organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3,4,6-Tetra-O-acetyl-2-phthalimido-β-D-gluco­pyran­oside

aDipartimento di Chimica I, F.M. e Centro CrisDi, University of Turin, Via P. Giuria 7, 10125, Torino, Italy
*Correspondence e-mail: giuliana.gervasio@unito.it

(Received 10 November 2010; accepted 18 November 2010; online 27 November 2010)

In the crystal structure of the title compound, C24H27NO11, a substituted tetra­acetyl glucopyran­oside derivative, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into ribbons propagated in [010]. The D configuration has been attributed on the basis of the synthesis and the β anomer has been determined from the structure.

Related literature

For the synthesis, see: Dahmen et al. (1983a[Dahmen, J., Frejd, T., Magnusson, G. & Noori, G. (1983b). Carbohydr. Res. 114, 328-330.],b[Dahmen, J., Frejd, T., Groenberg, G., Lave, T., Magnusson, G. & Noori, G. (1983a). Carbohydr. Res. 116, 303-307.], 1984[Dahmen, J., Frejd, T., Magnusson, G., Noori, G. & Carlstroem, A. (1984). Carbohydr. Res. 126, 15-25.]); Mag­nus­son et al. (1981[Magnusson, G., Noori, G., Dahmen, J., Frejd, T. & Lave, T. (1981). Acta Chem. Scand. Ser. B, 35, 213-216.]); Quagliotto et al. (2005[Quagliotto, P., Viscardi, G., Barolo, C., D'Angelo, D., Barni, E., Compari, C., Duce, E. & Fisicaro, E. (2005). J. Org. Chem. 70, 9857-9866.]). For related structures, see: Ambrosi et al. (2002[Ambrosi, M., Batsanov, A. S., Cameron, N. R., Davis, B. G., Howard, J. A. K. & Hunter, R. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 45-49.]); Halasz et al. (2005[Halasz, I., Od<zak, R., Tomić, S. & Matković-Čalogović, D. (2005). Acta Cryst. E61, o2644.]).

[Scheme 1]

Experimental

Crystal data
  • C24H27NO12

  • Mr = 521.47

  • Monoclinic, P 21

  • a = 10.6447 (8) Å

  • b = 8.3655 (8) Å

  • c = 14.0123 (13) Å

  • β = 92.263 (2)°

  • V = 1246.80 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.34 × 0.22 × 0.20 mm

Data collection
  • Bruker APEX diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.77, Tmax = 1.00

  • 15243 measured reflections

  • 3092 independent reflections

  • 2238 reflections with I > 2σ(I)

  • Rint = 0.036

  • 20 standard reflections every 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.132

  • S = 1.07

  • 3092 reflections

  • 334 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32B⋯O42i 0.96 2.45 3.317 (5) 151
C43—H43C⋯O42ii 0.96 2.48 3.284 (5) 141
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+1]; (ii) [-x, y-{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, 2-phthalimido-2,3,4,6-tetraacetyl-β-D-glucopyranoside, synthesized according to Dahmen et al. (1983a,b; 1984), Magnusson et al. (1981) and Quagliotto et al. (2005), belongs to the wide category of substituted tetraacetyl D-glucopyranoside compounds and the β anomer has been detected. Bond lengths and angles agree with those observed in numerous similar compounds, for instance, see Ambrosi et al. (2002) and Halasz et al. (2005). In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into ribbons propagated in [010] direction.

Related literature top

For the synthesis, see: Dahmen et al. (1983a,b, 1984); Magnusson et al. (1981); Quagliotto et al. (2005). For related structures, see: Ambrosi et al. (2002); Halasz et al. (2005).

Experimental top

The title compound has been obtained according to Dahmen et al. (1983a,b;1984) and Magnusson et al. (1981).

Refinement top

H atoms have been placed in geometrically idealized positions (C—H = 0.93-0.98 Å), and refined as riding, with Uiso(H) = 1.2-1.5 Ueq(C) The absolute structure cannot be determined reliably from the Flack parameter and, therefore, the 841 Friedel pairs have been merged.

Structure description top

The title compound, 2-phthalimido-2,3,4,6-tetraacetyl-β-D-glucopyranoside, synthesized according to Dahmen et al. (1983a,b; 1984), Magnusson et al. (1981) and Quagliotto et al. (2005), belongs to the wide category of substituted tetraacetyl D-glucopyranoside compounds and the β anomer has been detected. Bond lengths and angles agree with those observed in numerous similar compounds, for instance, see Ambrosi et al. (2002) and Halasz et al. (2005). In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into ribbons propagated in [010] direction.

For the synthesis, see: Dahmen et al. (1983a,b, 1984); Magnusson et al. (1981); Quagliotto et al. (2005). For related structures, see: Ambrosi et al. (2002); Halasz et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 30% probability displacements ellipsoids.
2,3,4,6-tetra-O-acetyl-2-phthalimido-β-D-glucopyranoside top
Crystal data top
C24H27NO12F(000) = 548
Mr = 521.47Dx = 1.389 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.6447 (8) ÅCell parameters from 400 reflections
b = 8.3655 (8) Åθ = 3.0–23.0°
c = 14.0123 (13) ŵ = 0.11 mm1
β = 92.263 (2)°T = 293 K
V = 1246.80 (19) Å3Prism, colourless
Z = 20.34 × 0.22 × 0.20 mm
Data collection top
Bruker APEX
diffractometer
2238 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 28.3°, θmin = 1.5°
φ scansh = 1414
Absorption correction: multi-scan
(Blessing, 1995)
k = 010
Tmin = 0.77, Tmax = 1.00l = 018
15243 measured reflections20 standard reflections every 60 min
3092 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0605P)2 + 0.1789P]
where P = (Fo2 + 2Fc2)/3
3092 reflections(Δ/σ)max < 0.001
334 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.14 e Å3
Crystal data top
C24H27NO12V = 1246.80 (19) Å3
Mr = 521.47Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.6447 (8) ŵ = 0.11 mm1
b = 8.3655 (8) ÅT = 293 K
c = 14.0123 (13) Å0.34 × 0.22 × 0.20 mm
β = 92.263 (2)°
Data collection top
Bruker APEX
diffractometer
2238 reflections with I > 2σ(I)
Absorption correction: multi-scan
(Blessing, 1995)
Rint = 0.036
Tmin = 0.77, Tmax = 1.0020 standard reflections every 60 min
15243 measured reflections intensity decay: none
3092 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0511 restraint
wR(F2) = 0.132H-atom parameters constrained
S = 1.07Δρmax = 0.16 e Å3
3092 reflectionsΔρmin = 0.14 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2629 (2)0.7283 (3)0.24007 (16)0.0505 (6)
C10.3802 (3)0.8111 (5)0.2432 (3)0.0491 (9)
H1A0.44630.74580.27450.059*
C20.3624 (3)0.9652 (5)0.2968 (3)0.0451 (8)
H2A0.29831.03010.26280.054*
C30.3214 (3)0.9325 (4)0.3972 (2)0.0411 (8)
H3A0.39050.88410.43550.049*
C40.2076 (3)0.8243 (4)0.3953 (2)0.0440 (8)
H4A0.13330.88390.37220.053*
C50.2261 (3)0.6792 (5)0.3325 (3)0.0478 (9)
H5A0.29260.61210.36170.057*
O20.4087 (2)0.8446 (3)0.14973 (17)0.0539 (6)
C60.4639 (3)0.7116 (6)0.1020 (3)0.0569 (10)
H6A0.42320.61300.12010.068*
H6B0.55260.70380.12010.068*
C70.4476 (3)0.7368 (6)0.0042 (3)0.0567 (10)
H7A0.48020.84120.02020.068*
H7B0.49630.65710.03680.068*
N10.3179 (3)0.7261 (5)0.0376 (2)0.0558 (8)
C80.2422 (4)0.8575 (7)0.0603 (3)0.0635 (11)
O80.2759 (4)0.9941 (5)0.0599 (3)0.0899 (11)
C90.1155 (4)0.7921 (7)0.0853 (3)0.0689 (13)
C100.1218 (4)0.6290 (7)0.0788 (3)0.0733 (14)
C110.2527 (4)0.5832 (7)0.0482 (3)0.0692 (12)
O110.2974 (3)0.4522 (5)0.0343 (3)0.0964 (12)
C120.0040 (5)0.8685 (10)0.1087 (4)0.0963 (19)
H12A0.00100.97910.11430.116*
C130.1025 (5)0.7692 (14)0.1237 (4)0.115 (3)
H13A0.18010.81650.13760.138*
C140.0955 (6)0.6067 (15)0.1183 (5)0.120 (3)
H14A0.16760.54550.12940.144*
C150.0174 (5)0.5328 (10)0.0968 (4)0.102 (2)
H15A0.02360.42200.09430.122*
O210.4786 (2)1.0518 (3)0.30267 (17)0.0527 (7)
O220.3877 (4)1.2729 (5)0.2431 (3)0.1135 (15)
C210.4783 (4)1.2067 (6)0.2740 (3)0.0664 (12)
C220.6057 (4)1.2786 (8)0.2884 (4)0.0924 (17)
H22A0.60361.38810.26770.139*
H22B0.66471.22010.25180.139*
H22C0.63101.27400.35490.139*
O310.28641 (18)1.0835 (3)0.43790 (17)0.0484 (6)
O320.4534 (2)1.0863 (4)0.5412 (2)0.0775 (9)
C310.3644 (3)1.1517 (5)0.5057 (3)0.0482 (9)
C320.3233 (3)1.3171 (5)0.5245 (3)0.0676 (12)
H32A0.37851.36450.57230.101*
H32B0.23911.31580.54660.101*
H32C0.32551.37850.46670.101*
O410.18882 (19)0.7666 (3)0.49050 (17)0.0511 (6)
O420.0121 (3)0.8438 (5)0.4827 (2)0.0779 (9)
C420.0715 (3)0.7777 (5)0.5246 (3)0.0519 (9)
C430.0626 (4)0.6939 (6)0.6176 (3)0.0714 (12)
H43A0.02130.70390.63960.107*
H43B0.12090.74090.66350.107*
H43C0.08250.58290.60970.107*
O510.0126 (2)0.6793 (4)0.27174 (19)0.0653 (8)
O520.1385 (3)0.5437 (5)0.3397 (3)0.1090 (14)
C510.1083 (3)0.5800 (6)0.3180 (3)0.0626 (11)
H51A0.12510.48770.27860.075*
H51B0.08010.54260.37910.075*
C520.1077 (4)0.6487 (6)0.2894 (3)0.0684 (12)
C530.1945 (4)0.7581 (8)0.2382 (4)0.0872 (15)
H53D0.27940.73200.25290.131*
H53A0.18450.74780.17070.131*
H53B0.17640.86600.25750.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0478 (12)0.0564 (15)0.0467 (13)0.0063 (11)0.0057 (10)0.0029 (13)
C10.0432 (17)0.061 (2)0.043 (2)0.0059 (17)0.0027 (14)0.0031 (18)
C20.0288 (14)0.058 (2)0.048 (2)0.0040 (15)0.0065 (13)0.0030 (17)
C30.0302 (14)0.049 (2)0.0439 (19)0.0036 (14)0.0037 (13)0.0030 (16)
C40.0324 (14)0.052 (2)0.047 (2)0.0034 (14)0.0044 (13)0.0009 (17)
C50.0421 (17)0.051 (2)0.050 (2)0.0020 (16)0.0076 (15)0.0042 (17)
O20.0553 (14)0.0623 (17)0.0442 (14)0.0045 (13)0.0013 (11)0.0037 (13)
C60.0454 (18)0.069 (3)0.056 (2)0.0075 (18)0.0018 (16)0.007 (2)
C70.0459 (18)0.071 (3)0.053 (2)0.0039 (19)0.0065 (16)0.010 (2)
N10.0499 (16)0.070 (2)0.0474 (18)0.0045 (17)0.0018 (13)0.0030 (17)
C80.068 (3)0.077 (3)0.045 (2)0.003 (2)0.0043 (19)0.004 (2)
O80.091 (2)0.081 (3)0.098 (3)0.000 (2)0.001 (2)0.013 (2)
C90.051 (2)0.109 (4)0.045 (2)0.001 (2)0.0030 (17)0.011 (3)
C100.059 (2)0.106 (4)0.055 (3)0.014 (3)0.0029 (19)0.002 (3)
C110.059 (2)0.087 (4)0.061 (3)0.015 (3)0.001 (2)0.007 (3)
O110.083 (2)0.076 (3)0.129 (3)0.009 (2)0.015 (2)0.010 (2)
C120.073 (3)0.151 (6)0.065 (3)0.017 (4)0.005 (2)0.021 (4)
C130.054 (3)0.226 (9)0.063 (3)0.004 (5)0.010 (2)0.024 (5)
C140.071 (4)0.213 (9)0.076 (4)0.046 (5)0.015 (3)0.022 (5)
C150.078 (3)0.154 (6)0.072 (3)0.043 (4)0.012 (3)0.001 (4)
O210.0365 (11)0.0660 (19)0.0551 (15)0.0086 (12)0.0030 (10)0.0042 (14)
O220.085 (2)0.086 (3)0.166 (4)0.023 (2)0.040 (2)0.050 (3)
C210.065 (3)0.073 (3)0.061 (2)0.028 (2)0.001 (2)0.002 (2)
C220.080 (3)0.112 (4)0.086 (3)0.051 (3)0.006 (2)0.007 (3)
O310.0348 (10)0.0560 (15)0.0539 (15)0.0015 (11)0.0042 (10)0.0070 (13)
O320.0583 (15)0.087 (2)0.084 (2)0.0141 (17)0.0288 (14)0.0235 (19)
C310.0339 (16)0.060 (2)0.050 (2)0.0046 (16)0.0002 (14)0.0076 (18)
C320.047 (2)0.067 (3)0.088 (3)0.005 (2)0.0027 (19)0.016 (3)
O410.0408 (11)0.0665 (17)0.0460 (14)0.0019 (12)0.0017 (10)0.0056 (13)
O420.0414 (14)0.110 (3)0.083 (2)0.0099 (17)0.0072 (14)0.001 (2)
C420.0407 (18)0.055 (2)0.060 (2)0.0067 (17)0.0022 (16)0.0098 (19)
C430.079 (3)0.067 (3)0.070 (3)0.010 (2)0.024 (2)0.001 (2)
O510.0504 (14)0.077 (2)0.0671 (17)0.0206 (14)0.0168 (12)0.0149 (16)
O520.075 (2)0.095 (3)0.158 (4)0.015 (2)0.020 (2)0.042 (3)
C510.063 (2)0.062 (3)0.061 (3)0.017 (2)0.0092 (19)0.006 (2)
C520.057 (2)0.068 (3)0.080 (3)0.015 (2)0.005 (2)0.004 (3)
C530.063 (3)0.106 (4)0.091 (3)0.006 (3)0.020 (2)0.000 (3)
Geometric parameters (Å, º) top
O1—C51.428 (4)C12—H12A0.9300
O1—C11.427 (4)C13—C141.363 (12)
C1—O21.384 (4)C13—H13A0.9300
C1—C21.508 (5)C14—C151.374 (10)
C1—H1A0.9800C14—H14A0.9300
C2—O211.433 (4)C15—H15A0.9300
C2—C31.515 (5)O21—C211.357 (6)
C2—H2A0.9800O22—C211.179 (5)
C3—O311.441 (4)C21—C221.490 (6)
C3—C41.511 (4)C22—H22A0.9600
C3—H3A0.9800C22—H22B0.9600
C4—O411.440 (4)C22—H22C0.9600
C4—C51.516 (5)O31—C311.362 (4)
C4—H4A0.9800O32—C311.186 (4)
C5—C511.510 (5)C31—C321.478 (6)
C5—H5A0.9800C32—H32A0.9600
O2—C61.436 (5)C32—H32B0.9600
C6—C71.506 (5)C32—H32C0.9600
C6—H6A0.9700O41—C421.357 (4)
C6—H6B0.9700O42—C421.184 (5)
C7—N11.443 (4)C42—C431.486 (6)
C7—H7A0.9700C43—H43A0.9600
C7—H7B0.9700C43—H43B0.9600
N1—C111.387 (6)C43—H43C0.9600
N1—C81.392 (6)O51—C521.338 (5)
C8—O81.198 (6)O51—C511.448 (5)
C8—C91.485 (6)O52—C521.181 (6)
C9—C101.368 (7)C51—H51A0.9700
C9—C121.376 (7)C51—H51B0.9700
C10—C151.387 (7)C52—C531.467 (7)
C10—C111.492 (7)C53—H53D0.9600
C11—O111.208 (6)C53—H53A0.9600
C12—C131.414 (10)C53—H53B0.9600
C5—O1—C1112.5 (2)C9—C12—C13116.2 (7)
O2—C1—O1107.1 (3)C9—C12—H12A121.9
O2—C1—C2109.5 (3)C13—C12—H12A121.9
O1—C1—C2107.6 (3)C14—C13—C12122.4 (7)
O2—C1—H1A110.8C14—C13—H13A118.8
O1—C1—H1A110.8C12—C13—H13A118.8
C2—C1—H1A110.8C13—C14—C15120.4 (7)
O21—C2—C1109.6 (3)C13—C14—H14A119.8
O21—C2—C3108.5 (3)C15—C14—H14A119.8
C1—C2—C3110.8 (3)C14—C15—C10117.8 (8)
O21—C2—H2A109.3C14—C15—H15A121.1
C1—C2—H2A109.3C10—C15—H15A121.1
C3—C2—H2A109.3C21—O21—C2118.3 (3)
O31—C3—C4108.2 (2)O22—C21—O21123.3 (4)
O31—C3—C2107.3 (3)O22—C21—C22125.9 (5)
C4—C3—C2110.6 (3)O21—C21—C22110.7 (4)
O31—C3—H3A110.2C21—C22—H22A109.5
C4—C3—H3A110.2C21—C22—H22B109.5
C2—C3—H3A110.2H22A—C22—H22B109.5
O41—C4—C3109.0 (2)C21—C22—H22C109.5
O41—C4—C5107.2 (3)H22A—C22—H22C109.5
C3—C4—C5111.6 (3)H22B—C22—H22C109.5
O41—C4—H4A109.7C31—O31—C3118.9 (3)
C3—C4—H4A109.7O32—C31—O31123.7 (4)
C5—C4—H4A109.7O32—C31—C32126.5 (4)
O1—C5—C51107.0 (3)O31—C31—C32109.9 (3)
O1—C5—C4110.0 (3)C31—C32—H32A109.5
C51—C5—C4113.1 (3)C31—C32—H32B109.5
O1—C5—H5A108.9H32A—C32—H32B109.5
C51—C5—H5A108.9C31—C32—H32C109.5
C4—C5—H5A108.9H32A—C32—H32C109.5
C1—O2—C6113.1 (3)H32B—C32—H32C109.5
O2—C6—C7108.6 (3)C42—O41—C4117.8 (3)
O2—C6—H6A110.0O42—C42—O41122.8 (4)
C7—C6—H6A110.0O42—C42—C43125.6 (4)
O2—C6—H6B110.0O41—C42—C43111.6 (3)
C7—C6—H6B110.0C42—C43—H43A109.5
H6A—C6—H6B108.4C42—C43—H43B109.5
N1—C7—C6112.6 (3)H43A—C43—H43B109.5
N1—C7—H7A109.1C42—C43—H43C109.5
C6—C7—H7A109.1H43A—C43—H43C109.5
N1—C7—H7B109.1H43B—C43—H43C109.5
C6—C7—H7B109.1C52—O51—C51118.0 (3)
H7A—C7—H7B107.8O51—C51—C5108.1 (3)
C11—N1—C8111.9 (4)O51—C51—H51A110.1
C11—N1—C7123.8 (4)C5—C51—H51A110.1
C8—N1—C7124.3 (4)O51—C51—H51B110.1
O8—C8—N1125.6 (4)C5—C51—H51B110.1
O8—C8—C9128.5 (5)H51A—C51—H51B108.4
N1—C8—C9105.9 (4)O52—C52—O51122.9 (5)
C10—C9—C12121.2 (5)O52—C52—C53124.8 (4)
C10—C9—C8108.1 (4)O51—C52—C53112.3 (4)
C12—C9—C8130.7 (6)C52—C53—H53D109.5
C9—C10—C15122.0 (5)C52—C53—H53A109.5
C9—C10—C11108.5 (4)H53D—C53—H53A109.5
C15—C10—C11129.5 (6)C52—C53—H53B109.5
O11—C11—N1125.0 (4)H53D—C53—H53B109.5
O11—C11—C10129.5 (5)H53A—C53—H53B109.5
N1—C11—C10105.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32B···O42i0.962.453.317 (5)151
C43—H43C···O42ii0.962.483.284 (5)141
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC24H27NO12
Mr521.47
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)10.6447 (8), 8.3655 (8), 14.0123 (13)
β (°) 92.263 (2)
V3)1246.80 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.34 × 0.22 × 0.20
Data collection
DiffractometerBruker APEX
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.77, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
15243, 3092, 2238
Rint0.036
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.132, 1.07
No. of reflections3092
No. of parameters334
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.14

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32B···O42i0.962.453.317 (5)151
C43—H43C···O42ii0.962.483.284 (5)141
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y1/2, z+1.
 

Acknowledgements

We thank Dr P. Quagliotto for supplying crystals of the title compound.

References

First citationAmbrosi, M., Batsanov, A. S., Cameron, N. R., Davis, B. G., Howard, J. A. K. & Hunter, R. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 45–49.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDahmen, J., Frejd, T., Groenberg, G., Lave, T., Magnusson, G. & Noori, G. (1983a). Carbohydr. Res. 116, 303–307.  CrossRef CAS Web of Science Google Scholar
First citationDahmen, J., Frejd, T., Magnusson, G. & Noori, G. (1983b). Carbohydr. Res. 114, 328–330.  CrossRef CAS Web of Science Google Scholar
First citationDahmen, J., Frejd, T., Magnusson, G., Noori, G. & Carlstroem, A. (1984). Carbohydr. Res. 126, 15–25.  CrossRef Web of Science Google Scholar
First citationHalasz, I., Od<zak, R., Tomić, S. & Matković-Čalogović, D. (2005). Acta Cryst. E61, o2644.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMagnusson, G., Noori, G., Dahmen, J., Frejd, T. & Lave, T. (1981). Acta Chem. Scand. Ser. B, 35, 213–216.  CrossRef Google Scholar
First citationQuagliotto, P., Viscardi, G., Barolo, C., D'Angelo, D., Barni, E., Compari, C., Duce, E. & Fisicaro, E. (2005). J. Org. Chem. 70, 9857–9866.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds