organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Anilino-3-nitro-N-phenyl­benzamide

aSchool of Pharmaceutical and Chemical Engineering, Taizhou University, Linhai 317000, People's Republic of China, and bNingbo International Investment Consulting Co. Ltd, Taizhou University, Ningbo 315010, People's Republic of China
*Correspondence e-mail: yutaitang@hotmail.com

(Received 15 October 2010; accepted 27 October 2010; online 24 November 2010)

In the title compound, C19H15N3O3, the anilino and benzamide rings make dihedral angles of 10.66 (16) and 50.39 (16)°, respectively, with the nitro-substituted benzene ring. The nitro group is slightly twisted by 11.49 (17)° with respect to the attached benzene ring. There is an intra­molecular N—H⋯O hydrogen bond forming an S(6) ring. In the crystal, weak inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a chain parallel to the b axis. Futhermore, weak slipped ππ inter­actions [centroid–centroid distance = 3.819 (2) Å, inter­planar distance = 3.567 Å and offset angle [how is the offset angle defined?] = 21°] between the anilino ring and its symmetry-related counterpart may help to stabilize the packing.

Related literature

For the synthesis of the title compound, see: Schelz & Inst (1978[Schelz, D. & Inst, F. (1978). Helv. Chim. Acta, 61, 2452-2462.]). For related structures, see: McWilliam et al. (2001[McWilliam, S. A., Skakle, J. M. S., Wardell, J. L., Low, J. N. & Glidewell, C. (2001). Acta Cryst. C57, 946-948.]); Li, Liu et al. (2009[Li, H.-Y., Wu, Y.-Z., Liu, B.-N., Tang, S.-G. & Guo, C. (2009). Acta Cryst. E65, o1381.]); Li, Wu et al. (2009[Li, H.-Y., Liu, B.-N., Tang, S.-G. & Guo, C. (2009). Acta Cryst. E65, o91.]). For discussion of hydrogen bonding, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15N3O3

  • Mr = 333.34

  • Triclinic, [P \overline 1]

  • a = 7.7930 (16) Å

  • b = 8.1580 (16) Å

  • c = 12.788 (3) Å

  • α = 84.73 (3)°

  • β = 83.82 (3)°

  • γ = 73.58 (3)°

  • V = 773.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.971, Tmax = 0.990

  • 3037 measured reflections

  • 2809 independent reflections

  • 1913 reflections with I > 2σ(I)

  • Rint = 0.069

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.173

  • S = 1.07

  • 2809 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 2.39 3.198 (3) 156
N3—H3⋯O2 0.86 2.04 2.649 (3) 127
C5—H5A⋯O3i 0.93 2.47 3.305 (4) 150
C9—H9A⋯O3i 0.93 2.51 3.416 (4) 165
C1—H1B⋯O1 0.93 2.26 2.851 (4) 121
Symmetry code: (i) x, y+1, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The molecule of the title compound, C19H15N3O3, is markedly non-planar, the benzamide (C1 to C6) and the phenyl amino (C14 to C19) rings make dihedral of 10.66 (16)° and 50.39 (16)° respectively, with the nitro substituted phenyl ring (C8 to C13) (Fig. 1). The nitro group is slightly twisted with respect to the phenyl ring by 11.49 (17)°. The bond lengths and bond angles agree with related structures (Li, Liu et al., 2009; Li, Wu et al., 2009; McWilliam et al., 2001).

There is an intramolecular N-H···O hydrogen bond forming an S(6) ring (Etter et al., 1990; Bernstein et al., 1995) whereas weak intermolecular N-H···O and C-H···O hydrogen bonds link the molecules into a chain parallel to the b axis (Table 1, Fig. 2). Futhermore, weak slippest π-π interaction (centroid to centroid = 3.819 (2)Å, interplanar distance = 3.567 and offset angle of 21°) between the C14–C19 phenyl ring and its symmetry related (symmetry code: (i) 1-x, 1-y, 2-z) may help in stabilizing the packing.

Related literature top

For the synthesis of the title compound, see: Schelz & Inst (1978). For related structures, see: McWilliam et al. (2001); Li, Liu et al. (2009); Li, Wu et al. (2009). For discussion of hydrogen bonding, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

4-chloro-3-nitrobenzamide (4.5 g, 0.022 mol)was heat in 10 ml fresh distilled aniline for 18 h at 403 K. After reaction completed (TLC control) was added 50 ml e thanol, at room temperature. The red precipitate was sucked, washed with cold ethanol(2*15 ml), dried over sodium sulfate and gave 5.5 g(74%) (Schelz & Inst,1978). Pure compound (I) was obstained by crystallizing from methanol. Crystals of (I) suitable for X-ray diffraction were obstained by slow evaporation of an methanol solution.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

The molecule of the title compound, C19H15N3O3, is markedly non-planar, the benzamide (C1 to C6) and the phenyl amino (C14 to C19) rings make dihedral of 10.66 (16)° and 50.39 (16)° respectively, with the nitro substituted phenyl ring (C8 to C13) (Fig. 1). The nitro group is slightly twisted with respect to the phenyl ring by 11.49 (17)°. The bond lengths and bond angles agree with related structures (Li, Liu et al., 2009; Li, Wu et al., 2009; McWilliam et al., 2001).

There is an intramolecular N-H···O hydrogen bond forming an S(6) ring (Etter et al., 1990; Bernstein et al., 1995) whereas weak intermolecular N-H···O and C-H···O hydrogen bonds link the molecules into a chain parallel to the b axis (Table 1, Fig. 2). Futhermore, weak slippest π-π interaction (centroid to centroid = 3.819 (2)Å, interplanar distance = 3.567 and offset angle of 21°) between the C14–C19 phenyl ring and its symmetry related (symmetry code: (i) 1-x, 1-y, 2-z) may help in stabilizing the packing.

For the synthesis of the title compound, see: Schelz & Inst (1978). For related structures, see: McWilliam et al. (2001); Li, Liu et al. (2009); Li, Wu et al. (2009). For discussion of hydrogen bonding, see: Etter et al. (1990); Bernstein et al. (1995).

Computing details top

Data collection: CAD-4 Software (Version 5.0; Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Version 5.0; Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing view of (I) showing the infinite chain formed by N-H···O and C-H···O hydrogen bonds. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry code: (i) x, 1+y, z]
4-Anilino-3-nitro-N-phenylbenzamide top
Crystal data top
C19H15N3O3Z = 2
Mr = 333.34F(000) = 348
Triclinic, P1Dx = 1.431 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7930 (16) ÅCell parameters from 25 reflections
b = 8.1580 (16) Åθ = 9–13°
c = 12.788 (3) ŵ = 0.10 mm1
α = 84.73 (3)°T = 293 K
β = 83.82 (3)°Block, colourless
γ = 73.58 (3)°0.30 × 0.20 × 0.10 mm
V = 773.7 (3) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1913 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.069
Graphite monochromatorθmax = 25.3°, θmin = 1.6°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 99
Tmin = 0.971, Tmax = 0.990l = 1515
3037 measured reflections3 standard reflections every 200 reflections
2809 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0726P)2 + 0.3362P]
where P = (Fo2 + 2Fc2)/3
2809 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C19H15N3O3γ = 73.58 (3)°
Mr = 333.34V = 773.7 (3) Å3
Triclinic, P1Z = 2
a = 7.7930 (16) ÅMo Kα radiation
b = 8.1580 (16) ŵ = 0.10 mm1
c = 12.788 (3) ÅT = 293 K
α = 84.73 (3)°0.30 × 0.20 × 0.10 mm
β = 83.82 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1913 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.069
Tmin = 0.971, Tmax = 0.9903 standard reflections every 200 reflections
3037 measured reflections intensity decay: 1%
2809 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.07Δρmax = 0.20 e Å3
2809 reflectionsΔρmin = 0.27 e Å3
226 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1624 (3)0.4949 (3)0.34191 (17)0.0597 (7)
O20.4401 (3)0.0652 (3)0.68488 (17)0.0595 (7)
O30.3047 (3)0.0231 (3)0.54356 (17)0.0552 (6)
N10.1661 (3)0.7456 (3)0.40167 (18)0.0439 (6)
H10.18920.78980.45520.053*
N20.3633 (3)0.0321 (3)0.61399 (18)0.0408 (6)
N30.4299 (3)0.2000 (3)0.79278 (18)0.0442 (6)
H30.48100.09220.78920.053*
C10.0361 (4)0.8190 (4)0.2304 (2)0.0442 (7)
H1B0.02930.70780.22650.053*
C20.0237 (4)0.9424 (4)0.1516 (2)0.0525 (8)
H2A0.07420.91430.09550.063*
C30.0102 (5)1.1066 (4)0.1543 (3)0.0562 (9)
H3B0.04731.18750.09930.067*
C40.0583 (5)1.1499 (4)0.2389 (3)0.0535 (8)
H4A0.06631.26090.24200.064*
C50.1152 (4)1.0284 (4)0.3193 (2)0.0486 (8)
H5A0.16011.05880.37690.058*
C60.1066 (4)0.8620 (4)0.3157 (2)0.0386 (7)
C70.1915 (4)0.5740 (3)0.4114 (2)0.0377 (7)
C80.2585 (4)0.4838 (3)0.5121 (2)0.0372 (7)
C90.2942 (4)0.5618 (4)0.5980 (2)0.0436 (7)
H9A0.27940.67940.59320.052*
C100.3501 (4)0.4676 (4)0.6883 (2)0.0431 (7)
H10A0.37210.52330.74350.052*
C110.3756 (4)0.2896 (3)0.7005 (2)0.0364 (6)
C120.3430 (4)0.2137 (3)0.6127 (2)0.0361 (6)
C130.2860 (4)0.3091 (3)0.5223 (2)0.0372 (6)
H13A0.26540.25390.46640.045*
C140.4108 (4)0.2654 (3)0.8927 (2)0.0371 (7)
C150.2639 (4)0.3943 (4)0.9262 (2)0.0450 (7)
H15A0.17580.44640.88090.054*
C160.2481 (4)0.4458 (4)1.0272 (2)0.0537 (8)
H16A0.14940.53401.04900.064*
C170.3752 (5)0.3695 (5)1.0967 (2)0.0570 (9)
H17A0.36230.40451.16500.068*
C180.5225 (5)0.2398 (5)1.0630 (3)0.0563 (9)
H18A0.60980.18691.10880.068*
C190.5402 (4)0.1891 (4)0.9619 (2)0.0454 (7)
H19A0.64010.10250.93970.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0943 (18)0.0402 (12)0.0486 (13)0.0195 (12)0.0183 (12)0.0065 (10)
O20.0869 (18)0.0349 (12)0.0525 (13)0.0051 (11)0.0210 (12)0.0004 (10)
O30.0802 (17)0.0388 (12)0.0546 (14)0.0245 (11)0.0164 (12)0.0064 (10)
N10.0598 (16)0.0353 (13)0.0422 (14)0.0165 (12)0.0180 (12)0.0038 (11)
N20.0497 (15)0.0350 (13)0.0375 (13)0.0117 (11)0.0010 (12)0.0049 (11)
N30.0540 (16)0.0363 (13)0.0406 (14)0.0066 (11)0.0099 (12)0.0061 (11)
C10.0492 (18)0.0436 (17)0.0429 (17)0.0158 (14)0.0079 (14)0.0048 (13)
C20.055 (2)0.058 (2)0.0457 (18)0.0143 (16)0.0132 (15)0.0045 (15)
C30.064 (2)0.0492 (19)0.052 (2)0.0109 (16)0.0117 (16)0.0071 (15)
C40.065 (2)0.0389 (17)0.059 (2)0.0170 (16)0.0149 (17)0.0041 (15)
C50.059 (2)0.0436 (17)0.0498 (18)0.0203 (15)0.0182 (15)0.0015 (14)
C60.0376 (15)0.0391 (16)0.0409 (16)0.0136 (13)0.0034 (12)0.0023 (12)
C70.0404 (16)0.0384 (16)0.0366 (15)0.0134 (13)0.0020 (12)0.0084 (12)
C80.0412 (16)0.0349 (15)0.0379 (15)0.0145 (12)0.0020 (13)0.0029 (12)
C90.0564 (19)0.0315 (15)0.0464 (17)0.0179 (14)0.0005 (14)0.0080 (13)
C100.0555 (19)0.0429 (17)0.0384 (16)0.0231 (14)0.0077 (14)0.0070 (13)
C110.0345 (15)0.0395 (15)0.0358 (15)0.0110 (12)0.0002 (12)0.0063 (12)
C120.0391 (16)0.0310 (14)0.0385 (15)0.0118 (12)0.0032 (12)0.0057 (12)
C130.0437 (16)0.0351 (15)0.0360 (15)0.0135 (12)0.0043 (12)0.0094 (12)
C140.0410 (16)0.0370 (15)0.0372 (15)0.0165 (13)0.0052 (13)0.0013 (12)
C150.0409 (17)0.0485 (18)0.0460 (18)0.0114 (14)0.0071 (14)0.0048 (14)
C160.052 (2)0.059 (2)0.0501 (19)0.0150 (16)0.0036 (16)0.0168 (16)
C170.072 (2)0.072 (2)0.0406 (18)0.039 (2)0.0055 (17)0.0085 (16)
C180.058 (2)0.070 (2)0.0489 (19)0.0291 (18)0.0169 (16)0.0079 (17)
C190.0445 (17)0.0489 (18)0.0453 (17)0.0165 (14)0.0077 (14)0.0009 (14)
Geometric parameters (Å, º) top
O1—C71.220 (3)C7—C81.492 (4)
O2—N21.236 (3)C8—C131.377 (4)
O3—N21.225 (3)C8—C91.408 (4)
N1—C71.353 (3)C9—C101.368 (4)
N1—C61.412 (3)C9—H9A0.9300
N1—H10.8600C10—C111.405 (4)
N2—C121.443 (3)C10—H10A0.9300
N3—C111.371 (3)C11—C121.410 (4)
N3—C141.407 (3)C12—C131.374 (4)
N3—H30.8600C13—H13A0.9300
C1—C21.377 (4)C14—C151.377 (4)
C1—C61.387 (4)C14—C191.387 (4)
C1—H1B0.9300C15—C161.377 (4)
C2—C31.377 (4)C15—H15A0.9300
C2—H2A0.9300C16—C171.378 (4)
C3—C41.372 (4)C16—H16A0.9300
C3—H3B0.9300C17—C181.383 (5)
C4—C51.378 (4)C17—H17A0.9300
C4—H4A0.9300C18—C191.374 (4)
C5—C61.383 (4)C18—H18A0.9300
C5—H5A0.9300C19—H19A0.9300
C7—N1—C6128.9 (2)C10—C9—C8121.1 (3)
C7—N1—H1115.6C10—C9—H9A119.5
C6—N1—H1115.6C8—C9—H9A119.5
O3—N2—O2121.0 (2)C9—C10—C11122.4 (3)
O3—N2—C12119.0 (2)C9—C10—H10A118.8
O2—N2—C12120.0 (2)C11—C10—H10A118.8
C11—N3—C14127.0 (2)N3—C11—C10120.6 (2)
C11—N3—H3116.5N3—C11—C12123.9 (3)
C14—N3—H3116.5C10—C11—C12115.5 (3)
C2—C1—C6119.4 (3)C13—C12—C11121.8 (2)
C2—C1—H1B120.3C13—C12—N2116.5 (2)
C6—C1—H1B120.3C11—C12—N2121.7 (2)
C1—C2—C3121.3 (3)C12—C13—C8122.0 (2)
C1—C2—H2A119.4C12—C13—H13A119.0
C3—C2—H2A119.4C8—C13—H13A119.0
C4—C3—C2119.4 (3)C15—C14—C19119.1 (3)
C4—C3—H3B120.3C15—C14—N3122.6 (3)
C2—C3—H3B120.3C19—C14—N3118.2 (3)
C3—C4—C5119.8 (3)C16—C15—C14119.7 (3)
C3—C4—H4A120.1C16—C15—H15A120.1
C5—C4—H4A120.1C14—C15—H15A120.1
C4—C5—C6121.1 (3)C15—C16—C17121.5 (3)
C4—C5—H5A119.5C15—C16—H16A119.3
C6—C5—H5A119.5C17—C16—H16A119.3
C5—C6—C1118.9 (3)C16—C17—C18118.7 (3)
C5—C6—N1117.6 (2)C16—C17—H17A120.6
C1—C6—N1123.4 (2)C18—C17—H17A120.6
O1—C7—N1122.4 (3)C19—C18—C17120.1 (3)
O1—C7—C8120.9 (3)C19—C18—H18A119.9
N1—C7—C8116.7 (2)C17—C18—H18A119.9
C13—C8—C9117.2 (3)C18—C19—C14120.8 (3)
C13—C8—C7117.0 (2)C18—C19—H19A119.6
C9—C8—C7125.8 (2)C14—C19—H19A119.6
C6—C1—C2—C31.9 (5)N3—C11—C12—C13179.0 (3)
C1—C2—C3—C42.3 (5)C10—C11—C12—C131.4 (4)
C2—C3—C4—C51.0 (5)N3—C11—C12—N20.6 (4)
C3—C4—C5—C60.8 (5)C10—C11—C12—N2179.8 (2)
C4—C5—C6—C11.3 (5)O3—N2—C12—C1310.7 (4)
C4—C5—C6—N1179.4 (3)O2—N2—C12—C13168.6 (3)
C2—C1—C6—C50.1 (4)O3—N2—C12—C11167.7 (3)
C2—C1—C6—N1178.0 (3)O2—N2—C12—C1112.9 (4)
C7—N1—C6—C5171.2 (3)C11—C12—C13—C80.4 (4)
C7—N1—C6—C110.7 (5)N2—C12—C13—C8178.8 (2)
C6—N1—C7—O10.6 (5)C9—C8—C13—C121.0 (4)
C6—N1—C7—C8179.1 (3)C7—C8—C13—C12178.3 (2)
O1—C7—C8—C130.2 (4)C11—N3—C14—C1535.4 (4)
N1—C7—C8—C13179.5 (3)C11—N3—C14—C19148.7 (3)
O1—C7—C8—C9179.0 (3)C19—C14—C15—C160.3 (4)
N1—C7—C8—C91.2 (4)N3—C14—C15—C16176.2 (3)
C13—C8—C9—C101.3 (4)C14—C15—C16—C170.9 (5)
C7—C8—C9—C10177.9 (3)C15—C16—C17—C180.8 (5)
C8—C9—C10—C110.2 (5)C16—C17—C18—C190.0 (5)
C14—N3—C11—C1022.4 (4)C17—C18—C19—C140.5 (5)
C14—N3—C11—C12158.0 (3)C15—C14—C19—C180.4 (4)
C9—C10—C11—N3179.2 (3)N3—C14—C19—C18175.6 (3)
C9—C10—C11—C121.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.393.198 (3)156
N3—H3···O20.862.042.649 (3)127
C5—H5A···O3i0.932.473.305 (4)150
C9—H9A···O3i0.932.513.416 (4)165
C1—H1B···O10.932.262.851 (4)121
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H15N3O3
Mr333.34
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.7930 (16), 8.1580 (16), 12.788 (3)
α, β, γ (°)84.73 (3), 83.82 (3), 73.58 (3)
V3)773.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.971, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
3037, 2809, 1913
Rint0.069
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.173, 1.07
No. of reflections2809
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.27

Computer programs: CAD-4 Software (Version 5.0; Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.393.198 (3)155.8
N3—H3···O20.862.042.649 (3)126.9
C5—H5A···O3i0.932.473.305 (4)149.9
C9—H9A···O3i0.932.513.416 (4)165.1
C1—H1B···O10.932.262.851 (4)120.8
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank Dr Shan Liu from Nanjing University of Technology for useful discussion and the Center of Testing and Analysis, Nanjing University, for support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLi, H.-Y., Wu, Y.-Z., Liu, B.-N., Tang, S.-G. & Guo, C. (2009). Acta Cryst. E65, o1381.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H.-Y., Liu, B.-N., Tang, S.-G. & Guo, C. (2009). Acta Cryst. E65, o91.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcWilliam, S. A., Skakle, J. M. S., Wardell, J. L., Low, J. N. & Glidewell, C. (2001). Acta Cryst. C57, 946–948.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSchelz, D. & Inst, F. (1978). Helv. Chim. Acta, 61, 2452–2462.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds