organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(5,6-Di­bromo-7-methyl-3H-imidazo[4,5-b]pyridin-2-yl)phenol

aDepartment of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, People's Republic of China
*Correspondence e-mail: xxhxwang@126.com

(Received 25 October 2010; accepted 4 November 2010; online 13 November 2010)

In the title compound, C13H9Br2N3O, the mol­ecular skeleton, influenced by an intra­molecular O—H⋯N hydrogen bond, is roughly planar, with a mean deviation of 0.033 Å. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains propagating in [100]. Weak inter­molecular ππ inter­actions [centroid–centroid distances = 3.760 (3) and 3.723 (3) Å] further consolidate the packing.

Related literature

For background to the use of imidazole and its derivatives in transition metal complexes, see: Huang et al. (2004[Huang, X.-C., Zhang, J.-P. & Chen, X.-M. (2004). J. Am. Chem. Soc. 126, 13218-13219.]). For related structures, see: Eltayeb et al. (2009[Eltayeb, N. E., Teoh, S. G., Quah, C. K., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o1613-o1614.]); Xiao et al. (2009[Xiao, H.-Q., Zhang, M.-Z. & Wang, W. (2009). Acta Cryst. E65, o1256.]); Elerman & Kabak (1997[Elerman, Y. & Kabak, M. (1997). Acta Cryst. C53, 372-374.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9Br2N3O

  • Mr = 383.05

  • Orthorhombic, P b c a

  • a = 13.181 (5) Å

  • b = 8.494 (3) Å

  • c = 22.692 (8) Å

  • V = 2540.5 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.38 mm−1

  • T = 293 K

  • 0.31 × 0.28 × 0.24 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.243, Tmax = 0.310

  • 11656 measured reflections

  • 2234 independent reflections

  • 1706 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.138

  • S = 1.08

  • 2234 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.95 1.90 2.839 (6) 171
O1—H1⋯N2 0.82 1.84 2.573 (6) 149
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Due to excellent coordination abilities the imidazole and its derivatives have already been introduced into the transition metal complexes (Huang et al., 2004). Herewith we present the title compound (I) - a new imidazole derivative.

In (I) (Fig. 1), intramolecular O—H···N hydrogen bond (Table 2) influence the molecular conformation, so all non-H atoms are nearly coplanar with the mean deviation of 0.033 Å. The dihedral angle between the 5,6-dibromo-7-methyl-3H-imidazo[4,5-b]pyridine plane and the phenol plane is 2.1 (2) °. The bond lengths and angles are normal and comparable to those observed in the reported benzimidazole compounds (Xiao et al., 2009; Eltayeb et al., 2009; Elerman & Kabak 1997).

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 2) link the molecules into chains propagated in direction [100]. Weak intermolecular ππ interactions (Table 1) consolidate further the crystal packing.

Related literature top

For background to the use of imidazole and its derivatives in transition metal complexes, see: Huang et al. (2004). For related structures, see: Eltayeb et al. (2009); Xiao et al. (2009); Elerman & Kabak (1997).

Experimental top

The title compound was synthesized by the reaction of 4-methyl-2,3-diamino-5,6-dibromopyridine and 2-hydroxybenzaldehyde with the ratio 1:1 in ethanol. After the mixture was refluxed sevral hours, the resulting clear yellow solution was allowed to evaporate slowly in air, and orange-yellow block-like crystals suitable for X-ray diffraction were obtained with a yield 47% about ten days later.

Refinement top

All the H atoms bonded to the C atoms were placed using the HFIX commands in SHELXL-97 with C—H distances of 0.93 and 0.96 Å, and were refined as riding, with Uiso(H) = 1.2-1.5Ueq(C). H atoms bonded to O and N atoms were found from difference Fourier maps with the bond lengths restrained to 0.82 and 0.96 Å, respectively, and were refined as riding, with Uiso(H) = 1.5Ueq(O) and Uiso(H) = 1.2Ueq(N).

Structure description top

Due to excellent coordination abilities the imidazole and its derivatives have already been introduced into the transition metal complexes (Huang et al., 2004). Herewith we present the title compound (I) - a new imidazole derivative.

In (I) (Fig. 1), intramolecular O—H···N hydrogen bond (Table 2) influence the molecular conformation, so all non-H atoms are nearly coplanar with the mean deviation of 0.033 Å. The dihedral angle between the 5,6-dibromo-7-methyl-3H-imidazo[4,5-b]pyridine plane and the phenol plane is 2.1 (2) °. The bond lengths and angles are normal and comparable to those observed in the reported benzimidazole compounds (Xiao et al., 2009; Eltayeb et al., 2009; Elerman & Kabak 1997).

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 2) link the molecules into chains propagated in direction [100]. Weak intermolecular ππ interactions (Table 1) consolidate further the crystal packing.

For background to the use of imidazole and its derivatives in transition metal complexes, see: Huang et al. (2004). For related structures, see: Eltayeb et al. (2009); Xiao et al. (2009); Elerman & Kabak (1997).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and 30% probabilty displament ellipsoids.
2-(5,6-Dibromo-7-methyl-3H-imidazo[4,5-b]pyridin-2-yl)phenol top
Crystal data top
C13H9Br2N3OF(000) = 1488
Mr = 383.05Dx = 2.003 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1452 reflections
a = 13.181 (5) Åθ = 2.9–24.6°
b = 8.494 (3) ŵ = 6.38 mm1
c = 22.692 (8) ÅT = 293 K
V = 2540.5 (16) Å3Block, orange–yellow
Z = 80.31 × 0.28 × 0.24 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2234 independent reflections
Radiation source: fine-focus sealed tube1706 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1515
Tmin = 0.243, Tmax = 0.310k = 910
11656 measured reflectionsl = 2426
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0692P)2 + 6.558P]
where P = (Fo2 + 2Fc2)/3
2234 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.88 e Å3
Crystal data top
C13H9Br2N3OV = 2540.5 (16) Å3
Mr = 383.05Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.181 (5) ŵ = 6.38 mm1
b = 8.494 (3) ÅT = 293 K
c = 22.692 (8) Å0.31 × 0.28 × 0.24 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2234 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
1706 reflections with I > 2σ(I)
Tmin = 0.243, Tmax = 0.310Rint = 0.041
11656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.08Δρmax = 0.63 e Å3
2234 reflectionsΔρmin = 0.88 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.27968 (6)1.22305 (9)0.48970 (3)0.0618 (3)
Br20.51701 (6)1.19032 (9)0.54180 (3)0.0669 (3)
O10.0310 (3)0.7707 (6)0.73898 (19)0.0541 (12)
H10.06140.81110.71130.081*
N10.3413 (3)0.8522 (5)0.7102 (2)0.0380 (10)
H1A0.40110.82150.73060.046*
N20.1806 (3)0.8887 (5)0.68102 (19)0.0365 (10)
N30.4280 (4)1.0090 (7)0.6313 (2)0.0615 (15)
C10.3468 (4)0.9445 (6)0.6601 (2)0.0348 (12)
C20.2452 (4)0.9659 (6)0.6416 (2)0.0350 (12)
C30.2226 (4)1.0517 (7)0.5909 (2)0.0432 (13)
C40.3060 (4)1.1146 (7)0.5612 (2)0.0414 (13)
C50.4049 (4)1.0950 (6)0.5811 (2)0.0400 (13)
C60.1127 (5)1.0806 (9)0.5643 (3)0.0680 (19)
H6A0.09231.18730.57170.102*
H6B0.06531.00980.58250.102*
H6C0.11401.06210.52260.102*
C70.2410 (4)0.8221 (6)0.7213 (2)0.0357 (12)
C80.2041 (4)0.7275 (6)0.7696 (2)0.0354 (12)
C90.0988 (5)0.7064 (7)0.7768 (3)0.0431 (13)
C100.0636 (5)0.6169 (8)0.8237 (3)0.0578 (17)
H100.00570.60220.82880.069*
C110.1315 (5)0.5488 (8)0.8632 (3)0.0604 (18)
H110.10740.48950.89470.072*
C120.2329 (5)0.5690 (8)0.8558 (3)0.0536 (16)
H120.27790.52260.88210.064*
C130.2693 (4)0.6560 (7)0.8104 (3)0.0453 (14)
H130.33900.66860.80630.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0851 (6)0.0621 (5)0.0383 (4)0.0019 (4)0.0058 (3)0.0082 (3)
Br20.0640 (5)0.0757 (5)0.0609 (5)0.0265 (4)0.0124 (3)0.0054 (4)
O10.029 (2)0.079 (3)0.054 (3)0.0054 (19)0.0065 (19)0.007 (2)
N10.027 (2)0.048 (3)0.039 (3)0.0008 (19)0.0055 (19)0.001 (2)
N20.028 (2)0.045 (3)0.037 (3)0.0009 (18)0.0012 (19)0.002 (2)
N30.056 (3)0.068 (4)0.060 (4)0.006 (3)0.003 (3)0.005 (3)
C10.029 (3)0.043 (3)0.033 (3)0.004 (2)0.000 (2)0.003 (2)
C20.033 (3)0.040 (3)0.032 (3)0.001 (2)0.000 (2)0.004 (2)
C30.048 (3)0.046 (3)0.036 (3)0.007 (3)0.002 (3)0.005 (3)
C40.050 (3)0.041 (3)0.034 (3)0.002 (3)0.000 (3)0.003 (2)
C50.045 (3)0.040 (3)0.036 (3)0.007 (2)0.006 (3)0.000 (2)
C60.071 (5)0.076 (5)0.057 (4)0.012 (4)0.011 (4)0.010 (4)
C70.031 (3)0.040 (3)0.036 (3)0.001 (2)0.004 (2)0.007 (2)
C80.038 (3)0.034 (3)0.034 (3)0.002 (2)0.004 (2)0.004 (2)
C90.044 (3)0.044 (3)0.041 (3)0.001 (3)0.009 (3)0.006 (3)
C100.054 (4)0.061 (4)0.059 (4)0.008 (3)0.023 (3)0.001 (3)
C110.082 (5)0.051 (4)0.048 (4)0.004 (3)0.018 (3)0.006 (3)
C120.066 (4)0.052 (4)0.043 (4)0.001 (3)0.004 (3)0.008 (3)
C130.042 (3)0.047 (3)0.047 (4)0.001 (3)0.006 (3)0.003 (3)
Geometric parameters (Å, º) top
Br1—C41.897 (6)C4—C51.389 (8)
Br2—C51.907 (5)C6—H6A0.9600
O1—C91.354 (7)C6—H6B0.9600
O1—H10.8200C6—H6C0.9600
N1—C71.369 (7)C7—C81.442 (8)
N1—C11.382 (7)C8—C131.402 (8)
N1—H1A0.9504C8—C91.408 (8)
N2—C71.338 (7)C9—C101.388 (8)
N2—C21.398 (7)C10—C111.392 (9)
N3—C11.370 (7)C10—H100.9300
N3—C51.387 (8)C11—C121.358 (9)
C1—C21.415 (7)C11—H110.9300
C2—C31.394 (8)C12—C131.355 (8)
C3—C41.396 (8)C12—H120.9300
C3—C61.589 (9)C13—H130.9300
Cg1···Cg2i3.760 (3)Cg1···Cg3ii3.723 (3)
C9—O1—H1109.5C3—C6—H6C109.5
C7—N1—C1107.9 (4)H6A—C6—H6C109.5
C7—N1—H1A131.3H6B—C6—H6C109.5
C1—N1—H1A120.8N2—C7—N1111.7 (5)
C7—N2—C2105.9 (4)N2—C7—C8123.6 (5)
C1—N3—C5115.6 (5)N1—C7—C8124.7 (5)
N3—C1—N1131.4 (5)C13—C8—C9118.1 (5)
N3—C1—C2123.1 (5)C13—C8—C7122.4 (5)
N1—C1—C2105.6 (4)C9—C8—C7119.5 (5)
C3—C2—N2130.1 (5)O1—C9—C10119.1 (6)
C3—C2—C1121.0 (5)O1—C9—C8121.6 (5)
N2—C2—C1109.0 (5)C10—C9—C8119.3 (6)
C2—C3—C4115.5 (5)C9—C10—C11120.4 (6)
C2—C3—C6126.1 (5)C9—C10—H10119.8
C4—C3—C6118.4 (5)C11—C10—H10119.8
C5—C4—C3122.4 (5)C12—C11—C10120.0 (6)
C5—C4—Br1120.5 (4)C12—C11—H11120.0
C3—C4—Br1117.1 (4)C10—C11—H11120.0
N3—C5—C4122.5 (5)C13—C12—C11120.8 (6)
N3—C5—Br2115.9 (4)C13—C12—H12119.6
C4—C5—Br2121.6 (4)C11—C12—H12119.6
C3—C6—H6A109.5C12—C13—C8121.5 (5)
C3—C6—H6B109.5C12—C13—H13119.3
H6A—C6—H6B109.5C8—C13—H13119.3
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1iii0.951.902.839 (6)171
O1—H1···N20.821.842.573 (6)149
Symmetry code: (iii) x+1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC13H9Br2N3O
Mr383.05
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)13.181 (5), 8.494 (3), 22.692 (8)
V3)2540.5 (16)
Z8
Radiation typeMo Kα
µ (mm1)6.38
Crystal size (mm)0.31 × 0.28 × 0.24
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.243, 0.310
No. of measured, independent and
observed [I > 2σ(I)] reflections
11656, 2234, 1706
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.138, 1.08
No. of reflections2234
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.88

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.951.902.839 (6)171.4
O1—H1···N20.821.842.573 (6)148.5
Symmetry code: (i) x+1/2, y, z+3/2.
 

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElerman, Y. & Kabak, M. (1997). Acta Cryst. C53, 372–374.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Quah, C. K., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o1613–o1614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, X.-C., Zhang, J.-P. & Chen, X.-M. (2004). J. Am. Chem. Soc. 126, 13218–13219.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, H.-Q., Zhang, M.-Z. & Wang, W. (2009). Acta Cryst. E65, o1256.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds