organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Anilino-3-nitro­benzo­nitrile

aSchool of Pharmaceutical and Chemical Engineering, Taizhou University, Linhai 317000, People's Republic of China, and bAgronomy Department, Jiangsu Polytechnic College of Agriculture and Forestry, Jurong 212400 Jiangsu, People's Republic of China
*Correspondence e-mail: yutaitang@hotmail.com

(Received 15 October 2010; accepted 27 October 2010; online 24 November 2010)

In the title compound, C13H9N3O2, the aromatic rings are twisted with respect to each other, making a dihedral angle of 49.41 (9)°. The nitro group and the nitrile group are nearly in the plane of the benzonitrile ring, the largest deviation from the plane being 0.123 (1) Å. There is an intra­molecular N—H⋯O hydrogen bond forming an S(6) ring. Weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into a chain parallel to the c axis. Futhermore, slipped ππ inter­actions between symmetry-related phenyl rings [centroid–centroid distance 3.808 (1) Å, inter­planar distance 3.544 (8) Å with an offset of 21.5°] stabilize the structure.

Related literature

For the synthesis of the title compound, see: Schelz & Inst (1978[Schelz, D. & Inst, F. (1978). Helv. Chim. Acta, 61, 2452-2462.]). For related structures, see: McWilliam et al. (2001[McWilliam, S. A., Skakle, J. M. S., Wardell, J. L., Low, J. N. & Glidewell, C. (2001). Acta Cryst. C57, 946-948.]); Li, Liu et al. (2009[Li, H.-Y., Wu, Y.-Z., Liu, B.-N., Tang, S.-G. & Guo, C. (2009). Acta Cryst. E65, o1381.]); Li, Wu et al. (2009[Li, H.-Y., Liu, B.-N., Tang, S.-G. & Guo, C. (2009). Acta Cryst. E65, o91.]). For discussion of hydrogen bonding, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9N3O2

  • Mr = 239.23

  • Monoclinic, P 21 /c

  • a = 14.066 (3) Å

  • b = 7.4290 (15) Å

  • c = 11.652 (2) Å

  • β = 109.04 (3)°

  • V = 1151.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.972, Tmax = 0.990

  • 4199 measured reflections

  • 2082 independent reflections

  • 1546 reflections with I > 2σ(I)

  • Rint = 0.030

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.107

  • S = 1.04

  • 2082 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.96 2.6280 (18) 134
C3—H3A⋯O2i 0.93 2.59 3.478 (2) 159
Symmetry code: (i) x, y, z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The molecule of the title compound is non planar, the two phenyl rings make a dihedral angle of 49.41 (9)°. The nitro and nitrile groups are nearly in the plane of the C7–C12 phenyl ring with the largest deviation being 0.123 (1) Å at O2 (Fig. 1). Bond lengths and bond angles agree with related structures recently reported (Li, Liu et al., 2009; Li, Wu et al., 2009; McWilliam et al., 2001)

There is an intramolecular N-H···O hydrogen bond forming S(6) ring (Etter et al., 1990; Bernstein et al., 1995). A weak intermolecular C-H···O interactions link the molecule into a chain parallel to the c axis (Table 1, Fig. 2). Futhermore sliipest π-π interaction between symmetry related phenyl rings (symmetry code: (i) x,3/2-y,1/2+z) stabilize the structure (centroid to centroid 3.808 (1)Å, interplanar distance 3.544 (8)Å with an offset of 21.5° .

Related literature top

For the synthesis of the title compound, see: Schelz & Inst (1978). For related structures, see: McWilliam et al. (2001); Li, Liu et al. (2009); Li, Wu et al. (2009). For discussion of hydrogen bonding, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

4-chloro-3-nitrobenzonitrile (4.0 g, 0.022 mol)was heat in 10 ml fresh distilled aniline for 18 h at 403 K. After reaction completed (TLC control) was added 50 ml e thanol, at room temperature. The brown precipitate was sucked, washed with cold ethanol(2*15 ml), dried over sodium sulfateand gave 3.3 g(63%) (Schelz & Inst,1978). Pure compound (I) was obstained by crystallizing from ethanol. Crystals of (I) suitable for X-ray diffraction were obstained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

The molecule of the title compound is non planar, the two phenyl rings make a dihedral angle of 49.41 (9)°. The nitro and nitrile groups are nearly in the plane of the C7–C12 phenyl ring with the largest deviation being 0.123 (1) Å at O2 (Fig. 1). Bond lengths and bond angles agree with related structures recently reported (Li, Liu et al., 2009; Li, Wu et al., 2009; McWilliam et al., 2001)

There is an intramolecular N-H···O hydrogen bond forming S(6) ring (Etter et al., 1990; Bernstein et al., 1995). A weak intermolecular C-H···O interactions link the molecule into a chain parallel to the c axis (Table 1, Fig. 2). Futhermore sliipest π-π interaction between symmetry related phenyl rings (symmetry code: (i) x,3/2-y,1/2+z) stabilize the structure (centroid to centroid 3.808 (1)Å, interplanar distance 3.544 (8)Å with an offset of 21.5° .

For the synthesis of the title compound, see: Schelz & Inst (1978). For related structures, see: McWilliam et al. (2001); Li, Liu et al. (2009); Li, Wu et al. (2009). For discussion of hydrogen bonding, see: Etter et al. (1990); Bernstein et al. (1995).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing view of (I) showing the infinite chain formed by C-H···O hydrogen bonds. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry code: (i) x, y, z+1]
4-Anilino-3-nitrobenzonitrile top
Crystal data top
C13H9N3O2F(000) = 496
Mr = 239.23Dx = 1.381 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 14.066 (3) Åθ = 9–13°
b = 7.4290 (15) ŵ = 0.10 mm1
c = 11.652 (2) ÅT = 293 K
β = 109.04 (3)°Block, colourless
V = 1151.0 (4) Å30.30 × 0.30 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1546 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 25.3°, θmin = 1.5°
ω/2θ scansh = 1615
Absorption correction: ψ scan
(North et al., 1968)
k = 88
Tmin = 0.972, Tmax = 0.990l = 013
4199 measured reflections3 standard reflections every 200 reflections
2082 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.1451P]
where P = (Fo2 + 2Fc2)/3
2082 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C13H9N3O2V = 1151.0 (4) Å3
Mr = 239.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.066 (3) ŵ = 0.10 mm1
b = 7.4290 (15) ÅT = 293 K
c = 11.652 (2) Å0.30 × 0.30 × 0.10 mm
β = 109.04 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1546 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.030
Tmin = 0.972, Tmax = 0.9903 standard reflections every 200 reflections
4199 measured reflections intensity decay: 1%
2082 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.04Δρmax = 0.19 e Å3
2082 reflectionsΔρmin = 0.16 e Å3
163 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.91767 (8)0.4271 (2)0.39718 (10)0.0665 (4)
O20.84253 (9)0.43363 (19)0.20463 (10)0.0659 (4)
N10.82164 (10)0.5168 (2)0.54802 (11)0.0545 (4)
H10.87740.48450.53880.065*
N20.84229 (10)0.45587 (19)0.30832 (11)0.0485 (4)
N30.43509 (11)0.6904 (2)0.03546 (14)0.0699 (5)
C10.74708 (13)0.4539 (2)0.70743 (15)0.0570 (5)
H1B0.69210.39790.65170.068*
C20.75504 (15)0.4625 (3)0.82822 (17)0.0669 (5)
H2A0.70420.41430.85350.080*
C30.83667 (16)0.5411 (3)0.91186 (16)0.0695 (6)
H3A0.84140.54510.99330.083*
C40.91129 (15)0.6136 (3)0.87473 (16)0.0656 (5)
H4A0.96710.66590.93140.079*
C50.90432 (12)0.6097 (3)0.75389 (14)0.0537 (4)
H5A0.95480.66050.72900.064*
C60.82202 (11)0.5299 (2)0.67003 (13)0.0463 (4)
C70.74482 (11)0.5487 (2)0.44502 (13)0.0438 (4)
C80.65218 (12)0.6207 (2)0.44808 (14)0.0489 (4)
H8A0.64470.64440.52300.059*
C90.57426 (12)0.6561 (2)0.34586 (14)0.0506 (4)
H9A0.51500.70390.35200.061*
C100.58206 (11)0.6214 (2)0.23110 (14)0.0461 (4)
C110.67092 (11)0.5533 (2)0.22313 (13)0.0455 (4)
H11A0.67710.53000.14740.055*
C120.75095 (11)0.5196 (2)0.32739 (13)0.0432 (4)
C130.49993 (12)0.6596 (2)0.12224 (15)0.0524 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0436 (7)0.1033 (11)0.0496 (7)0.0174 (7)0.0112 (5)0.0019 (6)
O20.0553 (7)0.1003 (11)0.0471 (7)0.0071 (7)0.0237 (6)0.0053 (6)
N10.0437 (7)0.0796 (11)0.0403 (7)0.0117 (7)0.0140 (6)0.0013 (7)
N20.0431 (7)0.0617 (9)0.0421 (7)0.0019 (7)0.0157 (6)0.0028 (6)
N30.0545 (9)0.0920 (13)0.0557 (9)0.0140 (9)0.0076 (8)0.0037 (9)
C10.0556 (10)0.0621 (11)0.0535 (10)0.0002 (9)0.0182 (8)0.0053 (9)
C20.0700 (12)0.0752 (13)0.0661 (12)0.0131 (11)0.0369 (10)0.0185 (10)
C30.0884 (15)0.0803 (14)0.0438 (10)0.0311 (12)0.0268 (10)0.0111 (9)
C40.0634 (11)0.0753 (13)0.0466 (10)0.0174 (10)0.0022 (9)0.0035 (9)
C50.0428 (9)0.0686 (11)0.0476 (9)0.0092 (8)0.0120 (7)0.0026 (8)
C60.0449 (8)0.0540 (10)0.0394 (8)0.0119 (8)0.0130 (7)0.0038 (7)
C70.0430 (8)0.0468 (9)0.0418 (8)0.0007 (7)0.0140 (7)0.0001 (7)
C80.0485 (9)0.0578 (10)0.0431 (9)0.0042 (8)0.0189 (7)0.0009 (8)
C90.0431 (9)0.0561 (10)0.0543 (10)0.0058 (8)0.0181 (8)0.0022 (8)
C100.0395 (8)0.0509 (10)0.0450 (9)0.0007 (7)0.0102 (7)0.0020 (7)
C110.0461 (9)0.0509 (10)0.0394 (8)0.0027 (7)0.0140 (7)0.0013 (7)
C120.0389 (8)0.0472 (9)0.0442 (8)0.0013 (7)0.0144 (7)0.0013 (7)
C130.0449 (9)0.0615 (11)0.0502 (9)0.0041 (8)0.0148 (8)0.0021 (8)
Geometric parameters (Å, º) top
O1—N21.2352 (16)C4—C51.379 (2)
O2—N21.2206 (16)C4—H4A0.9300
N1—C71.3483 (18)C5—C61.382 (2)
N1—C61.4232 (19)C5—H5A0.9300
N1—H10.8600C7—C121.418 (2)
N2—C121.4529 (19)C7—C81.420 (2)
N3—C131.142 (2)C8—C91.356 (2)
C1—C21.377 (2)C8—H8A0.9300
C1—C61.385 (2)C9—C101.401 (2)
C1—H1B0.9300C9—H9A0.9300
C2—C31.371 (3)C10—C111.379 (2)
C2—H2A0.9300C10—C131.438 (2)
C3—C41.369 (3)C11—C121.383 (2)
C3—H3A0.9300C11—H11A0.9300
C7—N1—C6128.16 (14)C5—C6—N1117.71 (15)
C7—N1—H1115.9C1—C6—N1122.08 (15)
C6—N1—H1115.9N1—C7—C12123.37 (14)
O2—N2—O1121.83 (13)N1—C7—C8121.29 (14)
O2—N2—C12118.93 (13)C12—C7—C8115.30 (14)
O1—N2—C12119.24 (13)C9—C8—C7122.46 (15)
C2—C1—C6119.09 (17)C9—C8—H8A118.8
C2—C1—H1B120.5C7—C8—H8A118.8
C6—C1—H1B120.5C8—C9—C10120.70 (15)
C3—C2—C1121.11 (18)C8—C9—H9A119.7
C3—C2—H2A119.4C10—C9—H9A119.7
C1—C2—H2A119.4C11—C10—C9119.11 (14)
C4—C3—C2119.57 (17)C11—C10—C13119.86 (15)
C4—C3—H3A120.2C9—C10—C13121.01 (15)
C2—C3—H3A120.2C10—C11—C12120.19 (15)
C3—C4—C5120.51 (18)C10—C11—H11A119.9
C3—C4—H4A119.7C12—C11—H11A119.9
C5—C4—H4A119.7C11—C12—C7122.20 (14)
C4—C5—C6119.68 (18)C11—C12—N2115.57 (13)
C4—C5—H5A120.2C7—C12—N2122.22 (13)
C6—C5—H5A120.2N3—C13—C10179.6 (2)
C5—C6—C1120.02 (15)
C6—C1—C2—C31.5 (3)C8—C9—C10—C111.1 (3)
C1—C2—C3—C40.5 (3)C8—C9—C10—C13179.63 (16)
C2—C3—C4—C50.7 (3)C9—C10—C11—C120.1 (2)
C3—C4—C5—C60.8 (3)C13—C10—C11—C12178.70 (15)
C4—C5—C6—C10.1 (3)C10—C11—C12—C71.5 (2)
C4—C5—C6—N1175.33 (16)C10—C11—C12—N2177.32 (14)
C2—C1—C6—C51.3 (3)N1—C7—C12—C11179.94 (15)
C2—C1—C6—N1176.26 (16)C8—C7—C12—C112.1 (2)
C7—N1—C6—C5137.13 (18)N1—C7—C12—N21.3 (2)
C7—N1—C6—C147.8 (3)C8—C7—C12—N2176.63 (15)
C6—N1—C7—C12175.60 (16)O2—N2—C12—C111.2 (2)
C6—N1—C7—C86.6 (3)O1—N2—C12—C11178.27 (15)
N1—C7—C8—C9179.15 (16)O2—N2—C12—C7180.00 (15)
C12—C7—C8—C91.2 (2)O1—N2—C12—C70.6 (2)
C7—C8—C9—C100.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.962.6280 (18)134
C3—H3A···O2i0.932.593.478 (2)159
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H9N3O2
Mr239.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.066 (3), 7.4290 (15), 11.652 (2)
β (°) 109.04 (3)
V3)1151.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.30 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.972, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
4199, 2082, 1546
Rint0.030
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.04
No. of reflections2082
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.16

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.962.6280 (18)133.8
C3—H3A···O2i0.932.593.478 (2)159.2
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors thank Dr Shan Liu from Nanjing University of Technology for useful discussion and the Center of Testing and Analysis, Nanjing University, for support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLi, H.-Y., Wu, Y.-Z., Liu, B.-N., Tang, S.-G. & Guo, C. (2009). Acta Cryst. E65, o1381.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H.-Y., Liu, B.-N., Tang, S.-G. & Guo, C. (2009). Acta Cryst. E65, o91.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcWilliam, S. A., Skakle, J. M. S., Wardell, J. L., Low, J. N. & Glidewell, C. (2001). Acta Cryst. C57, 946–948.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSchelz, D. & Inst, F. (1978). Helv. Chim. Acta, 61, 2452–2462.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds