metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(μ-Butane-1,2,3,4-tetra­carboxyl­ato)bis­­[tri­aqua­(1,10-phenanthroline)nickel(II)] hexa­hydrate

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: Zhuhonglin1@nbu.edu.cn

(Received 31 October 2010; accepted 4 November 2010; online 10 November 2010)

The asymmetric unit of the title compound, [Ni2(C8H6O8)(C12H8N2)2(H2O)6]·6H2O, contains a half of the centrosymmetric dinuclear complex mol­ecule and three uncoordinated water mol­ecules. In the dinuclear mol­ecule, two NiII cations are bridged by the butane-1,2,3,4-tetra­carboxyl­ate (BTC4−) anion. Each NiII atom is coordinated by two N atoms from the 1,10-phenanthroline ligand, one O atom from the BTC4− anion and three aqua ligands in a distorted octa­hedral geometry. Inter­molecuar O—H⋯O hydrogen bonds and ππ stacking inter­ations [centroid–centroid distances = 3.646 (2), 3.781 (2) and 3.642 (2) Å] consolidate the crystal packing.

Related literature

For related structures, see: Chen et al. (2008[Chen, B. L., Wang, L. B., Zapata, F., Qian, G. D. & Lobkovsky, E. B. (2008). J. Am. Chem. Soc. 130, 6718-6719.]); Ghosh et al. (2004[Ghosh, S. K., Savitha, G. & Bharadwaj, P. K. (2004). Inorg. Chem. 43, 5495-5497.]); Fabelo et al. (2008[Fabelo, O., Pasán, J., Lioret, F., Julve, M. & Ruiz-Pérez, C. (2008). Inorg. Chem. 47, 3568-3576.]); Zhu & Zheng (2010[Zhu, H. L. & Zheng, Y. Q. (2010). J. Mol. Struct. 970, 27-35.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C8H6O8)(C12H8N2)2(H2O)6]·6H2O

  • Mr = 924.15

  • Triclinic, [P \overline 1]

  • a = 9.0382 (18) Å

  • b = 9.5342 (19) Å

  • c = 12.253 (3) Å

  • α = 91.90 (3)°

  • β = 97.14 (3)°

  • γ = 111.54 (3)°

  • V = 971.0 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 293 K

  • 0.43 × 0.39 × 0.32 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.641, Tmax = 0.713

  • 7940 measured reflections

  • 4195 independent reflections

  • 3499 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.108

  • S = 1.17

  • 4195 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯O10i 0.87 1.95 2.826 (4) 175
O5—H5C⋯O9ii 0.84 1.95 2.745 (3) 157
O6—H6B⋯O2 0.80 1.91 2.698 (3) 165
O6—H6C⋯O8 0.82 1.92 2.741 (4) 175
O7—H7B⋯O4 0.84 2.21 3.033 (3) 168
O7—H7C⋯O4iii 0.85 1.87 2.700 (3) 163
O8—H8A⋯O3iv 0.83 1.97 2.798 (3) 179
O8—H8B⋯O10i 0.86 2.03 2.891 (4) 179
O9—H9B⋯O2i 0.79 1.93 2.721 (3) 177
O9—H9C⋯O3v 0.84 2.11 2.867 (4) 149
O10—H10B⋯O4vi 0.82 1.93 2.743 (3) 166
O10—H10C⋯O9vii 0.87 2.06 2.886 (3) 159
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y, z+1; (iii) -x+2, -y+2, -z+2; (iv) -x+1, -y+1, -z+2; (v) x, y, z-1; (vi) -x+2, -y+1, -z+1; (vii) x, y-1, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

So far, the multi-carboxylate ligands such as benzene-, pyridine- and aliphatic carboxylic acid are widely used to construct the coordination polymers with interesting structures (Chen et al., 2008; Ghosh et al., 2004; Fabelo et al., 2008; Zhu et al., 2010). Among the various polycarboxylate ligands, butane-1,2,3,4-tetracarboxylic acid has been to be a good candidate due to it has four COOH groups which can be fully or patially deprotonated and its various bridging abilities and strong coordination tendency with transition metals to form versatile coordination polymers or supramolecular architecture. In this paper, we report the synthesis and crystal structure of the title compound (Fig. 1).

Within the asymmetric unit of the title compound exists one NiII cation, one 1,10-phenanthroline (phen) ligand, half a butane-1,2,3,4-tetracarboxylate anion (BTC4-), three aqua ligands and three lattice water. The Ni atoms are each coordinated by two N atoms from one phen ligand, one oxygen atoms from one BTC4- anion and three aqua ligands to complete an octahedral NiN2O4 chromophore. The Ni–N/O distances lie in the range 2.017 (2)–2.091 (2) Å, and the trans- and cis bond angles fall in the ranges 80.2 (1)–97.7 (1)° and 168.9 (1)- 172.6 (1)°, respectively. The [Ni(H2O)3(phen)] moieties are pairwise bridged by the bis-monodentate BTC ligand to generate centrosymmetric dinuclear complex molecules [Ni2(H2O)6(phen)2(BTC)], which are arranged in pairs and the interdigitatal distance for phen ligands of the adjacent dinuclear molecules fall in the regions 3.642 (2) Å—3.781 (2) Å, which indicates that the complex molecules are assembled into two-dimensional supramolecular layers parallel to (011) by ππ stacking interactions (Figure 2). Due to the aqua ligands donate hydrogen atoms to the carboxylate oxygen atoms to form interlayers hydrogen bonds, the two-dimensional layers are assembled into a three-dimensional supramolecular architecture.

Related literature top

For related structures, see: Chen et al. (2008); Ghosh et al. (2004); Fabelo et al. (2008); Zhu et al. (2010).

Experimental top

All chemicals were obtained from commerical sources and were used as obtained. 1.0 ml (1.0 M) Na2CO3 was added to an aqueous solution of 0.2351 g (1.0 mmol) NiCl2.6H2O in 8 ml H2O to yield green precipitate, which was separated by centrifugation and washed with distilled water for 5 times. The gathered precipitate was then transferred into a mixture solutions of methanol and water (1:1 V/V, 20 ml). Then 0.1163 g (0.5 mmol) 1,2,3,4-butanetetracarboxylic acid and 0.1015 g (0.5 mmol) 1,10-phenanthroline monohydrate were added successively to the mixture solutions, which quickly produced green suspension. The resulting mixture was continued to stir for ca 30 min and then filtered green precipitate. The filtrate was allowed to stand at room temperature and slow evaporation for one month afforded green block-like crystals.

Refinement top

H atoms bonded to C atoms were palced in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O—H distances fixed as initially found and with Uiso(H) values set at 1.2 Ueq(O).

Structure description top

So far, the multi-carboxylate ligands such as benzene-, pyridine- and aliphatic carboxylic acid are widely used to construct the coordination polymers with interesting structures (Chen et al., 2008; Ghosh et al., 2004; Fabelo et al., 2008; Zhu et al., 2010). Among the various polycarboxylate ligands, butane-1,2,3,4-tetracarboxylic acid has been to be a good candidate due to it has four COOH groups which can be fully or patially deprotonated and its various bridging abilities and strong coordination tendency with transition metals to form versatile coordination polymers or supramolecular architecture. In this paper, we report the synthesis and crystal structure of the title compound (Fig. 1).

Within the asymmetric unit of the title compound exists one NiII cation, one 1,10-phenanthroline (phen) ligand, half a butane-1,2,3,4-tetracarboxylate anion (BTC4-), three aqua ligands and three lattice water. The Ni atoms are each coordinated by two N atoms from one phen ligand, one oxygen atoms from one BTC4- anion and three aqua ligands to complete an octahedral NiN2O4 chromophore. The Ni–N/O distances lie in the range 2.017 (2)–2.091 (2) Å, and the trans- and cis bond angles fall in the ranges 80.2 (1)–97.7 (1)° and 168.9 (1)- 172.6 (1)°, respectively. The [Ni(H2O)3(phen)] moieties are pairwise bridged by the bis-monodentate BTC ligand to generate centrosymmetric dinuclear complex molecules [Ni2(H2O)6(phen)2(BTC)], which are arranged in pairs and the interdigitatal distance for phen ligands of the adjacent dinuclear molecules fall in the regions 3.642 (2) Å—3.781 (2) Å, which indicates that the complex molecules are assembled into two-dimensional supramolecular layers parallel to (011) by ππ stacking interactions (Figure 2). Due to the aqua ligands donate hydrogen atoms to the carboxylate oxygen atoms to form interlayers hydrogen bonds, the two-dimensional layers are assembled into a three-dimensional supramolecular architecture.

For related structures, see: Chen et al. (2008); Ghosh et al. (2004); Fabelo et al. (2008); Zhu et al. (2010).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atomic numbering and 45% probability dispalcement ellipsoids [symmetry code: (#1) -x + 2, -y + 1, -z + 2]. The lattice water molecules and H-atoms omitted for clarity
[Figure 2] Fig. 2. Supramolecular assembly of two-dimensional layer through ππ stacking interactions between the phen ligands.
(µ-Butane-1,2,3,4-tetracarboxylato)bis[triaqua(1,10-phenanthroline)nickel(II)] hexahydrate top
Crystal data top
[Ni2(C8H6O8)(C12H8N2)2(H2O)6]·6H2OZ = 1
Mr = 924.15F(000) = 482
Triclinic, P1Dx = 1.580 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0382 (18) ÅCell parameters from 6619 reflections
b = 9.5342 (19) Åθ = 3.1–27.4°
c = 12.253 (3) ŵ = 1.06 mm1
α = 91.90 (3)°T = 293 K
β = 97.14 (3)°Block, green
γ = 111.54 (3)°0.43 × 0.39 × 0.32 mm
V = 971.0 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4195 independent reflections
Radiation source: fine-focus sealed tube3499 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 0 pixels mm-1θmax = 27.4°, θmin = 3.1°
ω scansh = 1111
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1210
Tmin = 0.641, Tmax = 0.713l = 1515
7940 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0364P)2 + 1.1101P]
where P = (Fo2 + 2Fc2)/3
4195 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Ni2(C8H6O8)(C12H8N2)2(H2O)6]·6H2Oγ = 111.54 (3)°
Mr = 924.15V = 971.0 (3) Å3
Triclinic, P1Z = 1
a = 9.0382 (18) ÅMo Kα radiation
b = 9.5342 (19) ŵ = 1.06 mm1
c = 12.253 (3) ÅT = 293 K
α = 91.90 (3)°0.43 × 0.39 × 0.32 mm
β = 97.14 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4195 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3499 reflections with I > 2σ(I)
Tmin = 0.641, Tmax = 0.713Rint = 0.022
7940 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.17Δρmax = 0.74 e Å3
4195 reflectionsΔρmin = 0.48 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.68724 (4)0.80076 (4)0.76505 (3)0.02477 (12)
N10.6678 (3)0.9786 (3)0.67867 (18)0.0276 (5)
N20.7744 (3)0.7621 (3)0.62136 (19)0.0277 (5)
O50.5825 (3)0.8507 (3)0.89489 (17)0.0423 (5)
H5B0.48690.85520.88720.051*
H5C0.63780.85390.95610.051*
O60.4684 (2)0.6335 (2)0.69310 (17)0.0341 (5)
H6B0.48330.56300.71950.041*
H6C0.37830.61650.70920.041*
O70.9146 (2)0.9445 (2)0.84282 (16)0.0293 (4)
H7B0.95880.90080.88650.035*
H7C0.92551.03100.87180.035*
O10.7521 (2)0.6486 (2)0.84846 (17)0.0362 (5)
O20.5423 (2)0.4320 (2)0.8157 (2)0.0425 (5)
C10.6809 (3)0.5127 (3)0.8629 (2)0.0271 (6)
C20.7714 (3)0.4396 (3)0.9396 (2)0.0290 (6)
H2A0.76380.34460.90350.035*
H2B0.72150.41761.00590.035*
C30.9509 (3)0.5431 (3)0.9717 (2)0.0295 (6)
H3A0.99480.58020.90440.035*
C40.9715 (3)0.6820 (3)1.0517 (2)0.0309 (6)
O30.9006 (3)0.6585 (2)1.13534 (18)0.0407 (5)
O41.0589 (3)0.8098 (2)1.02824 (17)0.0347 (5)
C50.6195 (4)1.0876 (4)0.7097 (3)0.0359 (7)
H5A0.58621.08700.77860.043*
C60.6166 (4)1.2032 (4)0.6433 (3)0.0434 (8)
H6A0.58151.27730.66780.052*
C70.6657 (4)1.2063 (4)0.5420 (3)0.0415 (8)
H7A0.66351.28210.49670.050*
C80.7197 (4)1.0935 (4)0.5066 (2)0.0347 (6)
C90.7752 (4)1.0884 (4)0.4024 (3)0.0431 (8)
H9A0.77871.16380.35540.052*
C100.8223 (4)0.9765 (4)0.3714 (2)0.0427 (8)
H10A0.85700.97550.30320.051*
C110.8201 (4)0.8591 (4)0.4419 (2)0.0346 (7)
C120.8641 (4)0.7363 (4)0.4137 (3)0.0432 (8)
H12A0.89310.72580.34460.052*
C130.8637 (4)0.6342 (4)0.4880 (3)0.0460 (8)
H13A0.89190.55280.46980.055*
C140.8207 (4)0.6510 (3)0.5925 (3)0.0361 (7)
H14A0.82480.58170.64330.043*
C150.7721 (3)0.8636 (3)0.5468 (2)0.0278 (6)
C160.7193 (3)0.9821 (3)0.5787 (2)0.0265 (6)
O80.1691 (3)0.5950 (3)0.74263 (19)0.0460 (6)
H8A0.14880.52070.77910.055*
H8B0.20140.67720.78470.055*
O90.6790 (3)0.8105 (2)0.10898 (17)0.0368 (5)
H9B0.61280.74210.13140.044*
H9C0.76760.79920.11110.044*
O100.7218 (3)0.1261 (3)0.11685 (18)0.0414 (5)
H10B0.77960.15430.06850.050*
H10C0.69300.03080.12700.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.02751 (19)0.0260 (2)0.02009 (18)0.00896 (15)0.00360 (12)0.00473 (13)
N10.0332 (12)0.0274 (12)0.0232 (11)0.0130 (10)0.0028 (9)0.0010 (9)
N20.0303 (12)0.0245 (12)0.0271 (11)0.0088 (10)0.0050 (9)0.0010 (9)
O50.0404 (12)0.0683 (16)0.0246 (10)0.0258 (12)0.0092 (9)0.0079 (10)
O60.0273 (10)0.0366 (12)0.0340 (11)0.0079 (9)0.0003 (8)0.0058 (9)
O70.0298 (10)0.0219 (9)0.0316 (10)0.0056 (8)0.0010 (8)0.0010 (8)
O10.0333 (11)0.0268 (11)0.0411 (12)0.0053 (9)0.0048 (9)0.0126 (9)
O20.0284 (11)0.0325 (12)0.0570 (14)0.0039 (10)0.0069 (10)0.0115 (10)
C10.0299 (14)0.0277 (14)0.0254 (13)0.0121 (12)0.0061 (10)0.0038 (11)
C20.0279 (14)0.0259 (14)0.0317 (14)0.0088 (12)0.0014 (11)0.0065 (11)
C30.0286 (14)0.0297 (15)0.0299 (14)0.0101 (12)0.0051 (11)0.0063 (11)
C40.0323 (14)0.0278 (15)0.0372 (15)0.0141 (13)0.0122 (12)0.0042 (12)
O30.0549 (14)0.0318 (11)0.0429 (12)0.0187 (11)0.0256 (10)0.0068 (9)
O40.0410 (12)0.0183 (10)0.0408 (12)0.0043 (9)0.0133 (9)0.0007 (8)
C50.0408 (17)0.0344 (16)0.0326 (15)0.0155 (14)0.0025 (12)0.0020 (12)
C60.052 (2)0.0318 (17)0.0468 (19)0.0198 (16)0.0031 (15)0.0022 (14)
C70.0484 (19)0.0286 (16)0.0433 (18)0.0126 (15)0.0047 (14)0.0088 (13)
C80.0374 (16)0.0332 (16)0.0275 (14)0.0081 (13)0.0024 (12)0.0074 (12)
C90.0454 (18)0.048 (2)0.0273 (15)0.0073 (16)0.0024 (13)0.0158 (14)
C100.0431 (18)0.056 (2)0.0204 (14)0.0082 (16)0.0061 (12)0.0070 (13)
C110.0298 (14)0.0429 (17)0.0242 (14)0.0065 (13)0.0027 (11)0.0031 (12)
C120.0417 (17)0.052 (2)0.0313 (16)0.0119 (16)0.0088 (13)0.0114 (15)
C130.0459 (19)0.047 (2)0.048 (2)0.0214 (17)0.0077 (15)0.0147 (16)
C140.0389 (16)0.0293 (15)0.0414 (17)0.0140 (13)0.0071 (13)0.0003 (13)
C150.0273 (13)0.0307 (15)0.0211 (12)0.0067 (12)0.0023 (10)0.0006 (10)
C160.0271 (13)0.0255 (14)0.0222 (13)0.0051 (11)0.0008 (10)0.0021 (10)
O80.0597 (15)0.0415 (13)0.0427 (13)0.0203 (12)0.0224 (11)0.0110 (10)
O90.0392 (12)0.0368 (12)0.0362 (11)0.0151 (10)0.0084 (9)0.0080 (9)
O100.0485 (13)0.0418 (13)0.0422 (12)0.0214 (11)0.0208 (10)0.0104 (10)
Geometric parameters (Å, º) top
Ni—O12.017 (2)C5—C61.397 (5)
Ni—O52.076 (2)C5—H5A0.9300
Ni—N12.078 (2)C6—C71.367 (5)
Ni—O72.090 (2)C6—H6A0.9300
Ni—N22.091 (2)C7—C81.410 (5)
Ni—O62.095 (2)C7—H7A0.9300
N1—C51.328 (4)C8—C161.403 (4)
N1—C161.361 (3)C8—C91.435 (4)
N2—C141.326 (4)C9—C101.346 (5)
N2—C151.356 (4)C9—H9A0.9300
O5—H5B0.8747C10—C111.433 (5)
O5—H5C0.8409C10—H10A0.9300
O6—H6B0.8032C11—C151.411 (4)
O6—H6C0.8211C11—C121.413 (5)
O7—H7B0.8391C12—C131.354 (5)
O7—H7C0.8530C12—H12A0.9300
O1—C11.247 (3)C13—C141.405 (5)
O2—C11.256 (3)C13—H13A0.9300
C1—C21.519 (4)C14—H14A0.9300
C2—C31.549 (4)C15—C161.439 (4)
C2—H2A0.9700O8—H8A0.8255
C2—H2B0.9700O8—H8B0.8567
C3—C3i1.537 (5)O9—H9B0.7902
C3—C41.561 (4)O9—H9C0.8441
C3—H3A0.9800O10—H10B0.8251
C4—O41.251 (4)O10—H10C0.8664
C4—O31.259 (4)
Cg1···Cg1ii3.646 (2)Cg2···Cg3iii3.642 (2)
Cg1···Cg3ii3.781 (2)
O1—Ni—O592.22 (10)C2—C3—H3A108.5
O1—Ni—N1168.90 (9)C4—C3—H3A108.5
O5—Ni—N193.36 (9)O4—C4—O3124.4 (3)
O1—Ni—O781.02 (8)O4—C4—C3117.3 (2)
O5—Ni—O790.53 (9)O3—C4—C3118.3 (3)
N1—Ni—O789.35 (9)N1—C5—C6122.8 (3)
O1—Ni—N294.72 (10)N1—C5—H5A118.6
O5—Ni—N2172.60 (9)C6—C5—H5A118.6
N1—Ni—N280.24 (9)C7—C6—C5119.4 (3)
O7—Ni—N293.08 (9)C7—C6—H6A120.3
O1—Ni—O691.78 (9)C5—C6—H6A120.3
O5—Ni—O691.48 (9)C6—C7—C8119.4 (3)
N1—Ni—O697.65 (9)C6—C7—H7A120.3
O7—Ni—O6172.59 (8)C8—C7—H7A120.3
N2—Ni—O685.75 (9)C16—C8—C7117.4 (3)
C5—N1—C16118.2 (3)C16—C8—C9119.2 (3)
C5—N1—Ni129.1 (2)C7—C8—C9123.4 (3)
C16—N1—Ni112.61 (18)C10—C9—C8121.2 (3)
C14—N2—C15117.9 (3)C10—C9—H9A119.4
C14—N2—Ni129.5 (2)C8—C9—H9A119.4
C15—N2—Ni112.43 (18)C9—C10—C11121.1 (3)
Ni—O5—H5B123.9C9—C10—H10A119.4
Ni—O5—H5C111.3C11—C10—H10A119.4
H5B—O5—H5C124.2C15—C11—C12116.6 (3)
Ni—O6—H6B96.9C15—C11—C10119.3 (3)
Ni—O6—H6C128.3C12—C11—C10124.2 (3)
H6B—O6—H6C98.2C13—C12—C11119.6 (3)
Ni—O7—H7B112.7C13—C12—H12A120.2
Ni—O7—H7C118.6C11—C12—H12A120.2
H7B—O7—H7C110.8C12—C13—C14120.0 (3)
C1—O1—Ni133.77 (19)C12—C13—H13A120.0
O1—C1—O2124.4 (3)C14—C13—H13A120.0
O1—C1—C2117.3 (2)N2—C14—C13122.4 (3)
O2—C1—C2118.3 (3)N2—C14—H14A118.8
C1—C2—C3111.9 (2)C13—C14—H14A118.8
C1—C2—H2A109.2N2—C15—C11123.4 (3)
C3—C2—H2A109.2N2—C15—C16117.2 (2)
C1—C2—H2B109.2C11—C15—C16119.3 (3)
C3—C2—H2B109.2N1—C16—C8122.7 (3)
H2A—C2—H2B107.9N1—C16—C15117.4 (2)
C3i—C3—C2111.6 (3)C8—C16—C15119.9 (3)
C3i—C3—C4108.1 (3)H8A—O8—H8B111.0
C2—C3—C4111.4 (2)H9B—O9—H9C112.7
C3i—C3—H3A108.5H10B—O10—H10C114.8
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+2, z+1; (iii) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O10iv0.871.952.826 (4)175
O5—H5C···O9v0.841.952.745 (3)157
O6—H6B···O20.801.912.698 (3)165
O6—H6C···O80.821.922.741 (4)175
O7—H7B···O40.842.213.033 (3)168
O7—H7C···O4vi0.851.872.700 (3)163
O8—H8A···O3vii0.831.972.798 (3)179
O8—H8B···O10iv0.862.032.891 (4)179
O9—H9B···O2iv0.791.932.721 (3)177
O9—H9C···O3viii0.842.112.867 (4)149
O10—H10B···O4ix0.821.932.743 (3)166
O10—H10C···O9x0.872.062.886 (3)159
Symmetry codes: (iv) x+1, y+1, z+1; (v) x, y, z+1; (vi) x+2, y+2, z+2; (vii) x+1, y+1, z+2; (viii) x, y, z1; (ix) x+2, y+1, z+1; (x) x, y1, z.

Experimental details

Crystal data
Chemical formula[Ni2(C8H6O8)(C12H8N2)2(H2O)6]·6H2O
Mr924.15
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.0382 (18), 9.5342 (19), 12.253 (3)
α, β, γ (°)91.90 (3), 97.14 (3), 111.54 (3)
V3)971.0 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.43 × 0.39 × 0.32
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.641, 0.713
No. of measured, independent and
observed [I > 2σ(I)] reflections
7940, 4195, 3499
Rint0.022
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.108, 1.17
No. of reflections4195
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.48

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O10i0.871.952.826 (4)175
O5—H5C···O9ii0.841.952.745 (3)157
O6—H6B···O20.801.912.698 (3)165
O6—H6C···O80.821.922.741 (4)175
O7—H7B···O40.842.213.033 (3)168
O7—H7C···O4iii0.851.872.700 (3)163
O8—H8A···O3iv0.831.972.798 (3)179
O8—H8B···O10i0.862.032.891 (4)179
O9—H9B···O2i0.791.932.721 (3)177
O9—H9C···O3v0.842.112.867 (4)149
O10—H10B···O4vi0.821.932.743 (3)166
O10—H10C···O9vii0.872.062.886 (3)159
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x+2, y+2, z+2; (iv) x+1, y+1, z+2; (v) x, y, z1; (vi) x+2, y+1, z+1; (vii) x, y1, z.
 

Acknowledgements

This project was supported by the National Natural Science Foundation of China (grant No. 20072022), the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Science and Technology Department of Zhejiang Province (grant No. 2006 C21105) and the Education Department of Zhejiang Province. Grateful thanks are also expressed to the K. C. Wong Magna Fund of Ningbo University.

References

First citationChen, B. L., Wang, L. B., Zapata, F., Qian, G. D. & Lobkovsky, E. B. (2008). J. Am. Chem. Soc. 130, 6718–6719.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFabelo, O., Pasán, J., Lioret, F., Julve, M. & Ruiz-Pérez, C. (2008). Inorg. Chem. 47, 3568–3576.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGhosh, S. K., Savitha, G. & Bharadwaj, P. K. (2004). Inorg. Chem. 43, 5495–5497.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H. L. & Zheng, Y. Q. (2010). J. Mol. Struct. 970, 27–35.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds