (12)
C90.029 (2)0.0235 (19)0.016 (2)0.0003 (17)0.0000.000
Geometric parameters (Å, º) top
S1—C81.726 (3)C2—H20.9500
S1—C71.744 (3)C3—C41.376 (5)
S2—C81.751 (3)C3—H30.9500
S2—C91.810 (2)C4—C51.380 (5)
N1—C71.298 (4)C4—H40.9500
N1—N21.387 (4)C5—C61.391 (4)
N2—C81.304 (4)C5—H50.9500
C1—C21.379 (5)C6—C71.473 (4)
C1—C61.396 (4)C9—S2i1.810 (2)
C1—H10.9500C9—H9A0.9900
C2—C31.396 (4)C9—H9B0.9900
C8—S1—C786.51 (14)C4—C5—H5119.8
C8—S2—C999.02 (10)C6—C5—H5119.8
C7—N1—N2113.0 (2)C5—C6—C1119.2 (3)
C8—N2—N1111.8 (2)C5—C6—C7121.9 (3)
C2—C1—C6120.1 (3)C1—C6—C7118.9 (3)
C2—C1—H1119.9N1—C7—C6124.0 (3)
C6—C1—H1119.9N1—C7—S1113.8 (2)
C1—C2—C3120.1 (3)C6—C7—S1122.2 (2)
C1—C2—H2119.9N2—C8—S1114.9 (2)
C3—C2—H2119.9N2—C8—S2124.5 (2)
C4—C3—C2119.8 (3)S1—C8—S2120.57 (17)
C4—C3—H3120.1S2—C9—S2i117.3 (2)
C2—C3—H3120.1S2—C9—H9A108.0
C3—C4—C5120.3 (3)S2i—C9—H9A108.0
C3—C4—H4119.9S2—C9—H9B108.0
C5—C4—H4119.9S2i—C9—H9B108.0
C4—C5—C6120.5 (3)H9A—C9—H9B107.2
C7—N1—N2—C80.5 (4)C1—C6—C7—N15.7 (5)
C6—C1—C2—C30.1 (5)C5—C6—C7—S14.3 (4)
C1—C2—C3—C40.0 (5)C1—C6—C7—S1173.9 (3)
C2—C3—C4—C50.3 (6)C8—S1—C7—N11.1 (2)
C3—C4—C5—C60.6 (5)C8—S1—C7—C6178.6 (3)
C4—C5—C6—C10.7 (5)N1—N2—C8—S10.4 (3)
C4—C5—C6—C7177.6 (3)N1—N2—C8—S2179.9 (2)
C2—C1—C6—C50.4 (5)C7—S1—C8—N20.8 (3)
C2—C1—C6—C7177.9 (3)C7—S1—C8—S2179.5 (2)
N2—N1—C7—C6178.6 (2)C9—S2—C8—N24.3 (3)
N2—N1—C7—S11.1 (3)C9—S2—C8—S1175.34 (19)
C5—C6—C7—N1176.0 (3)C8—S2—C9—S2i76.74 (11)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H12N4S4
Mr400.55
Crystal system, space groupOrthorhombic, P21212
Temperature (K)113
a, b, c (Å)10.805 (2), 19.287 (4), 4.0738 (8)
V3)848.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.895, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
6754, 1477, 1421
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.124, 1.03
No. of reflections1477
No. of parameters115
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.55
Absolute structureFlack (1983), 554 Friedel pairs
Absolute structure parameter0.16 (14)

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank the Doctoral Foundation of Huanggang Normal University (grant No. 09CD155).

References

First citationCarvalho, S. A., da Silva, E. F., Santa-Rita, R. M., de Castro, S. L. & Fraga, C. A. M. (2004). Bioorg. Med. Chem. Lett. 14, 5967–5970.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195–201.  CrossRef CAS Google Scholar
First citationPoorrajab, F., Ardestani, S. K., Emami, S., Behrouzi-Fardmoghadam, M., Shafiee, A. & Foroumadi, A. (2009). Eur. J. Med. Chem. 44, 1758–1762.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRiente, R. R., Souza, V. P., Carvalho, S. A., Kaiser, M., Brum, R. & Silva, E. F. (2009). J. Med. Chem. 4, 392–397.  CrossRef Google Scholar
First citationRigaku/MSC (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903–1905.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds