metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis(4,7-di­phenyl-1,10-phenanthroline-κ2N,N′)bis­­(nitrato-κ2O,O′)zinc(II)

aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, and bDepartment of Physics, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal
*Correspondence e-mail: filipe.paz@ua.pt

(Received 11 November 2010; accepted 14 November 2010; online 20 November 2010)

The title compound, [Zn(NO3)2(C24H16N2)2], is a twofold axially symmetric coordination compound. Given that the Zn—O interactions [2.4926 (15) and 2.6673 (15) Å] can be considered as weakly bonding and the nitrate ions share the same C2 axis of the Zn(dpp)2 fragment (dpp is 4,7-diphenyl-1,10-phenanthroline), these anions belong to the coordination sphere of Zn2+, leading to a complex with an overall coordination number of 8 for the metal ion.

Related literature

For an isotypic compound containing copper(II), see: Moreno et al. (2006[Moreno, Y., Hermosilla, P., Garland, M. T., Peña, O. & Baggio, R. (2006). Acta Cryst. C62, m404-m406.]). For structures with eight-coordinate Zn2+ ions containing crown ethers, see: Nurtaeva & Holt (2002[Nurtaeva, A. & Holt, E. M. (2002). J. Chem. Crystallogr. 32, 337-346.]); Doxsee et al. (1994[Doxsee, K. M., Hagadorn, J. R. & Weakley, T. J. R. (1994). Inorg. Chem. 33, 2600-2606.]); Junk et al. (2001[Junk, P. C., Smith, M. K. & Steed, J. W. (2001). Polyhedron, 20, 2979-2988.]). For structures with eight-coordinate Zn2+ ions containing a calyxarene, see: Beer et al. (1995[Beer, P. D., Drew, M. G. B., Leeson, P. B. & Ogden, M. I. (1995). J. Chem. Soc. Dalton Trans. pp. 1273-1283.]). For structures with eight-coordinate Zn2+ ions containing nidoboranes, see: Greenwood et al. (1971[Greenwood, N. N., McGinnety, J. A. & Owen, J. D. (1971). J. Chem. Soc. A, pp. 809-813.]); Allmann et al. (1976[Allmann, R., Batzel, V., Pfeil, R. & Schmid, G. (1976). Z. Naturforsch. Teil B, 31, 1329-1335.]). For compounds containing the tetra­nitratozincate(II) anion, see: Bellito et al. (1976[Bellito, C., Gastaldi, L. & Tomlinson, A. A. G. (1976). J. Chem. Soc. Dalton Trans. pp. 989-992.]); Chekhlov (2007[Chekhlov, A. N. (2007). Russ. J. Coord. Chem. 33, 90-95.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For geometrical aspects of C—H⋯π contacts, see: Babu (2003[Babu, M. M. (2003). Nucleic Acids Res. 31, 3345-3348.]). For background research from our group focused on the use of hydro­thermal synthesis to prepare metastable hybrid compounds, see: Paz & Klinowski (2003[Paz, F. A. A. & Klinowski, J. (2003). J. Phys. Org. Chem. 16, 772-782.], 2004[Paz, F. A. A. & Klinowski, J. (2004). J. Solid State Chem. 177, 3423-3432.], 2007[Paz, F. A. A. & Klinowski, J. (2007). Pure Appl. Chem. 79, 1097-1110.]); Paz et al. (2005[Paz, F. A. A., Rocha, J., Klinowski, J., Trindade, T., Shi, F.-N. & Mafra, L. (2005). Prog. Solid State Chem. 33, 113-125.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(NO3)2(C24H16N2)2]

  • Mr = 854.17

  • Monoclinic, C 2/c

  • a = 20.5074 (4) Å

  • b = 17.4116 (3) Å

  • c = 12.7089 (3) Å

  • β = 124.035 (1)°

  • V = 3760.56 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 180 K

  • 0.40 × 0.28 × 0.15 mm

Data collection
  • Bruker X8 Kappa CCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.762, Tmax = 0.900

  • 36092 measured reflections

  • 4283 independent reflections

  • 3824 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.077

  • S = 1.06

  • 4283 reflections

  • 278 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Some features of the zinc element, namely small radius and a fully occupied electron d-layer make this element unsuitable for preparing compounds with large coordination numbers. A survey in the Cambridge Structural Database (Allen, 2002) revealed, however, some zinc compounds which could be classified as having a coordination number of 8. Nevertheless, most of these compounds comprise loosely bonded cyclic ligands such as crown ethers (Nurtaeva & Holt, 2002; Doxsee et al., 1994; Junk et al., 2001), calyxarenes (Beer et al., 1995) or nidoboranes (Greenwood et al., 1971; Allmann et al., 1976), and also the tetranitratozincate(II) anion (Bellito et al., 1976; Chekhlov et al., 2007). Knowing that the eight-coordinated compound [Cu(dpp)2(NO3)2] (dpp = 4,7-diphenyl-1,10-phenanthroline, C24H16N2) has serendipitously been prepared (Moreno et al., 2006), we decided to test the preparation of the zinc(II) analogue using for that purpose hydrothermal synthetic approaches which have been used systematically in our research group (Paz & Klinowski, 2003; Paz & Klinowski, 2004; Paz & Klinowski, 2007; Paz et al., 2005).

The title compound comprises a twofold axial symmetric Zn2+ coordination compound containing two dpp ligands and two nitrato ions (see Scheme). The asymmetric unit comprises half of the complex, in which the metal centre and the O2, N3, N4 and O4 atoms of the nitrato ligands are located in special positions along the rotation axis (Figure 1). The coordination environment around the metal centre can be envisaged as a highly distorted octahedron, where the dpp ligands occupy the equatorial positions and the nitrato ligands are in apical positions. While the Zn—N distances are 2.0843 (12) and 2.1309 (12) Å, the Zn—O ones are instead 2.4926 (15) and 2.6673 (15) Å. The latter values correspond to long Zn—O distances, but nevertheless they are considerably shorter than the Cu—O analogues observed in the isostructural Cu2+ compound (Moreno et al., 2006). This feature, in addition to the existence of a common twofold axis with the [Zn(dpp)2]2+ fragment, is a clear indication that the nitrate is effectively interacting with the metallic centre. The octahedral cis and trans angles are highly deviated from the ideal value. Considering the centre of gravity (Cg) of the O—N—O chelating moieties as the points where angles are measured, the cis angles range from ca 76.1 (N2—Zn1···Cg) to 104.89 (4)° (N2—Zn1—N1i; symmetry code (i): -x, y, 0.5 - z). Conversely, the trans angles can be as small as 152.24 (7)° (N2—Zn1—N2i). The average planes of the peripheral phenyl moieties of dpp form angles of ca 43.4 and 49.6° with the average plane of the phenanthroline fragment.

The crystal structure is rich in weak supramolecular interactions such as ππ stacking, C—H···π (Babu, 2003) and C—H···O. Due to the complexity of the network created by these intermolecular interactions they have been omitted from Figure 2 (crystal packing) for simplicity. Weak π-π stacking interactions occur between pairs of symmetry-equivalent peripheral phenyl substituents, with distances between the centroids (Ct) of ca 3.80 and 4.18 Å. C—H/π interactions occur between five H atoms and neighbouring aromatic rings, with (C—H···Ct) larger than ca 147° and dH···Ct in the ca 2.80–3.45 Å range. C—H···O hydrogen bonding interactions occur between four H-atoms and neighbouring O-atoms from the nitrato groups: (DHA) larger than ca 140° and internuclear D···A distances in the ca 3.29–3.50 Å range.

Related literature top

For an isotypic compound containing copper(II), see: Moreno et al. (2006). For eight-coordinated zinc(II) compounds with crown ethers, see: Nurtaeva & Holt (2002); Doxsee et al. (1994); Junk et al. (2001). For an eight-coordinated zinc(II) compound with a calyxarene, see: Beer et al. (1995). For eight-coordinated zinc(II) compounds containing nidoboranes, see: Greenwood et al. (1971); Allmann et al. (1976). For compounds containing the tetranitratozincate(II) anion, see: Bellito et al. (1976); Chekhlov et al. (2007). For a description of the Cambridge Structural Database, see: Allen (2002). For geometrical aspects of C—H···p contacts, see: Babu (2003). For background research from our group focused on the use of hydrothermal synthesis to prepare metastable hybrid compounds, see: Paz & Klinowski (2003, 2004, 2007); Paz et al. (2005).

Experimental top

Starting chemicals were purchased from commercial sources and were used as received without any further purification. The title compound was prepared in a Teflon-lined reaction vessel under static hydrothermal conditions in an oven preheated at 160 °C. The total reaction time was of 2 days. The reactive mixture was prepared by using a Zn(NO3)2.6H2O: dpp (4,7-diphenyl-1,10-phenanthroline) molar ratio of about 2: 1. After reacting, a large amount of brown-red crystals could be directly isolated from the contents of the reaction vessel.

Refinement top

Hydrogen atoms bound to aromatic carbon atoms were located at their idealized positions and were included in the final structural model in riding-motion approximation with C—H = 0.95 Å. The isotropic displacement parameters for these atoms were fixed at 1.2 times Ueq of the respective parent carbon atom.

Structure description top

Some features of the zinc element, namely small radius and a fully occupied electron d-layer make this element unsuitable for preparing compounds with large coordination numbers. A survey in the Cambridge Structural Database (Allen, 2002) revealed, however, some zinc compounds which could be classified as having a coordination number of 8. Nevertheless, most of these compounds comprise loosely bonded cyclic ligands such as crown ethers (Nurtaeva & Holt, 2002; Doxsee et al., 1994; Junk et al., 2001), calyxarenes (Beer et al., 1995) or nidoboranes (Greenwood et al., 1971; Allmann et al., 1976), and also the tetranitratozincate(II) anion (Bellito et al., 1976; Chekhlov et al., 2007). Knowing that the eight-coordinated compound [Cu(dpp)2(NO3)2] (dpp = 4,7-diphenyl-1,10-phenanthroline, C24H16N2) has serendipitously been prepared (Moreno et al., 2006), we decided to test the preparation of the zinc(II) analogue using for that purpose hydrothermal synthetic approaches which have been used systematically in our research group (Paz & Klinowski, 2003; Paz & Klinowski, 2004; Paz & Klinowski, 2007; Paz et al., 2005).

The title compound comprises a twofold axial symmetric Zn2+ coordination compound containing two dpp ligands and two nitrato ions (see Scheme). The asymmetric unit comprises half of the complex, in which the metal centre and the O2, N3, N4 and O4 atoms of the nitrato ligands are located in special positions along the rotation axis (Figure 1). The coordination environment around the metal centre can be envisaged as a highly distorted octahedron, where the dpp ligands occupy the equatorial positions and the nitrato ligands are in apical positions. While the Zn—N distances are 2.0843 (12) and 2.1309 (12) Å, the Zn—O ones are instead 2.4926 (15) and 2.6673 (15) Å. The latter values correspond to long Zn—O distances, but nevertheless they are considerably shorter than the Cu—O analogues observed in the isostructural Cu2+ compound (Moreno et al., 2006). This feature, in addition to the existence of a common twofold axis with the [Zn(dpp)2]2+ fragment, is a clear indication that the nitrate is effectively interacting with the metallic centre. The octahedral cis and trans angles are highly deviated from the ideal value. Considering the centre of gravity (Cg) of the O—N—O chelating moieties as the points where angles are measured, the cis angles range from ca 76.1 (N2—Zn1···Cg) to 104.89 (4)° (N2—Zn1—N1i; symmetry code (i): -x, y, 0.5 - z). Conversely, the trans angles can be as small as 152.24 (7)° (N2—Zn1—N2i). The average planes of the peripheral phenyl moieties of dpp form angles of ca 43.4 and 49.6° with the average plane of the phenanthroline fragment.

The crystal structure is rich in weak supramolecular interactions such as ππ stacking, C—H···π (Babu, 2003) and C—H···O. Due to the complexity of the network created by these intermolecular interactions they have been omitted from Figure 2 (crystal packing) for simplicity. Weak π-π stacking interactions occur between pairs of symmetry-equivalent peripheral phenyl substituents, with distances between the centroids (Ct) of ca 3.80 and 4.18 Å. C—H/π interactions occur between five H atoms and neighbouring aromatic rings, with (C—H···Ct) larger than ca 147° and dH···Ct in the ca 2.80–3.45 Å range. C—H···O hydrogen bonding interactions occur between four H-atoms and neighbouring O-atoms from the nitrato groups: (DHA) larger than ca 140° and internuclear D···A distances in the ca 3.29–3.50 Å range.

For an isotypic compound containing copper(II), see: Moreno et al. (2006). For eight-coordinated zinc(II) compounds with crown ethers, see: Nurtaeva & Holt (2002); Doxsee et al. (1994); Junk et al. (2001). For an eight-coordinated zinc(II) compound with a calyxarene, see: Beer et al. (1995). For eight-coordinated zinc(II) compounds containing nidoboranes, see: Greenwood et al. (1971); Allmann et al. (1976). For compounds containing the tetranitratozincate(II) anion, see: Bellito et al. (1976); Chekhlov et al. (2007). For a description of the Cambridge Structural Database, see: Allen (2002). For geometrical aspects of C—H···p contacts, see: Babu (2003). For background research from our group focused on the use of hydrothermal synthesis to prepare metastable hybrid compounds, see: Paz & Klinowski (2003, 2004, 2007); Paz et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Schematic representation of the molecular unit of the title compound. All non-hydrogen atoms are represented as displacement ellipsoids drawn at the 50% probability level and hydrogen atoms as small spheres with arbitrary radius. Labels are provided for all non-hydrogen atoms composing the asymmetric unit. Symmetry transformation used to generate equivalent atoms is (i) = (-x, y, 0.5 - z).
[Figure 2] Fig. 2. Crystal packing of the title compound viewed in perspective along the [001] direction of the unit cell. Supramolecular interactions (see main text) have been omitted for clarity purposes.
trans-Bis(4,7-diphenyl-1,10-phenanthroline- κ2N,N')bis(nitrato-κ2O,O')zinc(II) top
Crystal data top
[Zn(NO3)2(C24H16N2)2]F(000) = 1760
Mr = 854.17Dx = 1.509 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9894 reflections
a = 20.5074 (4) Åθ = 3.0–30.2°
b = 17.4116 (3) ŵ = 0.72 mm1
c = 12.7089 (3) ÅT = 180 K
β = 124.035 (1)°Prism, colourless
V = 3760.56 (13) Å30.40 × 0.28 × 0.15 mm
Z = 4
Data collection top
Bruker X8 Kappa CCD APEXII
diffractometer
4283 independent reflections
Radiation source: fine-focus sealed tube3824 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and φ scansθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 2626
Tmin = 0.762, Tmax = 0.900k = 2220
36092 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0361P)2 + 3.6556P]
where P = (Fo2 + 2Fc2)/3
4283 reflections(Δ/σ)max = 0.001
278 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Zn(NO3)2(C24H16N2)2]V = 3760.56 (13) Å3
Mr = 854.17Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.5074 (4) ŵ = 0.72 mm1
b = 17.4116 (3) ÅT = 180 K
c = 12.7089 (3) Å0.40 × 0.28 × 0.15 mm
β = 124.035 (1)°
Data collection top
Bruker X8 Kappa CCD APEXII
diffractometer
4283 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
3824 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 0.900Rint = 0.030
36092 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.06Δρmax = 0.29 e Å3
4283 reflectionsΔρmin = 0.41 e Å3
278 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.406835 (14)0.25000.02344 (8)
N10.10982 (7)0.42246 (7)0.27115 (11)0.0191 (2)
N20.07903 (7)0.37812 (7)0.44046 (11)0.0205 (2)
C10.06298 (8)0.36151 (8)0.52558 (15)0.0239 (3)
H10.00960.36230.49960.029*
C20.12052 (9)0.34307 (8)0.65081 (14)0.0236 (3)
H20.10630.33450.70930.028*
C30.19831 (8)0.33704 (8)0.69094 (13)0.0190 (3)
C40.21717 (8)0.35236 (8)0.60058 (13)0.0175 (3)
C50.15537 (8)0.37498 (8)0.47776 (13)0.0173 (3)
C60.25883 (8)0.31729 (8)0.82531 (13)0.0205 (3)
C70.26247 (9)0.35967 (9)0.92152 (15)0.0269 (3)
H70.22730.40140.90050.032*
C80.31732 (10)0.34113 (10)1.04812 (15)0.0316 (4)
H80.32040.37091.11340.038*
C90.36722 (9)0.27957 (10)1.07902 (14)0.0295 (3)
H90.40450.26691.16560.035*
C100.36317 (9)0.23612 (9)0.98444 (15)0.0269 (3)
H100.39680.19301.00610.032*
C110.30981 (8)0.25548 (9)0.85766 (14)0.0233 (3)
H110.30810.22640.79290.028*
C120.29576 (8)0.35127 (8)0.63016 (13)0.0194 (3)
H120.33780.33440.71170.023*
C130.31121 (8)0.37373 (8)0.54435 (13)0.0199 (3)
H130.36410.37350.56790.024*
C140.24988 (8)0.39783 (8)0.41882 (13)0.0174 (3)
C150.17192 (8)0.39831 (7)0.38575 (13)0.0173 (3)
C160.26372 (8)0.42396 (8)0.32660 (13)0.0180 (3)
C170.19943 (8)0.45022 (8)0.21198 (13)0.0212 (3)
H170.20660.46950.14920.025*
C180.12428 (8)0.44864 (8)0.18798 (13)0.0218 (3)
H180.08140.46710.10850.026*
C190.34289 (8)0.42377 (8)0.34930 (13)0.0200 (3)
C200.39130 (9)0.35907 (9)0.39623 (14)0.0248 (3)
H200.37470.31450.41820.030*
C210.46359 (9)0.35970 (10)0.41090 (15)0.0317 (4)
H210.49630.31550.44290.038*
C220.48832 (9)0.42424 (11)0.37928 (16)0.0337 (4)
H220.53780.42420.38930.040*
C230.44103 (10)0.48887 (10)0.33299 (16)0.0323 (4)
H230.45800.53330.31150.039*
C240.36867 (9)0.48850 (9)0.31812 (14)0.0260 (3)
H240.33630.53290.28630.031*
N30.00000.22985 (10)0.25000.0302 (4)
O10.04653 (7)0.26663 (8)0.23472 (13)0.0460 (3)
O20.00000.15898 (9)0.25000.0450 (5)
N40.00000.57342 (10)0.25000.0246 (4)
O30.02609 (8)0.53615 (8)0.14987 (13)0.0462 (3)
O40.00000.64379 (9)0.25000.0333 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01213 (12)0.03237 (15)0.02007 (13)0.0000.00548 (10)0.000
N10.0154 (5)0.0210 (6)0.0167 (6)0.0005 (4)0.0065 (5)0.0001 (4)
N20.0158 (5)0.0210 (6)0.0245 (6)0.0004 (4)0.0112 (5)0.0015 (5)
C10.0180 (7)0.0255 (7)0.0323 (8)0.0018 (5)0.0166 (6)0.0045 (6)
C20.0257 (7)0.0235 (7)0.0294 (8)0.0018 (6)0.0203 (7)0.0041 (6)
C30.0216 (7)0.0164 (6)0.0209 (7)0.0008 (5)0.0131 (6)0.0004 (5)
C40.0172 (6)0.0177 (6)0.0182 (6)0.0007 (5)0.0104 (5)0.0018 (5)
C50.0149 (6)0.0170 (6)0.0193 (6)0.0009 (5)0.0092 (5)0.0015 (5)
C60.0215 (7)0.0235 (7)0.0201 (7)0.0034 (5)0.0140 (6)0.0012 (5)
C70.0327 (8)0.0280 (8)0.0268 (8)0.0003 (6)0.0208 (7)0.0004 (6)
C80.0410 (9)0.0375 (9)0.0227 (8)0.0079 (7)0.0218 (7)0.0054 (6)
C90.0281 (8)0.0394 (9)0.0190 (7)0.0069 (7)0.0120 (6)0.0045 (6)
C100.0241 (7)0.0301 (8)0.0264 (8)0.0008 (6)0.0140 (6)0.0061 (6)
C110.0248 (7)0.0250 (7)0.0223 (7)0.0009 (6)0.0144 (6)0.0007 (6)
C120.0148 (6)0.0247 (7)0.0154 (6)0.0015 (5)0.0064 (5)0.0003 (5)
C130.0137 (6)0.0263 (7)0.0187 (7)0.0011 (5)0.0084 (6)0.0003 (5)
C140.0165 (6)0.0187 (6)0.0165 (6)0.0005 (5)0.0089 (5)0.0016 (5)
C150.0159 (6)0.0166 (6)0.0171 (6)0.0009 (5)0.0079 (5)0.0015 (5)
C160.0193 (7)0.0168 (6)0.0188 (6)0.0007 (5)0.0112 (6)0.0014 (5)
C170.0234 (7)0.0221 (7)0.0188 (7)0.0001 (5)0.0123 (6)0.0022 (5)
C180.0203 (7)0.0225 (7)0.0163 (6)0.0007 (5)0.0064 (6)0.0021 (5)
C190.0199 (7)0.0252 (7)0.0168 (6)0.0003 (5)0.0115 (6)0.0013 (5)
C200.0268 (8)0.0258 (7)0.0259 (7)0.0030 (6)0.0174 (6)0.0010 (6)
C210.0269 (8)0.0404 (9)0.0306 (8)0.0102 (7)0.0179 (7)0.0019 (7)
C220.0219 (8)0.0546 (11)0.0298 (8)0.0020 (7)0.0178 (7)0.0050 (7)
C230.0311 (9)0.0404 (9)0.0322 (8)0.0079 (7)0.0219 (7)0.0007 (7)
C240.0271 (8)0.0274 (8)0.0265 (8)0.0000 (6)0.0169 (7)0.0026 (6)
N30.0194 (9)0.0234 (9)0.0284 (10)0.0000.0016 (8)0.000
O10.0320 (7)0.0442 (8)0.0517 (8)0.0079 (6)0.0172 (6)0.0062 (6)
O20.0322 (9)0.0204 (8)0.0539 (11)0.0000.0066 (8)0.000
N40.0198 (8)0.0247 (9)0.0339 (10)0.0000.0178 (8)0.000
O30.0391 (7)0.0525 (8)0.0517 (8)0.0126 (6)0.0283 (7)0.0281 (7)
O40.0374 (9)0.0207 (8)0.0483 (10)0.0000.0278 (8)0.000
Geometric parameters (Å, º) top
Zn1—N2i2.0843 (12)C10—H100.9500
Zn1—N22.0843 (12)C11—H110.9500
Zn1—N12.1309 (12)C12—C131.352 (2)
Zn1—N1i2.1309 (12)C12—H120.9500
Zn1—O3i2.4926 (15)C13—C141.4343 (19)
Zn1—O32.4926 (15)C13—H130.9500
Zn1—O1i2.6673 (15)C14—C151.4073 (19)
Zn1—O12.6673 (15)C14—C161.4261 (19)
N1—C181.3282 (18)C16—C171.3854 (19)
N1—C151.3578 (17)C16—C191.4814 (19)
N2—C11.3270 (19)C17—C181.394 (2)
N2—C51.3594 (17)C17—H170.9500
C1—C21.388 (2)C18—H180.9500
C1—H10.9500C19—C241.393 (2)
C2—C31.3803 (19)C19—C201.396 (2)
C2—H20.9500C20—C211.387 (2)
C3—C41.4271 (19)C20—H200.9500
C3—C61.4840 (19)C21—C221.382 (3)
C4—C51.4083 (19)C21—H210.9500
C4—C121.4356 (18)C22—C231.383 (3)
C5—C151.4464 (19)C22—H220.9500
C6—C111.392 (2)C23—C241.387 (2)
C6—C71.394 (2)C23—H230.9500
C7—C81.390 (2)C24—H240.9500
C7—H70.9500N3—O21.234 (2)
C8—C91.379 (2)N3—O11.2513 (16)
C8—H80.9500N3—O1i1.2513 (16)
C9—C101.383 (2)N4—O41.225 (2)
C9—H90.9500N4—O31.2508 (15)
C10—C111.390 (2)N4—O3i1.2508 (15)
N2i—Zn1—N2152.24 (7)C7—C8—H8120.0
N2i—Zn1—N1104.89 (4)C8—C9—C10120.26 (14)
N2—Zn1—N178.71 (4)C8—C9—H9119.9
N2i—Zn1—N1i78.71 (4)C10—C9—H9119.9
N2—Zn1—N1i104.89 (4)C9—C10—C11120.00 (15)
N1—Zn1—N1i165.33 (6)C9—C10—H10120.0
N2i—Zn1—O3i127.93 (4)C11—C10—H10120.0
N2—Zn1—O3i79.55 (4)C10—C11—C6120.23 (14)
N1—Zn1—O3i84.87 (4)C10—C11—H11119.9
N1i—Zn1—O3i81.88 (4)C6—C11—H11119.9
N2i—Zn1—O379.55 (4)C13—C12—C4121.36 (12)
N2—Zn1—O3127.93 (4)C13—C12—H12119.3
N1—Zn1—O381.88 (4)C4—C12—H12119.3
N1i—Zn1—O384.87 (4)C12—C13—C14121.75 (12)
O3i—Zn1—O350.81 (6)C12—C13—H13119.1
N2i—Zn1—O1i77.74 (5)C14—C13—H13119.1
N2—Zn1—O1i76.89 (4)C15—C14—C16117.91 (12)
N1—Zn1—O1i120.24 (4)C15—C14—C13118.44 (12)
N1i—Zn1—O1i74.34 (4)C16—C14—C13123.61 (12)
O3i—Zn1—O1i140.61 (4)N1—C15—C14123.29 (12)
O3—Zn1—O1i151.71 (4)N1—C15—C5116.78 (12)
N2i—Zn1—O176.89 (4)C14—C15—C5119.89 (12)
N2—Zn1—O177.74 (5)C17—C16—C14117.34 (12)
N1—Zn1—O174.34 (4)C17—C16—C19119.99 (12)
N1i—Zn1—O1120.24 (4)C14—C16—C19122.67 (12)
O3i—Zn1—O1151.71 (4)C16—C17—C18120.58 (13)
O3—Zn1—O1140.61 (4)C16—C17—H17119.7
O1i—Zn1—O147.53 (6)C18—C17—H17119.7
C18—N1—C15117.83 (12)N1—C18—C17123.00 (13)
C18—N1—Zn1129.38 (9)N1—C18—H18118.5
C15—N1—Zn1112.73 (9)C17—C18—H18118.5
C1—N2—C5118.01 (12)C24—C19—C20118.83 (13)
C1—N2—Zn1127.78 (10)C24—C19—C16119.45 (13)
C5—N2—Zn1114.19 (9)C20—C19—C16121.66 (13)
N2—C1—C2123.07 (13)C21—C20—C19120.15 (14)
N2—C1—H1118.5C21—C20—H20119.9
C2—C1—H1118.5C19—C20—H20119.9
C3—C2—C1120.41 (13)C22—C21—C20120.40 (15)
C3—C2—H2119.8C22—C21—H21119.8
C1—C2—H2119.8C20—C21—H21119.8
C2—C3—C4117.79 (13)C21—C22—C23120.07 (15)
C2—C3—C6119.47 (12)C21—C22—H22120.0
C4—C3—C6122.72 (12)C23—C22—H22120.0
C5—C4—C3117.58 (12)C22—C23—C24119.74 (15)
C5—C4—C12118.42 (12)C22—C23—H23120.1
C3—C4—C12123.85 (12)C24—C23—H23120.1
N2—C5—C4122.97 (12)C23—C24—C19120.81 (15)
N2—C5—C15116.89 (12)C23—C24—H24119.6
C4—C5—C15120.12 (12)C19—C24—H24119.6
C11—C6—C7119.16 (13)O2—N3—O1120.79 (10)
C11—C6—C3121.67 (13)O2—N3—O1i120.79 (10)
C7—C6—C3119.11 (13)O1—N3—O1i118.4 (2)
C8—C7—C6120.25 (15)N3—O1—Zn197.02 (11)
C8—C7—H7119.9O4—N4—O3121.25 (10)
C6—C7—H7119.9O4—N4—O3i121.25 (10)
C9—C8—C7120.07 (15)O3—N4—O3i117.5 (2)
C9—C8—H8120.0N4—O3—Zn195.84 (11)
N2i—Zn1—N1—C1832.48 (13)C5—C4—C12—C132.2 (2)
N2—Zn1—N1—C18175.80 (13)C3—C4—C12—C13173.24 (13)
N1i—Zn1—N1—C1870.00 (12)C4—C12—C13—C141.6 (2)
O3i—Zn1—N1—C1895.46 (12)C12—C13—C14—C150.4 (2)
O3—Zn1—N1—C1844.37 (12)C12—C13—C14—C16178.20 (13)
O1i—Zn1—N1—C18116.78 (12)C18—N1—C15—C141.7 (2)
O1—Zn1—N1—C18103.92 (13)Zn1—N1—C15—C14175.54 (10)
N2i—Zn1—N1—C15144.42 (9)C18—N1—C15—C5175.91 (12)
N2—Zn1—N1—C157.31 (9)Zn1—N1—C15—C56.80 (15)
N1i—Zn1—N1—C15113.11 (9)C16—C14—C15—N10.2 (2)
O3i—Zn1—N1—C1587.65 (9)C13—C14—C15—N1177.73 (12)
O3—Zn1—N1—C15138.74 (10)C16—C14—C15—C5177.75 (12)
O1i—Zn1—N1—C1560.11 (10)C13—C14—C15—C50.14 (19)
O1—Zn1—N1—C1572.97 (9)N2—C5—C15—N11.08 (18)
N2i—Zn1—N2—C184.68 (12)C4—C5—C15—N1177.28 (12)
N1—Zn1—N2—C1174.74 (13)N2—C5—C15—C14178.82 (12)
N1i—Zn1—N2—C19.35 (14)C4—C5—C15—C140.46 (19)
O3i—Zn1—N2—C187.95 (13)C15—C14—C16—C171.90 (19)
O3—Zn1—N2—C1104.51 (13)C13—C14—C16—C17175.87 (13)
O1i—Zn1—N2—C160.25 (12)C15—C14—C16—C19178.05 (12)
O1—Zn1—N2—C1109.04 (13)C13—C14—C16—C194.2 (2)
N2i—Zn1—N2—C593.76 (9)C14—C16—C17—C181.8 (2)
N1—Zn1—N2—C56.81 (9)C19—C16—C17—C18178.14 (13)
N1i—Zn1—N2—C5172.20 (9)C15—N1—C18—C171.9 (2)
O3i—Zn1—N2—C593.60 (10)Zn1—N1—C18—C17174.87 (10)
O3—Zn1—N2—C577.04 (11)C16—C17—C18—N10.1 (2)
O1i—Zn1—N2—C5118.20 (10)C17—C16—C19—C2446.16 (19)
O1—Zn1—N2—C569.41 (10)C14—C16—C19—C24133.88 (14)
C5—N2—C1—C21.6 (2)C17—C16—C19—C20131.04 (15)
Zn1—N2—C1—C2179.98 (11)C14—C16—C19—C2048.91 (19)
N2—C1—C2—C33.7 (2)C24—C19—C20—C210.2 (2)
C1—C2—C3—C41.6 (2)C16—C19—C20—C21177.05 (13)
C1—C2—C3—C6179.98 (13)C19—C20—C21—C220.0 (2)
C2—C3—C4—C52.00 (19)C20—C21—C22—C230.2 (3)
C6—C3—C4—C5176.28 (12)C21—C22—C23—C240.2 (3)
C2—C3—C4—C12177.44 (13)C22—C23—C24—C190.0 (2)
C6—C3—C4—C120.8 (2)C20—C19—C24—C230.2 (2)
C1—N2—C5—C42.3 (2)C16—C19—C24—C23177.13 (14)
Zn1—N2—C5—C4176.27 (10)O2—N3—O1—Zn1180.0
C1—N2—C5—C15175.98 (12)O1i—N3—O1—Zn10.0
Zn1—N2—C5—C155.42 (15)N2i—Zn1—O1—N385.27 (7)
C3—C4—C5—N24.1 (2)N2—Zn1—O1—N383.35 (8)
C12—C4—C5—N2179.82 (12)N1—Zn1—O1—N3164.89 (8)
C3—C4—C5—C15174.13 (12)N1i—Zn1—O1—N316.89 (9)
C12—C4—C5—C151.56 (19)O3i—Zn1—O1—N3120.67 (8)
C2—C3—C6—C11125.56 (15)O3—Zn1—O1—N3140.03 (7)
C4—C3—C6—C1156.18 (19)O1i—Zn1—O1—N30.0
C2—C3—C6—C751.64 (19)O4—N4—O3—Zn1180.0
C4—C3—C6—C7126.62 (15)O3i—N4—O3—Zn10.0
C11—C6—C7—C81.1 (2)N2i—Zn1—O3—N4163.13 (7)
C3—C6—C7—C8178.40 (13)N2—Zn1—O3—N421.21 (9)
C6—C7—C8—C91.5 (2)N1—Zn1—O3—N489.99 (7)
C7—C8—C9—C100.2 (2)N1i—Zn1—O3—N483.70 (7)
C8—C9—C10—C111.4 (2)O3i—Zn1—O3—N40.0
C9—C10—C11—C61.8 (2)O1i—Zn1—O3—N4126.09 (8)
C7—C6—C11—C100.5 (2)O1—Zn1—O3—N4142.88 (6)
C3—C6—C11—C10176.71 (13)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(NO3)2(C24H16N2)2]
Mr854.17
Crystal system, space groupMonoclinic, C2/c
Temperature (K)180
a, b, c (Å)20.5074 (4), 17.4116 (3), 12.7089 (3)
β (°) 124.035 (1)
V3)3760.56 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.40 × 0.28 × 0.15
Data collection
DiffractometerBruker X8 Kappa CCD APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.762, 0.900
No. of measured, independent and
observed [I > 2σ(I)] reflections
36092, 4283, 3824
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.06
No. of reflections4283
No. of parameters278
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.41

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

 

Footnotes

Present address: REQUIMTE/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.

Acknowledgements

We are grateful to the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support, for the post-doctoral research grants Nos. SFRH/BPD/63736/2009 (to JAF), SFRH/BPD/26097/2005 (to FYL), SFRH/BPD/34895/2007 (to LCS), and for specific funding toward the purchase of the diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllmann, R., Batzel, V., Pfeil, R. & Schmid, G. (1976). Z. Naturforsch. Teil B, 31, 1329–1335.  Google Scholar
First citationBabu, M. M. (2003). Nucleic Acids Res. 31, 3345–3348.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBeer, P. D., Drew, M. G. B., Leeson, P. B. & Ogden, M. I. (1995). J. Chem. Soc. Dalton Trans. pp. 1273–1283.  CSD CrossRef Web of Science Google Scholar
First citationBellito, C., Gastaldi, L. & Tomlinson, A. A. G. (1976). J. Chem. Soc. Dalton Trans. pp. 989–992.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChekhlov, A. N. (2007). Russ. J. Coord. Chem. 33, 90–95.  Web of Science CrossRef CAS Google Scholar
First citationDoxsee, K. M., Hagadorn, J. R. & Weakley, T. J. R. (1994). Inorg. Chem. 33, 2600–2606.  CSD CrossRef CAS Web of Science Google Scholar
First citationGreenwood, N. N., McGinnety, J. A. & Owen, J. D. (1971). J. Chem. Soc. A, pp. 809–813.  CrossRef Google Scholar
First citationJunk, P. C., Smith, M. K. & Steed, J. W. (2001). Polyhedron, 20, 2979–2988.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoreno, Y., Hermosilla, P., Garland, M. T., Peña, O. & Baggio, R. (2006). Acta Cryst. C62, m404–m406.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNurtaeva, A. & Holt, E. M. (2002). J. Chem. Crystallogr. 32, 337–346.  Web of Science CSD CrossRef CAS Google Scholar
First citationPaz, F. A. A. & Klinowski, J. (2003). J. Phys. Org. Chem. 16, 772–782.  CAS Google Scholar
First citationPaz, F. A. A. & Klinowski, J. (2004). J. Solid State Chem. 177, 3423–3432.  CAS Google Scholar
First citationPaz, F. A. A. & Klinowski, J. (2007). Pure Appl. Chem. 79, 1097–1110.  Web of Science CrossRef CAS Google Scholar
First citationPaz, F. A. A., Rocha, J., Klinowski, J., Trindade, T., Shi, F.-N. & Mafra, L. (2005). Prog. Solid State Chem. 33, 113–125.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds