organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl [4-(1,3-benzo­thia­zol-2-yl)benz­yl]phospho­nate

aDepartment of Chemistry and Biology, Xiangfan University, Xiangfan 441053, People's Republic of China
*Correspondence e-mail: cch510@126.com

(Received 5 November 2010; accepted 13 November 2010; online 20 November 2010)

In the title mol­ecule, C18H20NO3PS, the benzene ring and the benzothia­zole mean plane are almost coplanar, forming a dihedral angle of 2.29 (2)°. The two ethyl groups are each disordered over two conformations in ratios that refined to 0.59 (1):0.41 (1) and 0.56 (1):0.44 (1). In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the bc plane.

Related literature

For the cardiovascular activity of benzothia­zole-substituted benzyl­phospho­nate derivatives, see: Yoshino et al. (1986[Yoshino, K., Kohno, T., Uno, T., Morita, T. & Tsukamoto, G. (1986). J. Med. Chem. 29, 820-825.]). For the crystal structure of a related benzothia­zole-substituted derivative, see: Bhatia et al. (1991[Bhatia, S. C., Kumar, A., Gautam, P. & Jain, P. C. (1991). Acta Cryst. C47, 1908-1911.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20NO3PS

  • Mr = 361.38

  • Monoclinic, P 21 /c

  • a = 11.0441 (19) Å

  • b = 8.0927 (14) Å

  • c = 20.933 (4) Å

  • β = 94.943 (3)°

  • V = 1863.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.986

  • 11571 measured reflections

  • 3641 independent reflections

  • 2005 reflections with I > 2σ(I)

  • Rint = 0.104

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.150

  • S = 0.96

  • 3641 reflections

  • 259 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.45 3.261 (5) 146
C13—H13⋯O1ii 0.93 2.53 3.310 (4) 141
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+2, -y+1, -z+2.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It was found that benzothiazole-substituted benzylphosphonates derivatives could exhibit excellent cardiovascular activities (Yoshino et al., 1986). We herein report the structure of the diethyl 4-(benzo[d]thiazol-2-yl)benzylphosphonate (I) (Fig. 1).

In (I), the bond lengths and angles are normal and comparable with those observed in the related compound (Bhatia et al., 1991). The benzene ring and the benzothiazole mean plane are almost coplanar forming a dihedral angle of 2.29 (2)°. Weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into layers parallel to bc plane.

Related literature top

For the cardiovascular activity of benzothiazole-substituted benzylphosphonate derivatives, see: Yoshino et al. (1986). For the crystal structure of a related benzothiazole-substituted derivative, see: Bhatia et al. (1991).

Experimental top

The title compound was synthesized according to the method of Yoshino et al. (1986). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of the solution in hexane-MeOH (3:1).

Refinement top

All H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding, allowing for free rotation of the methyl groups. The constraint Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) (methyl C) was applied. Two ethyl groups (C15/C16 and C17/C18) were found to be disordered over two orientations. The occupancies of the disordered positions C15/C15', C17/C17' refined to 0.59 (1):0.41 (1) and 0.56 (1):0.44 (1), respectively.

Structure description top

It was found that benzothiazole-substituted benzylphosphonates derivatives could exhibit excellent cardiovascular activities (Yoshino et al., 1986). We herein report the structure of the diethyl 4-(benzo[d]thiazol-2-yl)benzylphosphonate (I) (Fig. 1).

In (I), the bond lengths and angles are normal and comparable with those observed in the related compound (Bhatia et al., 1991). The benzene ring and the benzothiazole mean plane are almost coplanar forming a dihedral angle of 2.29 (2)°. Weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into layers parallel to bc plane.

For the cardiovascular activity of benzothiazole-substituted benzylphosphonate derivatives, see: Yoshino et al. (1986). For the crystal structure of a related benzothiazole-substituted derivative, see: Bhatia et al. (1991).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
Diethyl [4-(1,3-benzothiazol-2-yl)benzyl]phosphonate top
Crystal data top
C18H20NO3PSF(000) = 760
Mr = 361.38Dx = 1.288 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1606 reflections
a = 11.0441 (19) Åθ = 2.6–19.8°
b = 8.0927 (14) ŵ = 0.27 mm1
c = 20.933 (4) ÅT = 298 K
β = 94.943 (3)°Block, yellow
V = 1863.9 (6) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3641 independent reflections
Radiation source: fine-focus sealed tube2005 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.104
phi and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1213
Tmin = 0.980, Tmax = 0.986k = 99
11571 measured reflectionsl = 2523
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0548P)2]
where P = (Fo2 + 2Fc2)/3
3641 reflections(Δ/σ)max = 0.002
259 parametersΔρmax = 0.25 e Å3
8 restraintsΔρmin = 0.20 e Å3
Crystal data top
C18H20NO3PSV = 1863.9 (6) Å3
Mr = 361.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0441 (19) ŵ = 0.27 mm1
b = 8.0927 (14) ÅT = 298 K
c = 20.933 (4) Å0.20 × 0.20 × 0.20 mm
β = 94.943 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3641 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2005 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.986Rint = 0.104
11571 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0648 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 0.96Δρmax = 0.25 e Å3
3641 reflectionsΔρmin = 0.20 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.1588 (3)0.1221 (4)0.69500 (17)0.0623 (10)
C21.2308 (3)0.2279 (4)0.73429 (17)0.0595 (9)
C31.3327 (4)0.2969 (5)0.7108 (2)0.0774 (11)
H31.38220.36820.73630.093*
C41.3602 (4)0.2599 (5)0.6504 (2)0.0840 (12)
H41.42860.30740.63500.101*
C51.2893 (4)0.1538 (5)0.6113 (2)0.0865 (12)
H51.31030.13070.57020.104*
C61.1881 (4)0.0827 (5)0.63310 (19)0.0811 (12)
H61.14010.01010.60740.097*
C71.0931 (3)0.1737 (4)0.80139 (17)0.0566 (9)
C81.0286 (3)0.1760 (4)0.85962 (17)0.0550 (9)
C90.9251 (3)0.0812 (4)0.86477 (18)0.0681 (10)
H90.89410.01770.83010.082*
C100.8674 (3)0.0802 (4)0.9212 (2)0.0705 (10)
H100.79800.01620.92370.085*
C110.9113 (3)0.1726 (4)0.97371 (18)0.0609 (9)
C121.0131 (3)0.2685 (4)0.96797 (18)0.0639 (10)
H121.04320.33341.00240.077*
C131.0714 (3)0.2703 (4)0.91201 (18)0.0624 (9)
H131.14010.33560.90960.075*
C140.8502 (3)0.1645 (5)1.03566 (18)0.0743 (11)
H14A0.90760.20201.07030.089*
H14B0.83130.04991.04410.089*
C150.5008 (10)0.2379 (17)0.9677 (8)0.080 (4)0.59 (1)
H15A0.48580.34960.98190.096*0.59 (1)
H15B0.44210.16450.98480.096*0.59 (1)
C160.491 (2)0.229 (3)0.8963 (9)0.127 (7)0.59 (1)
H16A0.55360.29690.88030.191*0.59 (1)
H16B0.41300.26900.87950.191*0.59 (1)
H16C0.50150.11710.88300.191*0.59 (1)
C170.6829 (11)0.3458 (18)1.1595 (6)0.081 (4)0.56 (1)
H17A0.61310.41651.16370.098*0.56 (1)
H17B0.75500.41371.15820.098*0.56 (1)
C180.698 (2)0.221 (3)1.2130 (9)0.102 (7)0.56 (1)
H18A0.62020.17311.21930.152*0.56 (1)
H18B0.72920.27541.25180.152*0.56 (1)
H18C0.75300.13651.20220.152*0.56 (1)
C15'0.5313 (16)0.286 (3)0.9542 (13)0.095 (7)0.41 (1)
H15C0.56860.36790.92810.114*0.41 (1)
H15D0.48360.34390.98400.114*0.41 (1)
C16'0.453 (3)0.175 (4)0.9131 (15)0.114 (9)0.41 (1)
H16D0.48930.15470.87380.171*0.41 (1)
H16E0.37450.22480.90370.171*0.41 (1)
H16F0.44360.07180.93500.171*0.41 (1)
C17'0.7377 (13)0.300 (3)1.1609 (8)0.084 (5)0.44 (1)
H17C0.75140.41811.15650.101*0.44 (1)
H17D0.81620.24611.16380.101*0.44 (1)
C18'0.679 (3)0.271 (4)1.2219 (12)0.091 (8)0.44 (1)
H18D0.59410.29681.21550.137*0.44 (1)
H18E0.71690.33921.25530.137*0.44 (1)
H18F0.68860.15661.23400.137*0.44 (1)
N11.1913 (2)0.2556 (3)0.79452 (14)0.0638 (8)
O10.7282 (2)0.4580 (3)1.02534 (11)0.0758 (7)
O30.6649 (2)0.2406 (3)1.10323 (12)0.0780 (8)
O20.6244 (2)0.1867 (3)0.98898 (12)0.0767 (8)
P10.71450 (8)0.28288 (12)1.03709 (5)0.0610 (3)
S11.03702 (9)0.05586 (12)0.73533 (5)0.0754 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.057 (2)0.065 (2)0.062 (2)0.0036 (18)0.0136 (18)0.0071 (19)
C20.049 (2)0.072 (2)0.056 (2)0.0097 (18)0.0021 (18)0.0063 (19)
C30.061 (3)0.095 (3)0.075 (3)0.002 (2)0.000 (2)0.020 (2)
C40.066 (3)0.105 (3)0.082 (3)0.012 (2)0.009 (2)0.012 (3)
C50.097 (3)0.096 (3)0.066 (3)0.016 (3)0.005 (3)0.009 (2)
C60.096 (3)0.085 (3)0.058 (3)0.004 (2)0.012 (2)0.015 (2)
C70.047 (2)0.055 (2)0.066 (2)0.0101 (17)0.0098 (18)0.0057 (17)
C80.0395 (19)0.055 (2)0.068 (2)0.0065 (16)0.0079 (17)0.0057 (18)
C90.058 (2)0.074 (3)0.070 (3)0.0026 (19)0.008 (2)0.014 (2)
C100.045 (2)0.077 (3)0.087 (3)0.0060 (18)0.006 (2)0.000 (2)
C110.046 (2)0.067 (2)0.069 (3)0.0102 (18)0.0033 (19)0.006 (2)
C120.055 (2)0.069 (2)0.066 (2)0.0032 (19)0.0060 (19)0.0095 (19)
C130.048 (2)0.060 (2)0.078 (3)0.0030 (17)0.0071 (19)0.007 (2)
C140.060 (2)0.085 (3)0.076 (3)0.010 (2)0.005 (2)0.015 (2)
C150.038 (6)0.082 (7)0.119 (10)0.003 (5)0.000 (6)0.027 (7)
C160.136 (18)0.147 (19)0.090 (9)0.005 (9)0.043 (10)0.011 (9)
C170.089 (10)0.092 (8)0.065 (7)0.006 (7)0.014 (7)0.008 (5)
C180.111 (11)0.116 (14)0.072 (11)0.034 (8)0.022 (9)0.001 (9)
C15'0.047 (10)0.119 (16)0.117 (17)0.015 (8)0.010 (10)0.007 (10)
C16'0.081 (14)0.109 (16)0.14 (2)0.002 (10)0.043 (14)0.013 (14)
C17'0.067 (11)0.113 (14)0.074 (9)0.014 (9)0.016 (8)0.021 (9)
C18'0.088 (13)0.110 (18)0.075 (11)0.012 (13)0.005 (8)0.016 (10)
N10.0427 (18)0.077 (2)0.070 (2)0.0028 (15)0.0056 (15)0.0137 (16)
O10.0827 (18)0.0666 (16)0.0759 (17)0.0010 (13)0.0063 (14)0.0039 (13)
O30.0760 (18)0.0861 (18)0.0732 (17)0.0192 (13)0.0138 (14)0.0070 (15)
O20.0601 (16)0.0811 (17)0.0856 (18)0.0031 (13)0.0133 (14)0.0165 (14)
P10.0519 (6)0.0678 (7)0.0622 (6)0.0007 (5)0.0016 (5)0.0004 (5)
S10.0690 (7)0.0816 (7)0.0724 (7)0.0100 (5)0.0119 (5)0.0187 (5)
Geometric parameters (Å, º) top
C1—C21.389 (5)C15—C161.492 (15)
C1—C61.399 (5)C15—H15A0.9700
C1—S11.734 (4)C15—H15B0.9700
C2—C31.384 (5)C16—H16A0.9600
C2—N11.388 (4)C16—H16B0.9600
C3—C41.359 (5)C16—H16C0.9600
C3—H30.9300C17—O31.454 (11)
C4—C51.383 (5)C17—C181.504 (16)
C4—H40.9300C17—H17A0.9700
C5—C61.370 (5)C17—H17B0.9700
C5—H50.9300C18—H18A0.9600
C6—H60.9300C18—H18B0.9600
C7—N11.289 (4)C18—H18C0.9600
C7—C81.464 (5)C15'—O21.452 (16)
C7—S11.749 (3)C15'—C16'1.477 (18)
C8—C131.385 (4)C15'—H15C0.9700
C8—C91.389 (5)C15'—H15D0.9700
C9—C101.390 (5)C16'—H16D0.9600
C9—H90.9300C16'—H16E0.9600
C10—C111.382 (5)C16'—H16F0.9600
C10—H100.9300C17'—O31.474 (14)
C11—C121.380 (5)C17'—C18'1.501 (17)
C11—C141.514 (5)C17'—H17C0.9700
C12—C131.385 (5)C17'—H17D0.9700
C12—H120.9300C18'—H18D0.9600
C13—H130.9300C18'—H18E0.9600
C14—P11.781 (3)C18'—H18F0.9600
C14—H14A0.9700O1—P11.448 (2)
C14—H14B0.9700O3—P11.570 (3)
C15—O21.459 (11)O2—P11.561 (2)
C2—C1—C6121.5 (4)O2—C15—H15B110.5
C2—C1—S1109.3 (3)C16—C15—H15B110.5
C6—C1—S1129.2 (3)H15A—C15—H15B108.7
C3—C2—N1125.9 (3)O3—C17—C18102.1 (13)
C3—C2—C1118.7 (4)O3—C17—H17A111.3
N1—C2—C1115.4 (3)C18—C17—H17A111.3
C4—C3—C2119.7 (4)O3—C17—H17B111.3
C4—C3—H3120.2C18—C17—H17B111.3
C2—C3—H3120.2H17A—C17—H17B109.2
C3—C4—C5121.8 (4)O2—C15'—C16'107.9 (19)
C3—C4—H4119.1O2—C15'—H15C110.1
C5—C4—H4119.1C16'—C15'—H15C110.1
C6—C5—C4120.0 (4)O2—C15'—H15D110.1
C6—C5—H5120.0C16'—C15'—H15D110.1
C4—C5—H5120.0H15C—C15'—H15D108.4
C5—C6—C1118.2 (4)C15'—C16'—H16D109.5
C5—C6—H6120.9C15'—C16'—H16E109.5
C1—C6—H6120.9H16D—C16'—H16E109.5
N1—C7—C8124.1 (3)C15'—C16'—H16F109.5
N1—C7—S1115.8 (3)H16D—C16'—H16F109.5
C8—C7—S1120.0 (3)H16E—C16'—H16F109.5
C13—C8—C9118.0 (4)O3—C17'—C18'113.6 (17)
C13—C8—C7120.6 (3)O3—C17'—H17C108.8
C9—C8—C7121.4 (3)C18'—C17'—H17C108.8
C8—C9—C10120.7 (3)O3—C17'—H17D108.8
C8—C9—H9119.7C18'—C17'—H17D108.9
C10—C9—H9119.7H17C—C17'—H17D107.7
C11—C10—C9121.2 (3)C17'—C18'—H18D109.5
C11—C10—H10119.4C17'—C18'—H18E109.5
C9—C10—H10119.4H18D—C18'—H18E109.5
C12—C11—C10117.9 (4)C17'—C18'—H18F109.5
C12—C11—C14121.7 (3)H18D—C18'—H18F109.5
C10—C11—C14120.4 (3)H18E—C18'—H18F109.5
C11—C12—C13121.4 (3)C7—N1—C2110.6 (3)
C11—C12—H12119.3C17—O3—C17'27.9 (6)
C13—C12—H12119.3C17—O3—P1123.6 (7)
C12—C13—C8120.8 (3)C17'—O3—P1116.4 (8)
C12—C13—H13119.6C15'—O2—C1523.9 (10)
C8—C13—H13119.6C15'—O2—P1115.5 (10)
C11—C14—P1115.4 (2)C15—O2—P1125.6 (7)
C11—C14—H14A108.4O1—P1—O2116.64 (14)
P1—C14—H14A108.4O1—P1—O3114.38 (15)
C11—C14—H14B108.4O2—P1—O3102.06 (14)
P1—C14—H14B108.4O1—P1—C14115.01 (17)
H14A—C14—H14B107.5O2—P1—C14102.21 (16)
O2—C15—C16106.0 (13)O3—P1—C14104.79 (16)
O2—C15—H15A110.5C1—S1—C788.84 (18)
C16—C15—H15A110.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.453.261 (5)146
C13—H13···O1ii0.932.533.310 (4)141
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC18H20NO3PS
Mr361.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.0441 (19), 8.0927 (14), 20.933 (4)
β (°) 94.943 (3)
V3)1863.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.980, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
11571, 3641, 2005
Rint0.104
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.150, 0.96
No. of reflections3641
No. of parameters259
No. of restraints8
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.20

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.453.261 (5)146
C13—H13···O1ii0.932.533.310 (4)141
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+2, y+1, z+2.
 

Acknowledgements

The authors are grateful to Xiangfan University for financial support.

References

First citationBhatia, S. C., Kumar, A., Gautam, P. & Jain, P. C. (1991). Acta Cryst. C47, 1908–1911.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoshino, K., Kohno, T., Uno, T., Morita, T. & Tsukamoto, G. (1986). J. Med. Chem. 29, 820–825.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds