metal-organic compounds
trans-Bis(4,7-diphenyl-1,10-phenanthroline-κ2N,N′)bis(nitrato-κ2O,O′)zinc(II)
aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, and bDepartment of Physics, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal
*Correspondence e-mail: filipe.paz@ua.pt
The title compound, [Zn(NO3)2(C24H16N2)2], is a twofold axially symmetric coordination compound. Given that the Zn—O interactions [2.4926 (15) and 2.6673 (15) Å] can be considered as weakly bonding and the nitrate ions share the same C2 axis of the Zn(dpp)2 fragment (dpp is 4,7-diphenyl-1,10-phenanthroline), these anions belong to the coordination sphere of Zn2+, leading to a complex with an overall of 8 for the metal ion.
Related literature
For an isotypic compound containing copper(II), see: Moreno et al. (2006). For structures with eight-coordinate Zn2+ ions containing see: Nurtaeva & Holt (2002); Doxsee et al. (1994); Junk et al. (2001). For structures with eight-coordinate Zn2+ ions containing a calyxarene, see: Beer et al. (1995). For structures with eight-coordinate Zn2+ ions containing nidoboranes, see: Greenwood et al. (1971); Allmann et al. (1976). For compounds containing the tetranitratozincate(II) anion, see: Bellito et al. (1976); Chekhlov (2007). For a description of the Cambridge Structural Database, see: Allen (2002). For geometrical aspects of C—H⋯π contacts, see: Babu (2003). For background research from our group focused on the use of hydrothermal synthesis to prepare metastable hybrid compounds, see: Paz & Klinowski (2003, 2004, 2007); Paz et al. (2005).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2006); cell SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810047161/cv2797sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810047161/cv2797Isup2.hkl
Starting chemicals were purchased from commercial sources and were used as received without any further purification. The title compound was prepared in a Teflon-lined reaction vessel under static hydrothermal conditions in an oven preheated at 160 °C. The total reaction time was of 2 days. The reactive mixture was prepared by using a Zn(NO3)2.6H2O: dpp (4,7-diphenyl-1,10-phenanthroline) molar ratio of about 2: 1. After reacting, a large amount of brown-red crystals could be directly isolated from the contents of the reaction vessel.
Hydrogen atoms bound to aromatic carbon atoms were located at their idealized positions and were included in the final structural model in riding-motion approximation with C—H = 0.95 Å. The isotropic displacement parameters for these atoms were fixed at 1.2 times Ueq of the respective parent carbon atom.
Some features of the zinc element, namely small radius and a fully occupied electron d-layer make this element unsuitable for preparing compounds with large coordination numbers. A survey in the Cambridge Structural Database (Allen, 2002) revealed, however, some zinc compounds which could be classified as having a
of 8. Nevertheless, most of these compounds comprise loosely bonded cyclic ligands such as (Nurtaeva & Holt, 2002; Doxsee et al., 1994; Junk et al., 2001), calyxarenes (Beer et al., 1995) or nidoboranes (Greenwood et al., 1971; Allmann et al., 1976), and also the tetranitratozincate(II) anion (Bellito et al., 1976; Chekhlov et al., 2007). Knowing that the eight-coordinated compound [Cu(dpp)2(NO3)2] (dpp = 4,7-diphenyl-1,10-phenanthroline, C24H16N2) has serendipitously been prepared (Moreno et al., 2006), we decided to test the preparation of the zinc(II) analogue using for that purpose hydrothermal synthetic approaches which have been used systematically in our research group (Paz & Klinowski, 2003; Paz & Klinowski, 2004; Paz & Klinowski, 2007; Paz et al., 2005).The title compound comprises a twofold axial symmetric Zn2+ coordination compound containing two dpp ligands and two nitrato ions (see Scheme). The
comprises half of the complex, in which the metal centre and the O2, N3, N4 and O4 atoms of the nitrato ligands are located in special positions along the rotation axis (Figure 1). The coordination environment around the metal centre can be envisaged as a highly distorted octahedron, where the dpp ligands occupy the equatorial positions and the nitrato ligands are in apical positions. While the Zn—N distances are 2.0843 (12) and 2.1309 (12) Å, the Zn—O ones are instead 2.4926 (15) and 2.6673 (15) Å. The latter values correspond to long Zn—O distances, but nevertheless they are considerably shorter than the Cu—O analogues observed in the isostructural Cu2+ compound (Moreno et al., 2006). This feature, in addition to the existence of a common twofold axis with the [Zn(dpp)2]2+ fragment, is a clear indication that the nitrate is effectively interacting with the metallic centre. The octahedral cis and trans angles are highly deviated from the ideal value. Considering the centre of gravity (Cg) of the O—N—O chelating moieties as the points where angles are measured, the cis angles range from ca 76.1 (N2—Zn1···Cg) to 104.89 (4)° (N2—Zn1—N1i; symmetry code (i): -x, y, 0.5 - z). Conversely, the trans angles can be as small as 152.24 (7)° (N2—Zn1—N2i). The average planes of the peripheral phenyl moieties of dpp form angles of ca 43.4 and 49.6° with the average plane of the phenanthroline fragment.The π–π stacking, C—H···π (Babu, 2003) and C—H···O. Due to the complexity of the network created by these intermolecular interactions they have been omitted from Figure 2 (crystal packing) for simplicity. Weak π-π stacking interactions occur between pairs of symmetry-equivalent peripheral phenyl substituents, with distances between the centroids (Ct) of ca 3.80 and 4.18 Å. C—H/π interactions occur between five H atoms and neighbouring aromatic rings, with 〈(C—H···Ct) larger than ca 147° and dH···Ct in the ca 2.80–3.45 Å range. C—H···O hydrogen bonding interactions occur between four H-atoms and neighbouring O-atoms from the nitrato groups: 〈(DHA) larger than ca 140° and internuclear D···A distances in the ca 3.29–3.50 Å range.
is rich in weak supramolecular interactions such asFor an isotypic compound containing copper(II), see: Moreno et al. (2006). For eight-coordinated zinc(II) compounds with
see: Nurtaeva & Holt (2002); Doxsee et al. (1994); Junk et al. (2001). For an eight-coordinated zinc(II) compound with a calyxarene, see: Beer et al. (1995). For eight-coordinated zinc(II) compounds containing nidoboranes, see: Greenwood et al. (1971); Allmann et al. (1976). For compounds containing the tetranitratozincate(II) anion, see: Bellito et al. (1976); Chekhlov et al. (2007). For a description of the Cambridge Structural Database, see: Allen (2002). For geometrical aspects of C—H···p contacts, see: Babu (2003). For background research from our group focused on the use of hydrothermal synthesis to prepare metastable hybrid compounds, see: Paz & Klinowski (2003, 2004, 2007); Paz et al. (2005).Data collection: APEX2 (Bruker, 2006); cell
SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Zn(NO3)2(C24H16N2)2] | F(000) = 1760 |
Mr = 854.17 | Dx = 1.509 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 9894 reflections |
a = 20.5074 (4) Å | θ = 3.0–30.2° |
b = 17.4116 (3) Å | µ = 0.72 mm−1 |
c = 12.7089 (3) Å | T = 180 K |
β = 124.035 (1)° | Prism, colourless |
V = 3760.56 (13) Å3 | 0.40 × 0.28 × 0.15 mm |
Z = 4 |
Bruker X8 Kappa CCD APEXII diffractometer | 4283 independent reflections |
Radiation source: fine-focus sealed tube | 3824 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
ω and φ scans | θmax = 27.5°, θmin = 3.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | h = −26→26 |
Tmin = 0.762, Tmax = 0.900 | k = −22→20 |
36092 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0361P)2 + 3.6556P] where P = (Fo2 + 2Fc2)/3 |
4283 reflections | (Δ/σ)max = 0.001 |
278 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.41 e Å−3 |
[Zn(NO3)2(C24H16N2)2] | V = 3760.56 (13) Å3 |
Mr = 854.17 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 20.5074 (4) Å | µ = 0.72 mm−1 |
b = 17.4116 (3) Å | T = 180 K |
c = 12.7089 (3) Å | 0.40 × 0.28 × 0.15 mm |
β = 124.035 (1)° |
Bruker X8 Kappa CCD APEXII diffractometer | 4283 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | 3824 reflections with I > 2σ(I) |
Tmin = 0.762, Tmax = 0.900 | Rint = 0.030 |
36092 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.29 e Å−3 |
4283 reflections | Δρmin = −0.41 e Å−3 |
278 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.0000 | 0.406835 (14) | 0.2500 | 0.02344 (8) | |
N1 | 0.10982 (7) | 0.42246 (7) | 0.27115 (11) | 0.0191 (2) | |
N2 | 0.07903 (7) | 0.37812 (7) | 0.44046 (11) | 0.0205 (2) | |
C1 | 0.06298 (8) | 0.36151 (8) | 0.52558 (15) | 0.0239 (3) | |
H1 | 0.0096 | 0.3623 | 0.4996 | 0.029* | |
C2 | 0.12052 (9) | 0.34307 (8) | 0.65081 (14) | 0.0236 (3) | |
H2 | 0.1063 | 0.3345 | 0.7093 | 0.028* | |
C3 | 0.19831 (8) | 0.33704 (8) | 0.69094 (13) | 0.0190 (3) | |
C4 | 0.21717 (8) | 0.35236 (8) | 0.60058 (13) | 0.0175 (3) | |
C5 | 0.15537 (8) | 0.37498 (8) | 0.47776 (13) | 0.0173 (3) | |
C6 | 0.25883 (8) | 0.31729 (8) | 0.82531 (13) | 0.0205 (3) | |
C7 | 0.26247 (9) | 0.35967 (9) | 0.92152 (15) | 0.0269 (3) | |
H7 | 0.2273 | 0.4014 | 0.9005 | 0.032* | |
C8 | 0.31732 (10) | 0.34113 (10) | 1.04812 (15) | 0.0316 (4) | |
H8 | 0.3204 | 0.3709 | 1.1134 | 0.038* | |
C9 | 0.36722 (9) | 0.27957 (10) | 1.07902 (14) | 0.0295 (3) | |
H9 | 0.4045 | 0.2669 | 1.1656 | 0.035* | |
C10 | 0.36317 (9) | 0.23612 (9) | 0.98444 (15) | 0.0269 (3) | |
H10 | 0.3968 | 0.1930 | 1.0061 | 0.032* | |
C11 | 0.30981 (8) | 0.25548 (9) | 0.85766 (14) | 0.0233 (3) | |
H11 | 0.3081 | 0.2264 | 0.7929 | 0.028* | |
C12 | 0.29576 (8) | 0.35127 (8) | 0.63016 (13) | 0.0194 (3) | |
H12 | 0.3378 | 0.3344 | 0.7117 | 0.023* | |
C13 | 0.31121 (8) | 0.37373 (8) | 0.54435 (13) | 0.0199 (3) | |
H13 | 0.3641 | 0.3735 | 0.5679 | 0.024* | |
C14 | 0.24988 (8) | 0.39783 (8) | 0.41882 (13) | 0.0174 (3) | |
C15 | 0.17192 (8) | 0.39831 (7) | 0.38575 (13) | 0.0173 (3) | |
C16 | 0.26372 (8) | 0.42396 (8) | 0.32660 (13) | 0.0180 (3) | |
C17 | 0.19943 (8) | 0.45022 (8) | 0.21198 (13) | 0.0212 (3) | |
H17 | 0.2066 | 0.4695 | 0.1492 | 0.025* | |
C18 | 0.12428 (8) | 0.44864 (8) | 0.18798 (13) | 0.0218 (3) | |
H18 | 0.0814 | 0.4671 | 0.1085 | 0.026* | |
C19 | 0.34289 (8) | 0.42377 (8) | 0.34930 (13) | 0.0200 (3) | |
C20 | 0.39130 (9) | 0.35907 (9) | 0.39623 (14) | 0.0248 (3) | |
H20 | 0.3747 | 0.3145 | 0.4182 | 0.030* | |
C21 | 0.46359 (9) | 0.35970 (10) | 0.41090 (15) | 0.0317 (4) | |
H21 | 0.4963 | 0.3155 | 0.4429 | 0.038* | |
C22 | 0.48832 (9) | 0.42424 (11) | 0.37928 (16) | 0.0337 (4) | |
H22 | 0.5378 | 0.4242 | 0.3893 | 0.040* | |
C23 | 0.44103 (10) | 0.48887 (10) | 0.33299 (16) | 0.0323 (4) | |
H23 | 0.4580 | 0.5333 | 0.3115 | 0.039* | |
C24 | 0.36867 (9) | 0.48850 (9) | 0.31812 (14) | 0.0260 (3) | |
H24 | 0.3363 | 0.5329 | 0.2863 | 0.031* | |
N3 | 0.0000 | 0.22985 (10) | 0.2500 | 0.0302 (4) | |
O1 | 0.04653 (7) | 0.26663 (8) | 0.23472 (13) | 0.0460 (3) | |
O2 | 0.0000 | 0.15898 (9) | 0.2500 | 0.0450 (5) | |
N4 | 0.0000 | 0.57342 (10) | 0.2500 | 0.0246 (4) | |
O3 | −0.02609 (8) | 0.53615 (8) | 0.14987 (13) | 0.0462 (3) | |
O4 | 0.0000 | 0.64379 (9) | 0.2500 | 0.0333 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01213 (12) | 0.03237 (15) | 0.02007 (13) | 0.000 | 0.00548 (10) | 0.000 |
N1 | 0.0154 (5) | 0.0210 (6) | 0.0167 (6) | −0.0005 (4) | 0.0065 (5) | 0.0001 (4) |
N2 | 0.0158 (5) | 0.0210 (6) | 0.0245 (6) | 0.0004 (4) | 0.0112 (5) | 0.0015 (5) |
C1 | 0.0180 (7) | 0.0255 (7) | 0.0323 (8) | 0.0018 (5) | 0.0166 (6) | 0.0045 (6) |
C2 | 0.0257 (7) | 0.0235 (7) | 0.0294 (8) | 0.0018 (6) | 0.0203 (7) | 0.0041 (6) |
C3 | 0.0216 (7) | 0.0164 (6) | 0.0209 (7) | −0.0008 (5) | 0.0131 (6) | −0.0004 (5) |
C4 | 0.0172 (6) | 0.0177 (6) | 0.0182 (6) | −0.0007 (5) | 0.0104 (5) | −0.0018 (5) |
C5 | 0.0149 (6) | 0.0170 (6) | 0.0193 (6) | −0.0009 (5) | 0.0092 (5) | −0.0015 (5) |
C6 | 0.0215 (7) | 0.0235 (7) | 0.0201 (7) | −0.0034 (5) | 0.0140 (6) | 0.0012 (5) |
C7 | 0.0327 (8) | 0.0280 (8) | 0.0268 (8) | −0.0003 (6) | 0.0208 (7) | −0.0004 (6) |
C8 | 0.0410 (9) | 0.0375 (9) | 0.0227 (8) | −0.0079 (7) | 0.0218 (7) | −0.0054 (6) |
C9 | 0.0281 (8) | 0.0394 (9) | 0.0190 (7) | −0.0069 (7) | 0.0120 (6) | 0.0045 (6) |
C10 | 0.0241 (7) | 0.0301 (8) | 0.0264 (8) | 0.0008 (6) | 0.0140 (6) | 0.0061 (6) |
C11 | 0.0248 (7) | 0.0250 (7) | 0.0223 (7) | −0.0009 (6) | 0.0144 (6) | 0.0007 (6) |
C12 | 0.0148 (6) | 0.0247 (7) | 0.0154 (6) | 0.0015 (5) | 0.0064 (5) | 0.0003 (5) |
C13 | 0.0137 (6) | 0.0263 (7) | 0.0187 (7) | 0.0011 (5) | 0.0084 (6) | −0.0003 (5) |
C14 | 0.0165 (6) | 0.0187 (6) | 0.0165 (6) | −0.0005 (5) | 0.0089 (5) | −0.0016 (5) |
C15 | 0.0159 (6) | 0.0166 (6) | 0.0171 (6) | −0.0009 (5) | 0.0079 (5) | −0.0015 (5) |
C16 | 0.0193 (7) | 0.0168 (6) | 0.0188 (6) | −0.0007 (5) | 0.0112 (6) | −0.0014 (5) |
C17 | 0.0234 (7) | 0.0221 (7) | 0.0188 (7) | −0.0001 (5) | 0.0123 (6) | 0.0022 (5) |
C18 | 0.0203 (7) | 0.0225 (7) | 0.0163 (6) | 0.0007 (5) | 0.0064 (6) | 0.0021 (5) |
C19 | 0.0199 (7) | 0.0252 (7) | 0.0168 (6) | −0.0003 (5) | 0.0115 (6) | −0.0013 (5) |
C20 | 0.0268 (8) | 0.0258 (7) | 0.0259 (7) | 0.0030 (6) | 0.0174 (6) | 0.0010 (6) |
C21 | 0.0269 (8) | 0.0404 (9) | 0.0306 (8) | 0.0102 (7) | 0.0179 (7) | 0.0019 (7) |
C22 | 0.0219 (8) | 0.0546 (11) | 0.0298 (8) | −0.0020 (7) | 0.0178 (7) | −0.0050 (7) |
C23 | 0.0311 (9) | 0.0404 (9) | 0.0322 (8) | −0.0079 (7) | 0.0219 (7) | −0.0007 (7) |
C24 | 0.0271 (8) | 0.0274 (8) | 0.0265 (8) | 0.0000 (6) | 0.0169 (7) | 0.0026 (6) |
N3 | 0.0194 (9) | 0.0234 (9) | 0.0284 (10) | 0.000 | 0.0016 (8) | 0.000 |
O1 | 0.0320 (7) | 0.0442 (8) | 0.0517 (8) | −0.0079 (6) | 0.0172 (6) | 0.0062 (6) |
O2 | 0.0322 (9) | 0.0204 (8) | 0.0539 (11) | 0.000 | 0.0066 (8) | 0.000 |
N4 | 0.0198 (8) | 0.0247 (9) | 0.0339 (10) | 0.000 | 0.0178 (8) | 0.000 |
O3 | 0.0391 (7) | 0.0525 (8) | 0.0517 (8) | −0.0126 (6) | 0.0283 (7) | −0.0281 (7) |
O4 | 0.0374 (9) | 0.0207 (8) | 0.0483 (10) | 0.000 | 0.0278 (8) | 0.000 |
Zn1—N2i | 2.0843 (12) | C10—H10 | 0.9500 |
Zn1—N2 | 2.0843 (12) | C11—H11 | 0.9500 |
Zn1—N1 | 2.1309 (12) | C12—C13 | 1.352 (2) |
Zn1—N1i | 2.1309 (12) | C12—H12 | 0.9500 |
Zn1—O3i | 2.4926 (15) | C13—C14 | 1.4343 (19) |
Zn1—O3 | 2.4926 (15) | C13—H13 | 0.9500 |
Zn1—O1i | 2.6673 (15) | C14—C15 | 1.4073 (19) |
Zn1—O1 | 2.6673 (15) | C14—C16 | 1.4261 (19) |
N1—C18 | 1.3282 (18) | C16—C17 | 1.3854 (19) |
N1—C15 | 1.3578 (17) | C16—C19 | 1.4814 (19) |
N2—C1 | 1.3270 (19) | C17—C18 | 1.394 (2) |
N2—C5 | 1.3594 (17) | C17—H17 | 0.9500 |
C1—C2 | 1.388 (2) | C18—H18 | 0.9500 |
C1—H1 | 0.9500 | C19—C24 | 1.393 (2) |
C2—C3 | 1.3803 (19) | C19—C20 | 1.396 (2) |
C2—H2 | 0.9500 | C20—C21 | 1.387 (2) |
C3—C4 | 1.4271 (19) | C20—H20 | 0.9500 |
C3—C6 | 1.4840 (19) | C21—C22 | 1.382 (3) |
C4—C5 | 1.4083 (19) | C21—H21 | 0.9500 |
C4—C12 | 1.4356 (18) | C22—C23 | 1.383 (3) |
C5—C15 | 1.4464 (19) | C22—H22 | 0.9500 |
C6—C11 | 1.392 (2) | C23—C24 | 1.387 (2) |
C6—C7 | 1.394 (2) | C23—H23 | 0.9500 |
C7—C8 | 1.390 (2) | C24—H24 | 0.9500 |
C7—H7 | 0.9500 | N3—O2 | 1.234 (2) |
C8—C9 | 1.379 (2) | N3—O1 | 1.2513 (16) |
C8—H8 | 0.9500 | N3—O1i | 1.2513 (16) |
C9—C10 | 1.383 (2) | N4—O4 | 1.225 (2) |
C9—H9 | 0.9500 | N4—O3 | 1.2508 (15) |
C10—C11 | 1.390 (2) | N4—O3i | 1.2508 (15) |
N2i—Zn1—N2 | 152.24 (7) | C7—C8—H8 | 120.0 |
N2i—Zn1—N1 | 104.89 (4) | C8—C9—C10 | 120.26 (14) |
N2—Zn1—N1 | 78.71 (4) | C8—C9—H9 | 119.9 |
N2i—Zn1—N1i | 78.71 (4) | C10—C9—H9 | 119.9 |
N2—Zn1—N1i | 104.89 (4) | C9—C10—C11 | 120.00 (15) |
N1—Zn1—N1i | 165.33 (6) | C9—C10—H10 | 120.0 |
N2i—Zn1—O3i | 127.93 (4) | C11—C10—H10 | 120.0 |
N2—Zn1—O3i | 79.55 (4) | C10—C11—C6 | 120.23 (14) |
N1—Zn1—O3i | 84.87 (4) | C10—C11—H11 | 119.9 |
N1i—Zn1—O3i | 81.88 (4) | C6—C11—H11 | 119.9 |
N2i—Zn1—O3 | 79.55 (4) | C13—C12—C4 | 121.36 (12) |
N2—Zn1—O3 | 127.93 (4) | C13—C12—H12 | 119.3 |
N1—Zn1—O3 | 81.88 (4) | C4—C12—H12 | 119.3 |
N1i—Zn1—O3 | 84.87 (4) | C12—C13—C14 | 121.75 (12) |
O3i—Zn1—O3 | 50.81 (6) | C12—C13—H13 | 119.1 |
N2i—Zn1—O1i | 77.74 (5) | C14—C13—H13 | 119.1 |
N2—Zn1—O1i | 76.89 (4) | C15—C14—C16 | 117.91 (12) |
N1—Zn1—O1i | 120.24 (4) | C15—C14—C13 | 118.44 (12) |
N1i—Zn1—O1i | 74.34 (4) | C16—C14—C13 | 123.61 (12) |
O3i—Zn1—O1i | 140.61 (4) | N1—C15—C14 | 123.29 (12) |
O3—Zn1—O1i | 151.71 (4) | N1—C15—C5 | 116.78 (12) |
N2i—Zn1—O1 | 76.89 (4) | C14—C15—C5 | 119.89 (12) |
N2—Zn1—O1 | 77.74 (5) | C17—C16—C14 | 117.34 (12) |
N1—Zn1—O1 | 74.34 (4) | C17—C16—C19 | 119.99 (12) |
N1i—Zn1—O1 | 120.24 (4) | C14—C16—C19 | 122.67 (12) |
O3i—Zn1—O1 | 151.71 (4) | C16—C17—C18 | 120.58 (13) |
O3—Zn1—O1 | 140.61 (4) | C16—C17—H17 | 119.7 |
O1i—Zn1—O1 | 47.53 (6) | C18—C17—H17 | 119.7 |
C18—N1—C15 | 117.83 (12) | N1—C18—C17 | 123.00 (13) |
C18—N1—Zn1 | 129.38 (9) | N1—C18—H18 | 118.5 |
C15—N1—Zn1 | 112.73 (9) | C17—C18—H18 | 118.5 |
C1—N2—C5 | 118.01 (12) | C24—C19—C20 | 118.83 (13) |
C1—N2—Zn1 | 127.78 (10) | C24—C19—C16 | 119.45 (13) |
C5—N2—Zn1 | 114.19 (9) | C20—C19—C16 | 121.66 (13) |
N2—C1—C2 | 123.07 (13) | C21—C20—C19 | 120.15 (14) |
N2—C1—H1 | 118.5 | C21—C20—H20 | 119.9 |
C2—C1—H1 | 118.5 | C19—C20—H20 | 119.9 |
C3—C2—C1 | 120.41 (13) | C22—C21—C20 | 120.40 (15) |
C3—C2—H2 | 119.8 | C22—C21—H21 | 119.8 |
C1—C2—H2 | 119.8 | C20—C21—H21 | 119.8 |
C2—C3—C4 | 117.79 (13) | C21—C22—C23 | 120.07 (15) |
C2—C3—C6 | 119.47 (12) | C21—C22—H22 | 120.0 |
C4—C3—C6 | 122.72 (12) | C23—C22—H22 | 120.0 |
C5—C4—C3 | 117.58 (12) | C22—C23—C24 | 119.74 (15) |
C5—C4—C12 | 118.42 (12) | C22—C23—H23 | 120.1 |
C3—C4—C12 | 123.85 (12) | C24—C23—H23 | 120.1 |
N2—C5—C4 | 122.97 (12) | C23—C24—C19 | 120.81 (15) |
N2—C5—C15 | 116.89 (12) | C23—C24—H24 | 119.6 |
C4—C5—C15 | 120.12 (12) | C19—C24—H24 | 119.6 |
C11—C6—C7 | 119.16 (13) | O2—N3—O1 | 120.79 (10) |
C11—C6—C3 | 121.67 (13) | O2—N3—O1i | 120.79 (10) |
C7—C6—C3 | 119.11 (13) | O1—N3—O1i | 118.4 (2) |
C8—C7—C6 | 120.25 (15) | N3—O1—Zn1 | 97.02 (11) |
C8—C7—H7 | 119.9 | O4—N4—O3 | 121.25 (10) |
C6—C7—H7 | 119.9 | O4—N4—O3i | 121.25 (10) |
C9—C8—C7 | 120.07 (15) | O3—N4—O3i | 117.5 (2) |
C9—C8—H8 | 120.0 | N4—O3—Zn1 | 95.84 (11) |
N2i—Zn1—N1—C18 | 32.48 (13) | C5—C4—C12—C13 | 2.2 (2) |
N2—Zn1—N1—C18 | −175.80 (13) | C3—C4—C12—C13 | −173.24 (13) |
N1i—Zn1—N1—C18 | −70.00 (12) | C4—C12—C13—C14 | −1.6 (2) |
O3i—Zn1—N1—C18 | −95.46 (12) | C12—C13—C14—C15 | 0.4 (2) |
O3—Zn1—N1—C18 | −44.37 (12) | C12—C13—C14—C16 | 178.20 (13) |
O1i—Zn1—N1—C18 | 116.78 (12) | C18—N1—C15—C14 | −1.7 (2) |
O1—Zn1—N1—C18 | 103.92 (13) | Zn1—N1—C15—C14 | 175.54 (10) |
N2i—Zn1—N1—C15 | −144.42 (9) | C18—N1—C15—C5 | 175.91 (12) |
N2—Zn1—N1—C15 | 7.31 (9) | Zn1—N1—C15—C5 | −6.80 (15) |
N1i—Zn1—N1—C15 | 113.11 (9) | C16—C14—C15—N1 | −0.2 (2) |
O3i—Zn1—N1—C15 | 87.65 (9) | C13—C14—C15—N1 | 177.73 (12) |
O3—Zn1—N1—C15 | 138.74 (10) | C16—C14—C15—C5 | −177.75 (12) |
O1i—Zn1—N1—C15 | −60.11 (10) | C13—C14—C15—C5 | 0.14 (19) |
O1—Zn1—N1—C15 | −72.97 (9) | N2—C5—C15—N1 | 1.08 (18) |
N2i—Zn1—N2—C1 | −84.68 (12) | C4—C5—C15—N1 | −177.28 (12) |
N1—Zn1—N2—C1 | 174.74 (13) | N2—C5—C15—C14 | 178.82 (12) |
N1i—Zn1—N2—C1 | 9.35 (14) | C4—C5—C15—C14 | 0.46 (19) |
O3i—Zn1—N2—C1 | 87.95 (13) | C15—C14—C16—C17 | 1.90 (19) |
O3—Zn1—N2—C1 | 104.51 (13) | C13—C14—C16—C17 | −175.87 (13) |
O1i—Zn1—N2—C1 | −60.25 (12) | C15—C14—C16—C19 | −178.05 (12) |
O1—Zn1—N2—C1 | −109.04 (13) | C13—C14—C16—C19 | 4.2 (2) |
N2i—Zn1—N2—C5 | 93.76 (9) | C14—C16—C17—C18 | −1.8 (2) |
N1—Zn1—N2—C5 | −6.81 (9) | C19—C16—C17—C18 | 178.14 (13) |
N1i—Zn1—N2—C5 | −172.20 (9) | C15—N1—C18—C17 | 1.9 (2) |
O3i—Zn1—N2—C5 | −93.60 (10) | Zn1—N1—C18—C17 | −174.87 (10) |
O3—Zn1—N2—C5 | −77.04 (11) | C16—C17—C18—N1 | −0.1 (2) |
O1i—Zn1—N2—C5 | 118.20 (10) | C17—C16—C19—C24 | 46.16 (19) |
O1—Zn1—N2—C5 | 69.41 (10) | C14—C16—C19—C24 | −133.88 (14) |
C5—N2—C1—C2 | 1.6 (2) | C17—C16—C19—C20 | −131.04 (15) |
Zn1—N2—C1—C2 | −179.98 (11) | C14—C16—C19—C20 | 48.91 (19) |
N2—C1—C2—C3 | −3.7 (2) | C24—C19—C20—C21 | −0.2 (2) |
C1—C2—C3—C4 | 1.6 (2) | C16—C19—C20—C21 | 177.05 (13) |
C1—C2—C3—C6 | 179.98 (13) | C19—C20—C21—C22 | 0.0 (2) |
C2—C3—C4—C5 | 2.00 (19) | C20—C21—C22—C23 | 0.2 (3) |
C6—C3—C4—C5 | −176.28 (12) | C21—C22—C23—C24 | −0.2 (3) |
C2—C3—C4—C12 | 177.44 (13) | C22—C23—C24—C19 | 0.0 (2) |
C6—C3—C4—C12 | −0.8 (2) | C20—C19—C24—C23 | 0.2 (2) |
C1—N2—C5—C4 | 2.3 (2) | C16—C19—C24—C23 | −177.13 (14) |
Zn1—N2—C5—C4 | −176.27 (10) | O2—N3—O1—Zn1 | 180.0 |
C1—N2—C5—C15 | −175.98 (12) | O1i—N3—O1—Zn1 | 0.0 |
Zn1—N2—C5—C15 | 5.42 (15) | N2i—Zn1—O1—N3 | −85.27 (7) |
C3—C4—C5—N2 | −4.1 (2) | N2—Zn1—O1—N3 | 83.35 (8) |
C12—C4—C5—N2 | −179.82 (12) | N1—Zn1—O1—N3 | 164.89 (8) |
C3—C4—C5—C15 | 174.13 (12) | N1i—Zn1—O1—N3 | −16.89 (9) |
C12—C4—C5—C15 | −1.56 (19) | O3i—Zn1—O1—N3 | 120.67 (8) |
C2—C3—C6—C11 | 125.56 (15) | O3—Zn1—O1—N3 | −140.03 (7) |
C4—C3—C6—C11 | −56.18 (19) | O1i—Zn1—O1—N3 | 0.0 |
C2—C3—C6—C7 | −51.64 (19) | O4—N4—O3—Zn1 | 180.0 |
C4—C3—C6—C7 | 126.62 (15) | O3i—N4—O3—Zn1 | 0.0 |
C11—C6—C7—C8 | 1.1 (2) | N2i—Zn1—O3—N4 | 163.13 (7) |
C3—C6—C7—C8 | 178.40 (13) | N2—Zn1—O3—N4 | −21.21 (9) |
C6—C7—C8—C9 | −1.5 (2) | N1—Zn1—O3—N4 | −89.99 (7) |
C7—C8—C9—C10 | 0.2 (2) | N1i—Zn1—O3—N4 | 83.70 (7) |
C8—C9—C10—C11 | 1.4 (2) | O3i—Zn1—O3—N4 | 0.0 |
C9—C10—C11—C6 | −1.8 (2) | O1i—Zn1—O3—N4 | 126.09 (8) |
C7—C6—C11—C10 | 0.5 (2) | O1—Zn1—O3—N4 | −142.88 (6) |
C3—C6—C11—C10 | −176.71 (13) |
Symmetry code: (i) −x, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Zn(NO3)2(C24H16N2)2] |
Mr | 854.17 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 180 |
a, b, c (Å) | 20.5074 (4), 17.4116 (3), 12.7089 (3) |
β (°) | 124.035 (1) |
V (Å3) | 3760.56 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.72 |
Crystal size (mm) | 0.40 × 0.28 × 0.15 |
Data collection | |
Diffractometer | Bruker X8 Kappa CCD APEXII |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1998) |
Tmin, Tmax | 0.762, 0.900 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 36092, 4283, 3824 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.077, 1.06 |
No. of reflections | 4283 |
No. of parameters | 278 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.41 |
Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).
Footnotes
‡Present address: REQUIMTE/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
Acknowledgements
We are grateful to the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support, for the post-doctoral research grants Nos. SFRH/BPD/63736/2009 (to JAF), SFRH/BPD/26097/2005 (to FYL), SFRH/BPD/34895/2007 (to LCS), and for specific funding toward the purchase of the diffractometer.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Allmann, R., Batzel, V., Pfeil, R. & Schmid, G. (1976). Z. Naturforsch. Teil B, 31, 1329–1335. Google Scholar
Babu, M. M. (2003). Nucleic Acids Res. 31, 3345–3348. Web of Science CrossRef PubMed CAS Google Scholar
Beer, P. D., Drew, M. G. B., Leeson, P. B. & Ogden, M. I. (1995). J. Chem. Soc. Dalton Trans. pp. 1273–1283. CSD CrossRef Web of Science Google Scholar
Bellito, C., Gastaldi, L. & Tomlinson, A. A. G. (1976). J. Chem. Soc. Dalton Trans. pp. 989–992. CSD CrossRef Web of Science Google Scholar
Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chekhlov, A. N. (2007). Russ. J. Coord. Chem. 33, 90–95. Web of Science CrossRef CAS Google Scholar
Doxsee, K. M., Hagadorn, J. R. & Weakley, T. J. R. (1994). Inorg. Chem. 33, 2600–2606. CSD CrossRef CAS Web of Science Google Scholar
Greenwood, N. N., McGinnety, J. A. & Owen, J. D. (1971). J. Chem. Soc. A, pp. 809–813. CrossRef Google Scholar
Junk, P. C., Smith, M. K. & Steed, J. W. (2001). Polyhedron, 20, 2979–2988. Web of Science CSD CrossRef CAS Google Scholar
Moreno, Y., Hermosilla, P., Garland, M. T., Peña, O. & Baggio, R. (2006). Acta Cryst. C62, m404–m406. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nurtaeva, A. & Holt, E. M. (2002). J. Chem. Crystallogr. 32, 337–346. Web of Science CSD CrossRef CAS Google Scholar
Paz, F. A. A. & Klinowski, J. (2003). J. Phys. Org. Chem. 16, 772–782. CAS Google Scholar
Paz, F. A. A. & Klinowski, J. (2004). J. Solid State Chem. 177, 3423–3432. CAS Google Scholar
Paz, F. A. A. & Klinowski, J. (2007). Pure Appl. Chem. 79, 1097–1110. Web of Science CrossRef CAS Google Scholar
Paz, F. A. A., Rocha, J., Klinowski, J., Trindade, T., Shi, F.-N. & Mafra, L. (2005). Prog. Solid State Chem. 33, 113–125. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Some features of the zinc element, namely small radius and a fully occupied electron d-layer make this element unsuitable for preparing compounds with large coordination numbers. A survey in the Cambridge Structural Database (Allen, 2002) revealed, however, some zinc compounds which could be classified as having a coordination number of 8. Nevertheless, most of these compounds comprise loosely bonded cyclic ligands such as crown ethers (Nurtaeva & Holt, 2002; Doxsee et al., 1994; Junk et al., 2001), calyxarenes (Beer et al., 1995) or nidoboranes (Greenwood et al., 1971; Allmann et al., 1976), and also the tetranitratozincate(II) anion (Bellito et al., 1976; Chekhlov et al., 2007). Knowing that the eight-coordinated compound [Cu(dpp)2(NO3)2] (dpp = 4,7-diphenyl-1,10-phenanthroline, C24H16N2) has serendipitously been prepared (Moreno et al., 2006), we decided to test the preparation of the zinc(II) analogue using for that purpose hydrothermal synthetic approaches which have been used systematically in our research group (Paz & Klinowski, 2003; Paz & Klinowski, 2004; Paz & Klinowski, 2007; Paz et al., 2005).
The title compound comprises a twofold axial symmetric Zn2+ coordination compound containing two dpp ligands and two nitrato ions (see Scheme). The asymmetric unit comprises half of the complex, in which the metal centre and the O2, N3, N4 and O4 atoms of the nitrato ligands are located in special positions along the rotation axis (Figure 1). The coordination environment around the metal centre can be envisaged as a highly distorted octahedron, where the dpp ligands occupy the equatorial positions and the nitrato ligands are in apical positions. While the Zn—N distances are 2.0843 (12) and 2.1309 (12) Å, the Zn—O ones are instead 2.4926 (15) and 2.6673 (15) Å. The latter values correspond to long Zn—O distances, but nevertheless they are considerably shorter than the Cu—O analogues observed in the isostructural Cu2+ compound (Moreno et al., 2006). This feature, in addition to the existence of a common twofold axis with the [Zn(dpp)2]2+ fragment, is a clear indication that the nitrate is effectively interacting with the metallic centre. The octahedral cis and trans angles are highly deviated from the ideal value. Considering the centre of gravity (Cg) of the O—N—O chelating moieties as the points where angles are measured, the cis angles range from ca 76.1 (N2—Zn1···Cg) to 104.89 (4)° (N2—Zn1—N1i; symmetry code (i): -x, y, 0.5 - z). Conversely, the trans angles can be as small as 152.24 (7)° (N2—Zn1—N2i). The average planes of the peripheral phenyl moieties of dpp form angles of ca 43.4 and 49.6° with the average plane of the phenanthroline fragment.
The crystal structure is rich in weak supramolecular interactions such as π–π stacking, C—H···π (Babu, 2003) and C—H···O. Due to the complexity of the network created by these intermolecular interactions they have been omitted from Figure 2 (crystal packing) for simplicity. Weak π-π stacking interactions occur between pairs of symmetry-equivalent peripheral phenyl substituents, with distances between the centroids (Ct) of ca 3.80 and 4.18 Å. C—H/π interactions occur between five H atoms and neighbouring aromatic rings, with 〈(C—H···Ct) larger than ca 147° and dH···Ct in the ca 2.80–3.45 Å range. C—H···O hydrogen bonding interactions occur between four H-atoms and neighbouring O-atoms from the nitrato groups: 〈(DHA) larger than ca 140° and internuclear D···A distances in the ca 3.29–3.50 Å range.