metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A 2:1 cocrystal of the cis and trans isomers of bis­­[1,1,1,5,5,5-hexa­fluoro­pentane-2,4-dionato(1−)-κ2O,O′]bis­­(4-phenyl­pyridine N-oxide-κO)copper(II)

aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal
*Correspondence e-mail: filipe.paz@ua.pt

(Received 22 November 2010; accepted 24 November 2010; online 27 November 2010)

The title compound is a co-crystal of the cis and trans isomers, namely cis-bis­[1,1,1,5,5,5-hexa­fluoro­pentane-2,4-dionato(1−)-κ2O,O′]bis­(4-phenyl­pyridine N-oxide-κO)copper(II)–trans-bis­[1,1,1,5,5,5-hexa­fluoro­pentane-2,4-dionato(1−)-κ2O,O′]bis(4-phenyl­pyridine N-oxide-κO)copper(II) (2/1), [Cu(C5HF6O2)2(C11H9NO)2]. In both isomers, the coordination geometry of the Cu2+ atom is octa­hedral, exhibiting typical Jahn–Teller distortion. The metal atom of the trans isomer is located on an inversion centre. In the cis isomer, the phenyl ring in one 4-phenyl­pyridine N-oxide ligand is disordered over two orientations in a 1:1 ratio. In the crystal, weak inter­molecular C—H⋯F and C—H⋯O contacts establish connections between the cis and trans isomers.

Related literature

For crystal structures with 4-phenyl­pyridine-N-oxide, see: Papadaki et al. (1999[Papadaki, H., Christofides, A., Jeffery, J. C. & Bakas, T. (1999). J. Coord. Chem. 47, 559-572.]); Watson & Johnson (1971[Watson, W. H. & Johnson, D. R. (1971). J. Coord. Chem. 1, 145-153.]); Verdejo et al. (2009[Verdejo, B., Gil-Ramírez, G. & Ballester, D. (2009). J. Am. Chem. Soc., 131, 3178-3179.]); Ramos et al. (2010[Ramos, A. I., Fernandes, J. A., Silva, P., Ribeiro-Claro, P. J. A., Braga, S. S. & Almeida Paz, F. A. (2010). Acta Cryst. E66, m824-m825.]). For general background studies on cyclo­dextrin inclusion compounds from our research group, see: Marques et al. (2008[Marques, J., Anjo, L., Marques, M. P. M., Santos, T. M., Paz, F. A. A. & Braga, S. S. (2008). J. Organomet. Chem. 693, 3021-3028.], 2009[Marques, J., Santos, T. M., Marques, M. P. & Braga, S. S. (2009). Dalton Trans. pp. 9812-9819.]); Petrovski et al. (2008[Petrovski, Ž., de Matos, M., Braga, S. S., Pereira, C. C. L., Matos, M. L., Gonçalves, I. S., Pillinger, M., Alves, P. M. & Romão, C. C. (2008). J. Organomet. Chem. 693, 675-684.]); Pereira et al. (2006[Pereira, C. C. L., Braga, S. S., Paz, F. A. A., Pillinger, M., Klinowski, J. & Gonçalves, I. S. (2006). Eur. J. Inorg. Chem. pp. 4278-4288.], 2008[Pereira, C. C. L., Diogo, C. V., Burgeiro, A., Oliveira, P. J., Marques, M. P. M., Braga, S. S., Paz, F. A. A., Pillinger, M. & Gonçalves, I. S. (2008). Organometallics, 27, 4948-4956.]); Braga et al. (2006[Braga, S. S., Paz, F. A. A., Pillinger, M., Seixas, J. D., Romão, C. C. & Gonçalves, I. S. (2006). Eur. J. Inorg. Chem. pp. 1662-1669.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For a description of the graph-set notation for hydrogen-bonded aggregates, see: Grell et al. (1999[Grell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030-1043.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C5HF6O2)2(C11H9NO)2]

  • Mr = 820.04

  • Triclinic, [P \overline 1]

  • a = 14.3902 (6) Å

  • b = 14.7372 (6) Å

  • c = 14.9636 (10) Å

  • α = 102.191 (3)°

  • β = 111.192 (3)°

  • γ = 114.122 (2)°

  • V = 2448.4 (2) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 150 K

  • 0.20 × 0.16 × 0.10 mm

Data collection
  • Bruker X8 Kappa CCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.859, Tmax = 0.926

  • 128806 measured reflections

  • 13039 independent reflections

  • 8907 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.186

  • S = 0.97

  • 13039 reflections

  • 702 parameters

  • H-atom parameters constrained

  • Δρmax = 1.18 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C41—H41⋯F2i 0.95 2.45 3.219 (5) 138
C45′—H45B⋯F4ii 0.95 2.31 3.159 (2) 148
C42—H42⋯O3i 0.95 2.47 3.376 (3) 160
C6—H6⋯O9iii 0.95 2.27 3.215 (3) 171
C31—H31⋯O8iv 0.95 2.41 3.333 (5) 163
C27—H27⋯O6 0.95 2.55 3.389 (4) 147
C38—H38⋯O4 0.95 2.55 3.334 (6) 140
C10—H10⋯O2ii 0.95 2.51 3.249 (6) 134
Symmetry codes: (i) x, y, z+1; (ii) -x+2, -y+1, -z+1; (iii) x, y, z-1; (iv) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The coordination chemistry of 4-phenylpyridine-N-oxide (PPNO; C11H9NO) is rather unknown. Surveying the Cambridge Structural Database (Allen, 2002) only four structures were found: copper (Watson & Johnson, 1971) and tin complexes (Papadaki et al., 1999), an inclusion compound of PPNO into a derivative of calix[4]pyrrole (Verdejo et al.,2009), and a recently published Cu2+ dinuclear complex (Ramos et al., 2010). Following our interest in the preparation and study of the properties of inclusion compounds of cyclodextrins (Marques et al., 2009; Petrovski et al., 2008; Pereira et al., 2008; Marques et al., 2008; Pereira et al., 2006; Braga et al., 2006) we prepared a new copper compound suitable for being used as a guest in inclusion chemistry. We have reacted [Cu(hfac)2] (where hfac- stands for hexafluoroacetylacetonate) with PPNO, affording the title compound as deep-green crystals, whose structure we wish to report here.

The title compound (see Scheme) results from a co-crystallization of the cis and trans isomers of [Cu(hfac)2(PPNO)2] (Figure 1). For each isomer, the Cu2+ centre is coordinated to two hfac- and two PPNO ligands, with the {CuO6} coordination polyhedra resembling the typical Jahn-Teller distorted octahedral geometry.

In the trans isomer (Figure 1 - top) the metal centre is situated at an inversion point. The Cu1—O distances are 1.966 (2) and 2.331 (2) Å for the hfac- anion, and 1.968 (2) Å for the PPNO ligand. The cis octahedral angles fall within a short range of the ideal value being found in the 86.25 (9)–93.75 (9)° range. In the cis isomer (Figure 1 - bottom) the Cu2—O equatorial distances range from 1.9532 (19) to 1.990 (2) Å, while the apical distances are 2.230 (Cu2—O9 with PPNO) and 2.365 (2) Å (Cu—O6 with hfac-). As in the other isomer, the cis and trans octahedral angles in this complex also approach those of an ideal octahedron being found in the 80.26 (9)–98.43 (9)° and 165.15 (8)–176.63 (9)° ranges, respectively. In addition, the terminal phenyl ring of one coordinated PPNO was found to be disordered over two positions (see Experimental Section). This crystallographic feature seems to be driven by the need to form a short C—H···F contact (see below). An interesting feature common to both isomers concerns the (Cu—O—N) angles of the coordinated PPNO ligands which approach ca 120°. Indeed, while the (Cu1—O3—N1) angle for the trans isomer is 117.82 (18)°, for the cis isomer the analogues (Cu1—O9—N3) and (Cu1—O8—N2) angles are 131.12 (17) and 122.39 (16)°, respectively.

Besides the need to effectively fill the available space, the crystal packing of the two isomers (Figure 2) is also mediated by a number of C—H···F and C—H···O short contacts (Table 1). The shortest of the intermolecular contacts concerns the para H-atom of one of the disordered phenyl ring of the cis isomer, with a H···F distance of ca 2.31 Å [C45'—H45B···F4 angle of ca 148°]. While the C31—H31···O8 contact leads to connections between adjacent cis isomers, the combination of C6—H6···O9 and C42—H42···O3 interactions connects instead neighbouring cis and trans isomers [both form R22(8) graph set motifs - Grell et al. (1999)].

Related literature top

For crystal structures with 4-phenylpyridine-N-oxide, see: Papadaki et al. (1999); Watson & Johnson (1971); Verdejo et al. (2009); Ramos et al. (2010). For general background studies on cyclodextrin inclusion compounds from our research group, see: Marques et al. (2008, 2009); Petrovski et al. (2008); Pereira et al. (2006, 2008); Braga et al. (2006). For a description of the Cambridge Structural Database, see: Allen (2002). For a description of the graph-set notation for hydrogen-bonded aggregates, see: Grell et al. (1999).

Experimental top

All chemicals and solvents were purchased from commercial sources and were used without further purification.

4-Phenylpyridine-N-oxide (PPNO, Aldrich, 71.1 mg, 0.415 mmol) was slowly added to a previously prepared 10 ml solution of [Cu(hfac)2] (99.6 mg, 0.208 mmol) in acetone (hfac- = hexafluoroacetylacetonate). The resulting solution was allowed to homogenize with magnetic stirring at 30 °C for 60 minutes, after which time the solvent was evaporated. Diffusion of an ethanolic solution of the extract into water afforded two crystalline solids at different crystallization times. The first compound to crystallize, and obtained in smaller quantity as small light-green single crystals, was identified as identical to the binuclear species [Cu(C5HF6O2)2(C11H9NO)]2 recently described by us (Ramos et al., 2010). The second material, obtained at a later stage, was solely composed of large deep-green block crystals of the title compound.

Refinement top

Hydrogen atoms bound to aromatic carbon atoms were placed in their idealized positions and were included in the final structural model in riding-motion approximation with C—H = 0.95 Å. The isotropic thermal displacement parameters for these atoms were fixed at 1.2×Ueq/iso of the respective parent carbon atom.

The phenyl ring of one coordinated PPNO ligand in the cis isomer was treated as disordered over two orientations with occupancies fixed to 0.5. The carbon atoms were included in the final structural model and allowed to refine unrestrained. An independent and refineable Uiso value was modelled for each position of this phenyl ring.

Structure description top

The coordination chemistry of 4-phenylpyridine-N-oxide (PPNO; C11H9NO) is rather unknown. Surveying the Cambridge Structural Database (Allen, 2002) only four structures were found: copper (Watson & Johnson, 1971) and tin complexes (Papadaki et al., 1999), an inclusion compound of PPNO into a derivative of calix[4]pyrrole (Verdejo et al.,2009), and a recently published Cu2+ dinuclear complex (Ramos et al., 2010). Following our interest in the preparation and study of the properties of inclusion compounds of cyclodextrins (Marques et al., 2009; Petrovski et al., 2008; Pereira et al., 2008; Marques et al., 2008; Pereira et al., 2006; Braga et al., 2006) we prepared a new copper compound suitable for being used as a guest in inclusion chemistry. We have reacted [Cu(hfac)2] (where hfac- stands for hexafluoroacetylacetonate) with PPNO, affording the title compound as deep-green crystals, whose structure we wish to report here.

The title compound (see Scheme) results from a co-crystallization of the cis and trans isomers of [Cu(hfac)2(PPNO)2] (Figure 1). For each isomer, the Cu2+ centre is coordinated to two hfac- and two PPNO ligands, with the {CuO6} coordination polyhedra resembling the typical Jahn-Teller distorted octahedral geometry.

In the trans isomer (Figure 1 - top) the metal centre is situated at an inversion point. The Cu1—O distances are 1.966 (2) and 2.331 (2) Å for the hfac- anion, and 1.968 (2) Å for the PPNO ligand. The cis octahedral angles fall within a short range of the ideal value being found in the 86.25 (9)–93.75 (9)° range. In the cis isomer (Figure 1 - bottom) the Cu2—O equatorial distances range from 1.9532 (19) to 1.990 (2) Å, while the apical distances are 2.230 (Cu2—O9 with PPNO) and 2.365 (2) Å (Cu—O6 with hfac-). As in the other isomer, the cis and trans octahedral angles in this complex also approach those of an ideal octahedron being found in the 80.26 (9)–98.43 (9)° and 165.15 (8)–176.63 (9)° ranges, respectively. In addition, the terminal phenyl ring of one coordinated PPNO was found to be disordered over two positions (see Experimental Section). This crystallographic feature seems to be driven by the need to form a short C—H···F contact (see below). An interesting feature common to both isomers concerns the (Cu—O—N) angles of the coordinated PPNO ligands which approach ca 120°. Indeed, while the (Cu1—O3—N1) angle for the trans isomer is 117.82 (18)°, for the cis isomer the analogues (Cu1—O9—N3) and (Cu1—O8—N2) angles are 131.12 (17) and 122.39 (16)°, respectively.

Besides the need to effectively fill the available space, the crystal packing of the two isomers (Figure 2) is also mediated by a number of C—H···F and C—H···O short contacts (Table 1). The shortest of the intermolecular contacts concerns the para H-atom of one of the disordered phenyl ring of the cis isomer, with a H···F distance of ca 2.31 Å [C45'—H45B···F4 angle of ca 148°]. While the C31—H31···O8 contact leads to connections between adjacent cis isomers, the combination of C6—H6···O9 and C42—H42···O3 interactions connects instead neighbouring cis and trans isomers [both form R22(8) graph set motifs - Grell et al. (1999)].

For crystal structures with 4-phenylpyridine-N-oxide, see: Papadaki et al. (1999); Watson & Johnson (1971); Verdejo et al. (2009); Ramos et al. (2010). For general background studies on cyclodextrin inclusion compounds from our research group, see: Marques et al. (2008, 2009); Petrovski et al. (2008); Pereira et al. (2006, 2008); Braga et al. (2006). For a description of the Cambridge Structural Database, see: Allen (2002). For a description of the graph-set notation for hydrogen-bonded aggregates, see: Grell et al. (1999).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Schematic representation of the two distinct cis and trans isomers present in the title compound. All non-hydrogen atoms are represented as thermal ellipsoids drawn at the 50% probability level and hydrogen atoms as small spheres with arbitrary radius. The labeling scheme is provided for all atoms composing the first coordination sphere of Cu1 and Cu2. Symmetry transformation used to generate equivalent atoms: (i) 2 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed in perspective along the (a) [100] and (b) [001] directions of the unit cell. H-atoms have been omitted for clarity and the two distinct cis and trans isomers are represented in different colour.
(I) top
Crystal data top
[Cu(C5HF6O2)2(C11H9NO)2]Z = 3
Mr = 820.04F(000) = 1233
Triclinic, P1Dx = 1.668 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 14.3902 (6) ÅCell parameters from 9410 reflections
b = 14.7372 (6) Åθ = 2.9–25.7°
c = 14.9636 (10) ŵ = 0.79 mm1
α = 102.191 (3)°T = 150 K
β = 111.192 (3)°Block, green
γ = 114.122 (2)°0.20 × 0.16 × 0.10 mm
V = 2448.4 (2) Å3
Data collection top
Bruker X8 Kappa CCD APEXII
diffractometer
13039 independent reflections
Radiation source: fine-focus sealed tube8907 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω / φ scansθmax = 29.1°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1919
Tmin = 0.859, Tmax = 0.926k = 2020
128806 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.1201P)2 + 1.7138P]
where P = (Fo2 + 2Fc2)/3
13039 reflections(Δ/σ)max = 0.001
702 parametersΔρmax = 1.18 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
[Cu(C5HF6O2)2(C11H9NO)2]γ = 114.122 (2)°
Mr = 820.04V = 2448.4 (2) Å3
Triclinic, P1Z = 3
a = 14.3902 (6) ÅMo Kα radiation
b = 14.7372 (6) ŵ = 0.79 mm1
c = 14.9636 (10) ÅT = 150 K
α = 102.191 (3)°0.20 × 0.16 × 0.10 mm
β = 111.192 (3)°
Data collection top
Bruker X8 Kappa CCD APEXII
diffractometer
13039 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
8907 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 0.926Rint = 0.052
128806 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 0.97Δρmax = 1.18 e Å3
13039 reflectionsΔρmin = 0.76 e Å3
702 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu11.00000.50000.50000.02630 (13)
O11.06522 (18)0.43056 (18)0.43599 (16)0.0319 (5)
C11.1327 (3)0.3990 (2)0.4770 (2)0.0287 (6)
C21.1518 (3)0.3376 (3)0.3965 (3)0.0361 (7)
F11.1926 (2)0.3978 (2)0.3496 (2)0.0584 (6)
F21.04860 (18)0.24671 (17)0.31959 (15)0.0458 (5)
F31.2244 (2)0.3043 (2)0.43635 (17)0.0538 (6)
O20.88041 (19)0.49436 (18)0.34165 (16)0.0328 (5)
C30.8246 (2)0.5399 (2)0.3395 (2)0.0285 (6)
C40.8118 (3)0.5900 (3)0.4212 (2)0.0337 (7)
H40.76180.61790.40540.040*
C50.7617 (3)0.5407 (3)0.2320 (3)0.0359 (7)
F40.8281 (3)0.5615 (5)0.1899 (3)0.1379 (19)
F50.7333 (3)0.6139 (2)0.23628 (19)0.0926 (12)
F60.6668 (3)0.4474 (2)0.1644 (2)0.0902 (11)
O30.88192 (19)0.35102 (18)0.46898 (17)0.0354 (5)
N10.8109 (2)0.3408 (2)0.5094 (2)0.0320 (5)
C60.6972 (3)0.3031 (3)0.4449 (2)0.0331 (6)
H60.66870.28630.37180.040*
C70.6221 (3)0.2888 (3)0.4845 (2)0.0347 (7)
H70.54190.26170.43790.042*
C80.6610 (3)0.3131 (2)0.5910 (2)0.0321 (6)
C90.7791 (3)0.3525 (4)0.6541 (3)0.0509 (10)
H90.81010.37040.72750.061*
C100.8521 (3)0.3661 (4)0.6130 (3)0.0519 (10)
H100.93290.39360.65810.062*
C110.5800 (3)0.2971 (3)0.6340 (3)0.0331 (6)
C120.4599 (3)0.2231 (3)0.5692 (3)0.0461 (8)
H120.42890.18280.49610.055*
C130.3838 (4)0.2068 (4)0.6096 (4)0.0623 (11)
H130.30150.15640.56400.075*
C140.4282 (4)0.2639 (4)0.7156 (4)0.0588 (11)
H140.37680.25180.74370.071*
C150.5464 (4)0.3380 (3)0.7804 (3)0.0506 (9)
H150.57660.37820.85330.061*
C160.6230 (4)0.3552 (3)0.7410 (3)0.0409 (8)
H160.70500.40680.78710.049*
Cu20.42260 (3)0.14398 (3)1.13094 (3)0.02492 (11)
O40.39585 (18)0.21929 (16)1.04058 (15)0.0273 (4)
O50.45638 (19)0.26248 (17)1.25349 (16)0.0305 (4)
C170.3539 (3)0.3347 (2)0.9737 (2)0.0321 (6)
C180.3872 (2)0.3017 (2)1.0654 (2)0.0268 (6)
C190.4018 (3)0.3605 (2)1.1592 (2)0.0315 (6)
H190.38790.41861.16470.038*
C200.4367 (3)0.3365 (2)1.2465 (2)0.0288 (6)
C210.4549 (3)0.4082 (3)1.3494 (3)0.0390 (7)
F70.2516 (2)0.25163 (18)0.88963 (17)0.0565 (6)
F80.3423 (2)0.42005 (18)0.99617 (17)0.0525 (6)
F90.4342 (2)0.3597 (2)0.94430 (19)0.0566 (6)
F100.5677 (2)0.4697 (2)1.4209 (2)0.0867 (10)
F110.4073 (3)0.3469 (2)1.3926 (2)0.0623 (7)
F120.4072 (3)0.4666 (2)1.3366 (2)0.0767 (9)
O60.2300 (2)0.07746 (19)1.10322 (18)0.0371 (5)
O70.43470 (18)0.05692 (18)1.21351 (16)0.0303 (4)
C220.1066 (4)0.0501 (4)1.1753 (4)0.0550 (10)
C230.2088 (3)0.0465 (3)1.1671 (3)0.0338 (7)
C240.2666 (3)0.0098 (3)1.2351 (3)0.0404 (8)
H240.23350.01911.27460.048*
C250.3675 (3)0.0134 (2)1.2473 (2)0.0301 (6)
C260.4132 (3)0.0390 (3)1.3165 (3)0.0406 (8)
F130.1122 (5)0.1406 (5)1.1744 (5)0.153 (2)
F140.0074 (3)0.0252 (6)1.1000 (4)0.187 (3)
F150.1073 (3)0.0515 (4)1.2628 (3)0.1043 (13)
F160.4315 (3)0.1092 (2)1.2652 (2)0.0679 (7)
F170.5183 (2)0.0357 (2)1.40156 (18)0.0620 (6)
F180.3441 (3)0.0901 (3)1.3506 (3)0.0893 (11)
O80.3869 (2)0.02132 (18)1.01409 (16)0.0337 (5)
N20.3308 (2)0.00417 (19)0.91308 (19)0.0280 (5)
C270.2274 (3)0.0005 (2)0.8720 (2)0.0308 (6)
H270.19660.01320.91610.037*
C280.1671 (3)0.0250 (2)0.7668 (2)0.0317 (6)
H280.09590.02580.73940.038*
C290.2082 (3)0.0491 (2)0.6987 (2)0.0300 (6)
C300.3160 (3)0.0418 (3)0.7462 (2)0.0321 (6)
H300.34860.05610.70390.039*
C310.3757 (3)0.0147 (2)0.8518 (2)0.0307 (6)
H310.44940.00920.88200.037*
C320.1415 (3)0.0806 (2)0.5837 (2)0.0326 (6)
C330.0246 (3)0.1084 (3)0.5340 (3)0.0512 (9)
H330.01270.10600.57460.061*
C340.0376 (4)0.1393 (4)0.4262 (3)0.0562 (10)
H340.11670.15720.39420.067*
C350.0127 (4)0.1445 (3)0.3657 (3)0.0557 (10)
H350.03050.16490.29210.067*
C360.1252 (5)0.1203 (5)0.4113 (3)0.0714 (14)
H360.16070.12430.36920.086*
C370.1893 (4)0.0894 (4)0.5196 (3)0.0577 (11)
H370.26750.07420.54990.069*
O90.61719 (19)0.23406 (19)1.19859 (16)0.0370 (5)
N30.6813 (2)0.24603 (19)1.15242 (19)0.0271 (5)
C380.6372 (3)0.2340 (3)1.0509 (2)0.0311 (6)
H380.55840.21531.01160.037*
C390.7061 (3)0.2488 (3)1.0046 (3)0.0400 (8)
H390.67460.24090.93360.048*
C400.8210 (3)0.2751 (3)1.0604 (3)0.0393 (7)
C410.8631 (3)0.2884 (3)1.1643 (3)0.0339 (7)
H410.94220.30851.20540.041*
C420.7933 (3)0.2732 (2)1.2091 (2)0.0302 (6)
H420.82380.28191.28030.036*
C430.8729 (7)0.2965 (6)0.9206 (6)0.0448 (7)*0.50
H43A0.80890.30560.88870.054*0.50
C440.9464 (6)0.3079 (6)0.8798 (6)0.0448 (7)*0.50
H44A0.93430.32730.82180.054*0.50
C451.0363 (7)0.2917 (6)0.9213 (6)0.0448 (7)*0.50
H45A1.09070.30560.89660.054*0.50
C461.0471 (7)0.2554 (7)0.9985 (6)0.0448 (7)*0.50
H46A1.10540.23791.02400.054*0.50
C470.9733 (7)0.2439 (6)1.0402 (7)0.0448 (7)*0.50
H47A0.97990.21611.09250.054*0.50
C480.8902 (8)0.2722 (6)1.0071 (7)0.0448 (7)*0.50
C43'0.9137 (9)0.3762 (8)0.9685 (8)0.0666 (10)*0.50
H43B0.86200.40230.95520.080*0.50
C44'0.9954 (9)0.4042 (8)0.9330 (8)0.0666 (10)*0.50
H44B0.99910.44850.89500.080*0.50
C45'1.0696 (9)0.3658 (9)0.9546 (8)0.0666 (10)*0.50
H45B1.12080.38020.92630.080*0.50
C46'1.0736 (9)0.3091 (9)1.0137 (8)0.0666 (10)*0.50
H46B1.12780.28571.02880.080*0.50
C47'0.9951 (10)0.2852 (8)1.0527 (9)0.0666 (10)*0.50
H47B1.00060.25101.09990.080*0.50
C48'0.9089 (10)0.3116 (8)1.0220 (9)0.0666 (10)*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0264 (2)0.0343 (3)0.0234 (3)0.0187 (2)0.0131 (2)0.0146 (2)
O10.0326 (11)0.0436 (12)0.0261 (11)0.0249 (10)0.0149 (9)0.0162 (10)
C10.0253 (13)0.0292 (14)0.0295 (15)0.0142 (12)0.0133 (12)0.0104 (12)
C20.0304 (15)0.0407 (17)0.0330 (17)0.0197 (14)0.0138 (13)0.0107 (14)
F10.0718 (16)0.0625 (14)0.0680 (16)0.0370 (13)0.0562 (14)0.0321 (13)
F20.0419 (11)0.0450 (11)0.0348 (11)0.0236 (9)0.0120 (9)0.0031 (9)
F30.0518 (12)0.0723 (15)0.0465 (12)0.0482 (12)0.0207 (10)0.0160 (11)
O20.0357 (11)0.0385 (12)0.0269 (11)0.0231 (10)0.0140 (9)0.0144 (9)
C30.0256 (13)0.0263 (14)0.0255 (14)0.0117 (12)0.0077 (12)0.0111 (12)
C40.0317 (15)0.0383 (16)0.0328 (16)0.0235 (14)0.0123 (13)0.0151 (14)
C50.0373 (17)0.0370 (17)0.0305 (16)0.0205 (14)0.0126 (14)0.0162 (14)
F40.112 (3)0.301 (6)0.114 (3)0.139 (4)0.085 (2)0.166 (4)
F50.162 (3)0.0783 (18)0.0367 (13)0.092 (2)0.0167 (16)0.0243 (13)
F60.090 (2)0.0436 (13)0.0457 (14)0.0183 (14)0.0239 (14)0.0079 (12)
O30.0348 (11)0.0367 (12)0.0356 (12)0.0165 (10)0.0206 (10)0.0164 (10)
N10.0311 (13)0.0357 (13)0.0283 (13)0.0148 (11)0.0156 (11)0.0167 (11)
C60.0318 (15)0.0350 (16)0.0268 (15)0.0161 (13)0.0116 (13)0.0127 (13)
C70.0366 (16)0.0369 (16)0.0272 (15)0.0189 (14)0.0140 (13)0.0132 (13)
C80.0399 (16)0.0320 (15)0.0280 (15)0.0192 (13)0.0176 (13)0.0173 (13)
C90.0413 (19)0.080 (3)0.0310 (18)0.027 (2)0.0189 (16)0.0317 (19)
C100.0324 (17)0.083 (3)0.0298 (18)0.0220 (19)0.0128 (15)0.0302 (19)
C110.0450 (18)0.0327 (15)0.0347 (17)0.0248 (14)0.0238 (15)0.0204 (14)
C120.046 (2)0.054 (2)0.044 (2)0.0270 (18)0.0278 (17)0.0197 (18)
C130.056 (2)0.073 (3)0.069 (3)0.034 (2)0.043 (2)0.028 (2)
C140.071 (3)0.069 (3)0.066 (3)0.044 (2)0.051 (3)0.031 (2)
C150.080 (3)0.051 (2)0.047 (2)0.044 (2)0.044 (2)0.0243 (19)
C160.058 (2)0.0382 (17)0.0382 (18)0.0291 (17)0.0282 (17)0.0210 (15)
Cu20.03137 (19)0.02930 (19)0.02082 (18)0.02031 (16)0.01367 (15)0.01207 (15)
O40.0349 (11)0.0301 (10)0.0224 (10)0.0211 (9)0.0147 (9)0.0119 (8)
O50.0373 (11)0.0387 (11)0.0244 (10)0.0258 (10)0.0165 (9)0.0144 (9)
C170.0382 (16)0.0304 (15)0.0285 (15)0.0200 (13)0.0141 (13)0.0150 (13)
C180.0286 (14)0.0288 (14)0.0262 (14)0.0166 (12)0.0143 (12)0.0134 (12)
C190.0420 (17)0.0319 (15)0.0320 (16)0.0249 (14)0.0212 (14)0.0166 (13)
C200.0305 (14)0.0324 (15)0.0267 (15)0.0187 (13)0.0163 (12)0.0104 (13)
C210.052 (2)0.0425 (18)0.0318 (17)0.0295 (17)0.0254 (16)0.0138 (15)
F70.0542 (13)0.0462 (12)0.0382 (12)0.0217 (11)0.0009 (10)0.0199 (10)
F80.0859 (16)0.0501 (12)0.0448 (12)0.0510 (12)0.0322 (12)0.0292 (10)
F90.0693 (15)0.0824 (16)0.0563 (14)0.0482 (14)0.0459 (13)0.0500 (13)
F100.0552 (16)0.0833 (19)0.0497 (15)0.0104 (14)0.0199 (13)0.0245 (14)
F110.0966 (19)0.0724 (16)0.0618 (15)0.0554 (15)0.0632 (15)0.0373 (13)
F120.149 (3)0.0912 (19)0.0620 (16)0.100 (2)0.0716 (19)0.0442 (15)
O60.0355 (12)0.0487 (13)0.0371 (12)0.0267 (11)0.0193 (10)0.0237 (11)
O70.0346 (11)0.0402 (11)0.0321 (11)0.0263 (10)0.0206 (9)0.0216 (10)
C220.052 (2)0.088 (3)0.065 (3)0.053 (2)0.040 (2)0.048 (3)
C230.0335 (16)0.0385 (16)0.0381 (17)0.0237 (14)0.0203 (14)0.0170 (14)
C240.0424 (18)0.054 (2)0.052 (2)0.0325 (17)0.0327 (17)0.0359 (18)
C250.0355 (15)0.0317 (15)0.0288 (15)0.0203 (13)0.0168 (13)0.0159 (13)
C260.0460 (19)0.050 (2)0.050 (2)0.0330 (17)0.0304 (17)0.0346 (18)
F130.245 (6)0.244 (5)0.264 (6)0.229 (5)0.227 (5)0.213 (5)
F140.0376 (17)0.271 (6)0.132 (4)0.060 (3)0.018 (2)0.027 (4)
F150.125 (3)0.208 (4)0.123 (3)0.139 (3)0.107 (2)0.121 (3)
F160.108 (2)0.0641 (15)0.0613 (15)0.0694 (16)0.0381 (15)0.0358 (13)
F170.0657 (15)0.0650 (15)0.0434 (13)0.0369 (13)0.0113 (12)0.0277 (12)
F180.0784 (18)0.141 (3)0.139 (3)0.079 (2)0.078 (2)0.126 (2)
O80.0455 (13)0.0359 (11)0.0240 (11)0.0285 (10)0.0141 (10)0.0116 (9)
N20.0331 (13)0.0267 (12)0.0228 (12)0.0183 (11)0.0114 (10)0.0081 (10)
C270.0298 (14)0.0328 (15)0.0263 (15)0.0173 (13)0.0135 (12)0.0065 (13)
C280.0267 (14)0.0319 (15)0.0274 (15)0.0145 (12)0.0098 (12)0.0065 (13)
C290.0316 (15)0.0262 (14)0.0285 (15)0.0137 (12)0.0142 (13)0.0102 (12)
C300.0358 (16)0.0360 (16)0.0319 (16)0.0228 (14)0.0200 (14)0.0133 (13)
C310.0301 (14)0.0313 (15)0.0311 (16)0.0188 (13)0.0146 (13)0.0100 (13)
C320.0352 (16)0.0273 (14)0.0274 (15)0.0137 (13)0.0132 (13)0.0093 (13)
C330.043 (2)0.067 (3)0.0334 (19)0.0256 (19)0.0151 (16)0.0177 (18)
C340.040 (2)0.069 (3)0.034 (2)0.0219 (19)0.0056 (16)0.0168 (19)
C350.065 (3)0.053 (2)0.0250 (17)0.023 (2)0.0119 (18)0.0151 (17)
C360.074 (3)0.111 (4)0.037 (2)0.050 (3)0.032 (2)0.034 (3)
C370.049 (2)0.086 (3)0.038 (2)0.036 (2)0.0223 (18)0.026 (2)
O90.0295 (11)0.0481 (13)0.0237 (11)0.0139 (10)0.0154 (9)0.0096 (10)
N30.0291 (12)0.0269 (12)0.0227 (12)0.0129 (10)0.0143 (10)0.0076 (10)
C380.0302 (15)0.0383 (16)0.0233 (14)0.0194 (13)0.0122 (12)0.0104 (13)
C390.0434 (18)0.059 (2)0.0285 (16)0.0326 (17)0.0202 (15)0.0212 (16)
C400.0394 (17)0.056 (2)0.0334 (17)0.0295 (17)0.0219 (15)0.0228 (16)
C410.0301 (15)0.0384 (16)0.0311 (16)0.0185 (13)0.0133 (13)0.0143 (14)
C420.0310 (14)0.0298 (14)0.0223 (14)0.0142 (12)0.0107 (12)0.0075 (12)
Geometric parameters (Å, º) top
Cu1—O1i1.966 (2)C22—C231.539 (5)
Cu1—O11.966 (2)C23—C241.417 (4)
Cu1—O22.331 (2)C24—C251.374 (4)
Cu1—O2i2.331 (2)C24—H240.9500
Cu1—O31.968 (2)C25—C261.535 (4)
Cu1—O3i1.968 (2)C26—F181.316 (4)
Cu2—O41.9532 (19)C26—F161.328 (4)
Cu2—O51.990 (2)C26—F171.332 (4)
Cu2—O62.365 (2)O8—N21.338 (3)
Cu2—O71.975 (2)N2—C311.343 (4)
Cu2—O81.961 (2)N2—C271.355 (4)
Cu2—O92.230 (2)C27—C281.369 (4)
O1—C11.263 (4)C27—H270.9500
C1—C4i1.376 (4)C28—C291.403 (4)
C1—C21.527 (4)C28—H280.9500
C2—F11.327 (4)C29—C301.399 (4)
C2—F31.335 (4)C29—C321.484 (4)
C2—F21.346 (4)C30—C311.366 (4)
O2—C31.237 (4)C30—H300.9500
C3—C41.402 (4)C31—H310.9500
C3—C51.539 (4)C32—C371.381 (5)
C4—C1i1.376 (4)C32—C331.398 (5)
C4—H40.9500C33—C341.386 (5)
C5—F61.288 (4)C33—H330.9500
C5—F41.296 (4)C34—C351.355 (6)
C5—F51.298 (4)C34—H340.9500
O3—N11.339 (3)C35—C361.357 (7)
N1—C101.343 (4)C35—H350.9500
N1—C61.344 (4)C36—C371.396 (6)
C6—C71.376 (4)C36—H360.9500
C6—H60.9500C37—H370.9500
C7—C81.391 (4)O9—N31.319 (3)
C7—H70.9500N3—C421.347 (4)
C8—C91.385 (5)N3—C381.356 (4)
C8—C111.487 (4)C38—C391.377 (4)
C9—C101.367 (5)C38—H380.9500
C9—H90.9500C39—C401.386 (5)
C10—H100.9500C39—H390.9500
C11—C121.384 (5)C40—C411.383 (4)
C11—C161.398 (5)C40—C481.493 (9)
C12—C131.396 (5)C40—C48'1.523 (12)
C12—H120.9500C41—C421.370 (4)
C13—C141.378 (6)C41—H410.9500
C13—H130.9500C42—H420.9500
C14—C151.367 (7)C43—C441.372 (10)
C14—H140.9500C43—C481.380 (11)
C15—C161.389 (5)C43—H43A0.9500
C15—H150.9500C44—C451.360 (10)
C16—H160.9500C44—H44A0.9500
O4—C181.262 (3)C45—C461.358 (11)
O5—C201.249 (3)C45—H45A0.9500
C17—F91.323 (4)C46—C471.387 (11)
C17—F81.327 (4)C46—H46A0.9500
C17—F71.336 (4)C47—C481.384 (12)
C17—C181.532 (4)C47—H47A0.9500
C18—C191.374 (4)C43'—C48'1.363 (14)
C19—C201.396 (4)C43'—C44'1.408 (13)
C19—H190.9500C43'—H43B0.9500
C20—C211.535 (4)C44'—C45'1.373 (14)
C21—F121.306 (4)C44'—H44B0.9500
C21—F101.317 (5)C45'—C46'1.341 (14)
C21—F111.328 (4)C45'—H45B0.9500
O6—C231.224 (4)C46'—C47'1.407 (15)
O7—C251.259 (4)C46'—H46B0.9500
C22—F141.246 (6)C47'—C48'1.400 (16)
C22—F151.301 (5)C47'—H47B0.9500
C22—F131.307 (6)
O1—Cu1—O293.37 (8)C23—O6—Cu2117.3 (2)
O1—Cu1—O2i86.63 (8)C25—O7—Cu2127.78 (18)
O1—Cu1—O386.25 (9)F14—C22—F15108.1 (5)
O1—Cu1—O3i93.75 (9)F14—C22—F13105.1 (5)
O3—Cu1—O293.08 (9)F15—C22—F13103.7 (4)
O3—Cu1—O2i86.92 (9)F14—C22—C23113.8 (4)
O1i—Cu1—O1180.000 (1)F15—C22—C23114.8 (3)
O1i—Cu1—O393.75 (9)F13—C22—C23110.5 (4)
O1i—Cu1—O3i86.25 (9)O6—C23—C24128.7 (3)
O3—Cu1—O3i180.000 (1)O6—C23—C22115.1 (3)
O1i—Cu1—O286.63 (8)C24—C23—C22116.2 (3)
O3i—Cu1—O286.92 (9)C25—C24—C23124.0 (3)
O1i—Cu1—O2i93.37 (8)C25—C24—H24118.0
O3i—Cu1—O2i93.08 (9)C23—C24—H24118.0
O2—Cu1—O2i180.000 (1)O7—C25—C24130.6 (3)
O4—Cu2—O591.66 (8)O7—C25—C26111.7 (3)
O4—Cu2—O689.41 (8)C24—C25—C26117.6 (3)
O4—Cu2—O7174.83 (9)F18—C26—F16108.3 (3)
O4—Cu2—O891.44 (8)F18—C26—F17106.8 (3)
O4—Cu2—O995.05 (9)F16—C26—F17104.4 (3)
O5—Cu2—O680.26 (9)F18—C26—C25114.7 (3)
O5—Cu2—O985.45 (9)F16—C26—C25110.7 (3)
O7—Cu2—O590.74 (9)F17—C26—C25111.3 (3)
O7—Cu2—O686.48 (8)O8—N2—C31118.6 (2)
O7—Cu2—O989.71 (9)O8—N2—C27120.6 (2)
O8—Cu2—O5176.63 (9)C31—N2—C27120.7 (3)
O8—Cu2—O698.43 (9)N2—C27—C28120.1 (3)
O8—Cu2—O786.06 (9)N2—C27—H27120.0
O8—Cu2—O995.61 (9)C28—C27—H27120.0
O9—Cu2—O6165.15 (8)C27—C28—C29121.4 (3)
N1—O3—Cu1117.82 (18)C27—C28—H28119.3
N2—O8—Cu2122.39 (16)C29—C28—H28119.3
N3—O9—Cu2131.12 (17)C30—C29—C28115.7 (3)
C1—O1—Cu1128.60 (19)C30—C29—C32122.1 (3)
O1—C1—C4i131.0 (3)C28—C29—C32122.2 (3)
O1—C1—C2111.9 (3)C31—C30—C29121.7 (3)
C4i—C1—C2117.1 (3)C31—C30—H30119.2
F1—C2—F3108.0 (3)C29—C30—H30119.2
F1—C2—F2106.5 (3)N2—C31—C30120.4 (3)
F3—C2—F2106.2 (3)N2—C31—H31119.8
F1—C2—C1111.4 (3)C30—C31—H31119.8
F3—C2—C1114.3 (3)C37—C32—C33116.6 (3)
F2—C2—C1109.9 (3)C37—C32—C29121.9 (3)
C3—O2—Cu1120.80 (19)C33—C32—C29121.4 (3)
O2—C3—C4128.6 (3)C34—C33—C32121.0 (4)
O2—C3—C5114.5 (3)C34—C33—H33119.5
C4—C3—C5116.9 (3)C32—C33—H33119.5
C1i—C4—C3123.8 (3)C35—C34—C33121.0 (4)
C1i—C4—H4118.1C35—C34—H34119.5
C3—C4—H4118.1C33—C34—H34119.5
F6—C5—F4106.0 (4)C34—C35—C36119.4 (4)
F6—C5—F5106.9 (3)C34—C35—H35120.3
F4—C5—F5105.3 (4)C36—C35—H35120.3
F6—C5—C3112.4 (3)C35—C36—C37120.5 (4)
F4—C5—C3111.0 (3)C35—C36—H36119.7
F5—C5—C3114.5 (3)C37—C36—H36119.7
O3—N1—C10120.4 (3)C32—C37—C36121.4 (4)
O3—N1—C6119.3 (2)C32—C37—H37119.3
C10—N1—C6120.2 (3)C36—C37—H37119.3
N1—C6—C7120.1 (3)O9—N3—C42118.6 (2)
N1—C6—H6120.0O9—N3—C38121.1 (2)
C7—C6—H6120.0C42—N3—C38120.3 (2)
C6—C7—C8121.5 (3)N3—C38—C39120.3 (3)
C6—C7—H7119.2N3—C38—H38119.9
C8—C7—H7119.2C39—C38—H38119.9
C9—C8—C7116.0 (3)C38—C39—C40120.6 (3)
C9—C8—C11122.3 (3)C38—C39—H39119.7
C7—C8—C11121.7 (3)C40—C39—H39119.7
C10—C9—C8121.5 (3)C41—C40—C39117.2 (3)
C10—C9—H9119.3C41—C40—C48120.6 (4)
C8—C9—H9119.3C39—C40—C48121.6 (4)
N1—C10—C9120.7 (3)C41—C40—C48'118.1 (5)
N1—C10—H10119.7C39—C40—C48'123.6 (5)
C9—C10—H10119.7C42—C41—C40121.4 (3)
C12—C11—C16118.3 (3)C42—C41—H41119.3
C12—C11—C8120.8 (3)C40—C41—H41119.3
C16—C11—C8120.9 (3)N3—C42—C41120.2 (3)
C11—C12—C13120.9 (4)N3—C42—H42119.9
C11—C12—H12119.5C41—C42—H42119.9
C13—C12—H12119.5C44—C43—C48121.1 (7)
C14—C13—C12119.9 (4)C44—C43—H43A119.4
C14—C13—H13120.0C48—C43—H43A119.4
C12—C13—H13120.0C45—C44—C43121.0 (7)
C15—C14—C13119.8 (4)C45—C44—H44A119.5
C15—C14—H14120.1C43—C44—H44A119.5
C13—C14—H14120.1C46—C45—C44119.0 (7)
C14—C15—C16120.8 (4)C46—C45—H45A120.5
C14—C15—H15119.6C44—C45—H45A120.5
C16—C15—H15119.6C45—C46—C47120.1 (8)
C15—C16—C11120.3 (4)C45—C46—H46A119.9
C15—C16—H16119.9C47—C46—H46A119.9
C11—C16—H16119.9C48—C47—C46121.2 (8)
C18—O4—Cu2124.36 (18)C48—C47—H47A119.4
C20—O5—Cu2123.79 (19)C46—C47—H47A119.4
F9—C17—F8107.4 (3)C43—C48—C47116.6 (8)
F9—C17—F7107.3 (3)C43—C48—C40121.0 (7)
F8—C17—F7107.0 (3)C47—C48—C40122.3 (7)
F9—C17—C18110.8 (2)C48'—C43'—C44'120.1 (10)
F8—C17—C18113.6 (3)C48'—C43'—H43B120.0
F7—C17—C18110.5 (2)C44'—C43'—H43B120.0
O4—C18—C19129.1 (3)C45'—C44'—C43'118.3 (9)
O4—C18—C17111.8 (2)C45'—C44'—H44B120.8
C19—C18—C17119.1 (3)C43'—C44'—H44B120.8
C18—C19—C20121.3 (3)C46'—C45'—C44'123.4 (10)
C18—C19—H19119.4C46'—C45'—H45B118.3
C20—C19—H19119.4C44'—C45'—H45B118.3
O5—C20—C19128.5 (3)C45'—C46'—C47'118.0 (10)
O5—C20—C21113.3 (3)C45'—C46'—H46B121.0
C19—C20—C21118.1 (3)C47'—C46'—H46B121.0
F12—C21—F10111.7 (3)C48'—C47'—C46'120.1 (10)
F12—C21—F11106.3 (3)C48'—C47'—H47B119.9
F10—C21—F11103.9 (3)C46'—C47'—H47B119.9
F12—C21—C20113.6 (3)C43'—C48'—C47'119.3 (10)
F10—C21—C20110.0 (3)C43'—C48'—C40123.3 (9)
F11—C21—C20110.8 (3)C47'—C48'—C40117.1 (9)
O3—Cu1—O1—C180.7 (3)F14—C22—C23—O675.5 (6)
O3i—Cu1—O1—C199.3 (3)F15—C22—C23—O6159.2 (4)
O2—Cu1—O1—C1173.6 (3)F13—C22—C23—O642.4 (5)
O2i—Cu1—O1—C16.4 (3)F14—C22—C23—C24105.4 (6)
Cu1—O1—C1—C4i5.6 (5)F15—C22—C23—C2419.9 (6)
Cu1—O1—C1—C2173.62 (19)F13—C22—C23—C24136.7 (4)
O1—C1—C2—F155.9 (4)O6—C23—C24—C256.8 (6)
C4i—C1—C2—F1124.7 (3)C22—C23—C24—C25172.2 (4)
O1—C1—C2—F3178.7 (3)Cu2—O7—C25—C242.2 (5)
C4i—C1—C2—F31.9 (4)Cu2—O7—C25—C26175.0 (2)
O1—C1—C2—F262.0 (3)C23—C24—C25—O78.2 (6)
C4i—C1—C2—F2117.4 (3)C23—C24—C25—C26174.7 (3)
O1i—Cu1—O2—C37.1 (2)O7—C25—C26—F18177.2 (3)
O1—Cu1—O2—C3172.9 (2)C24—C25—C26—F185.2 (5)
O3—Cu1—O2—C3100.7 (2)O7—C25—C26—F1654.3 (4)
O3i—Cu1—O2—C379.3 (2)C24—C25—C26—F16128.0 (3)
Cu1—O2—C3—C47.0 (4)O7—C25—C26—F1761.4 (4)
Cu1—O2—C3—C5173.05 (18)C24—C25—C26—F17116.3 (4)
O2—C3—C4—C1i3.5 (5)O4—Cu2—O8—N216.7 (2)
C5—C3—C4—C1i176.5 (3)O7—Cu2—O8—N2158.7 (2)
O2—C3—C5—F677.2 (4)O9—Cu2—O8—N2111.9 (2)
C4—C3—C5—F6102.8 (4)O6—Cu2—O8—N272.9 (2)
O2—C3—C5—F441.4 (4)Cu2—O8—N2—C31131.9 (2)
C4—C3—C5—F4138.6 (4)Cu2—O8—N2—C2752.0 (3)
O2—C3—C5—F5160.6 (3)O8—N2—C27—C28175.8 (3)
C4—C3—C5—F519.5 (4)C31—N2—C27—C280.2 (4)
O1i—Cu1—O3—N19.2 (2)N2—C27—C28—C292.0 (5)
O1—Cu1—O3—N1170.8 (2)C27—C28—C29—C302.5 (4)
O2—Cu1—O3—N195.98 (19)C27—C28—C29—C32177.3 (3)
O2i—Cu1—O3—N184.02 (19)C28—C29—C30—C311.0 (4)
Cu1—O3—N1—C1073.5 (4)C32—C29—C30—C31178.8 (3)
Cu1—O3—N1—C6107.7 (3)O8—N2—C31—C30174.4 (3)
O3—N1—C6—C7177.9 (3)C27—N2—C31—C301.7 (4)
C10—N1—C6—C70.8 (5)C29—C30—C31—N21.1 (5)
N1—C6—C7—C80.4 (5)C30—C29—C32—C379.3 (5)
C6—C7—C8—C90.1 (5)C28—C29—C32—C37170.9 (3)
C6—C7—C8—C11179.6 (3)C30—C29—C32—C33167.3 (3)
C7—C8—C9—C100.1 (6)C28—C29—C32—C3312.5 (5)
C11—C8—C9—C10179.6 (4)C37—C32—C33—C342.2 (6)
O3—N1—C10—C9177.9 (4)C29—C32—C33—C34179.0 (4)
C6—N1—C10—C90.8 (6)C32—C33—C34—C350.6 (7)
C8—C9—C10—N10.4 (7)C33—C34—C35—C360.8 (7)
C9—C8—C11—C12155.9 (4)C34—C35—C36—C370.5 (8)
C7—C8—C11—C1223.8 (5)C33—C32—C37—C362.5 (6)
C9—C8—C11—C1623.4 (5)C29—C32—C37—C36179.3 (4)
C7—C8—C11—C16157.0 (3)C35—C36—C37—C321.2 (8)
C16—C11—C12—C130.1 (5)O4—Cu2—O9—N355.3 (3)
C8—C11—C12—C13179.1 (3)O8—Cu2—O9—N336.6 (3)
C11—C12—C13—C140.8 (7)O7—Cu2—O9—N3122.6 (2)
C12—C13—C14—C151.4 (7)O5—Cu2—O9—N3146.6 (3)
C13—C14—C15—C161.1 (6)O6—Cu2—O9—N3162.3 (3)
C14—C15—C16—C110.2 (5)Cu2—O9—N3—C42158.7 (2)
C12—C11—C16—C150.4 (5)Cu2—O9—N3—C3822.9 (4)
C8—C11—C16—C15178.9 (3)O9—N3—C38—C39178.8 (3)
O8—Cu2—O4—C18168.4 (2)C42—N3—C38—C390.4 (4)
O5—Cu2—O4—C1810.3 (2)N3—C38—C39—C400.6 (5)
O9—Cu2—O4—C1895.8 (2)C38—C39—C40—C411.6 (5)
O6—Cu2—O4—C1870.0 (2)C38—C39—C40—C48169.0 (4)
O4—Cu2—O5—C2011.7 (2)C38—C39—C40—C48'169.2 (6)
O7—Cu2—O5—C20163.7 (2)C39—C40—C41—C421.8 (5)
O9—Cu2—O5—C20106.7 (2)C48—C40—C41—C42169.0 (4)
O6—Cu2—O5—C2077.4 (2)C48'—C40—C41—C42170.0 (5)
Cu2—O4—C18—C194.9 (4)O9—N3—C42—C41178.7 (3)
Cu2—O4—C18—C17174.18 (18)C38—N3—C42—C410.3 (4)
F9—C17—C18—O460.0 (3)C40—C41—C42—N30.8 (5)
F8—C17—C18—O4179.0 (3)C48—C43—C44—C452.3 (12)
F7—C17—C18—O458.8 (3)C43—C44—C45—C465.2 (12)
F9—C17—C18—C19120.9 (3)C44—C45—C46—C475.3 (12)
F8—C17—C18—C190.1 (4)C45—C46—C47—C482.1 (12)
F7—C17—C18—C19120.4 (3)C44—C43—C48—C479.3 (12)
O4—C18—C19—C203.6 (5)C44—C43—C48—C40171.4 (7)
C17—C18—C19—C20177.4 (3)C46—C47—C48—C439.3 (12)
Cu2—O5—C20—C198.0 (5)C46—C47—C48—C40171.5 (7)
Cu2—O5—C20—C21172.2 (2)C41—C40—C48—C43157.6 (6)
C18—C19—C20—O51.7 (5)C39—C40—C48—C4332.1 (9)
C18—C19—C20—C21178.1 (3)C48'—C40—C48—C4370 (2)
O5—C20—C21—F12163.7 (3)C41—C40—C48—C4723.3 (9)
C19—C20—C21—F1216.5 (5)C39—C40—C48—C47147.1 (7)
O5—C20—C21—F1070.2 (4)C48'—C40—C48—C47111 (2)
C19—C20—C21—F10109.7 (3)C48'—C43'—C44'—C45'0.7 (15)
O5—C20—C21—F1144.1 (4)C43'—C44'—C45'—C46'4.5 (16)
C19—C20—C21—F11136.0 (3)C44'—C45'—C46'—C47'1.9 (16)
O4—Cu2—O6—C23160.1 (2)C45'—C46'—C47'—C48'5.7 (16)
O8—Cu2—O6—C23108.5 (2)C44'—C43'—C48'—C47'8.0 (16)
O7—Cu2—O6—C2323.0 (2)C44'—C43'—C48'—C40178.3 (9)
O5—Cu2—O6—C2368.3 (2)C46'—C47'—C48'—C43'10.6 (16)
O9—Cu2—O6—C2352.4 (4)C46'—C47'—C48'—C40175.2 (9)
O8—Cu2—O7—C25112.3 (3)C41—C40—C48'—C43'131.0 (9)
O5—Cu2—O7—C2566.6 (3)C39—C40—C48'—C43'36.5 (12)
O9—Cu2—O7—C25152.0 (3)C41—C40—C48'—C47'42.9 (11)
O6—Cu2—O7—C2513.6 (3)C39—C40—C48'—C47'149.7 (8)
Cu2—O6—C23—C2423.4 (5)C48—C40—C48'—C47'59.9 (19)
Cu2—O6—C23—C22155.6 (3)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C41—H41···F2ii0.952.453.219 (5)138
C45—H45B···F4i0.952.313.159 (2)148
C42—H42···O3ii0.952.473.376 (3)160
C6—H6···O9iii0.952.273.215 (3)171
C31—H31···O8iv0.952.413.333 (5)163
C27—H27···O60.952.553.389 (4)147
C38—H38···O40.952.553.334 (6)140
C10—H10···O2i0.952.513.249 (6)134
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z+1; (iii) x, y, z1; (iv) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Cu(C5HF6O2)2(C11H9NO)2]
Mr820.04
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)14.3902 (6), 14.7372 (6), 14.9636 (10)
α, β, γ (°)102.191 (3), 111.192 (3), 114.122 (2)
V3)2448.4 (2)
Z3
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.20 × 0.16 × 0.10
Data collection
DiffractometerBruker X8 Kappa CCD APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.859, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
128806, 13039, 8907
Rint0.052
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.186, 0.97
No. of reflections13039
No. of parameters702
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.18, 0.76

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C41—H41···F2i0.952.453.219 (5)138
C45'—H45B···F4ii0.952.313.159 (2)148
C42—H42···O3i0.952.473.376 (3)160
C6—H6···O9iii0.952.273.215 (3)171
C31—H31···O8iv0.952.413.333 (5)163
C27—H27···O60.952.553.389 (4)147
C38—H38···O40.952.553.334 (6)140
C10—H10···O2ii0.952.513.249 (6)134
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1, z+1; (iii) x, y, z1; (iv) x+1, y, z+2.
 

Acknowledgements

We are grateful to the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support, for specific funding toward the purchase of the single-crystal X-ray diffractometer, and for the post-doctoral research grant Nos. SFRH/BPD/63736/2009 (to JAF). We further acknowledge the FCT for additional funding under the R&D project PTDC/QUI/69302/2006.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBraga, S. S., Paz, F. A. A., Pillinger, M., Seixas, J. D., Romão, C. C. & Gonçalves, I. S. (2006). Eur. J. Inorg. Chem. pp. 1662–1669.  Web of Science CrossRef Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030–1043.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarques, J., Anjo, L., Marques, M. P. M., Santos, T. M., Paz, F. A. A. & Braga, S. S. (2008). J. Organomet. Chem. 693, 3021–3028.  Web of Science CrossRef CAS Google Scholar
First citationMarques, J., Santos, T. M., Marques, M. P. & Braga, S. S. (2009). Dalton Trans. pp. 9812–9819.  Web of Science CrossRef Google Scholar
First citationPapadaki, H., Christofides, A., Jeffery, J. C. & Bakas, T. (1999). J. Coord. Chem. 47, 559–572.  Web of Science CrossRef CAS Google Scholar
First citationPereira, C. C. L., Braga, S. S., Paz, F. A. A., Pillinger, M., Klinowski, J. & Gonçalves, I. S. (2006). Eur. J. Inorg. Chem. pp. 4278–4288.  Web of Science CSD CrossRef Google Scholar
First citationPereira, C. C. L., Diogo, C. V., Burgeiro, A., Oliveira, P. J., Marques, M. P. M., Braga, S. S., Paz, F. A. A., Pillinger, M. & Gonçalves, I. S. (2008). Organometallics, 27, 4948–4956.  Web of Science CrossRef CAS Google Scholar
First citationPetrovski, Ž., de Matos, M., Braga, S. S., Pereira, C. C. L., Matos, M. L., Gonçalves, I. S., Pillinger, M., Alves, P. M. & Romão, C. C. (2008). J. Organomet. Chem. 693, 675–684.  Web of Science CrossRef CAS Google Scholar
First citationRamos, A. I., Fernandes, J. A., Silva, P., Ribeiro-Claro, P. J. A., Braga, S. S. & Almeida Paz, F. A. (2010). Acta Cryst. E66, m824–m825.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVerdejo, B., Gil-Ramírez, G. & Ballester, D. (2009). J. Am. Chem. Soc., 131, 3178–3179.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWatson, W. H. & Johnson, D. R. (1971). J. Coord. Chem. 1, 145–153.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds