organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­nitro-1-naphthol

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 17 October 2010; accepted 3 November 2010; online 6 November 2010)

In the title compound, C10H6N2O5, the two fused rings are almost co-planar, with an r.m.s. deviation of 0.0163 Å. The nitro groups are oriented at dihedral angles of 2.62 (11) and 44.69 (11)° with respect to the plane of the parent fused rings. Intra­molecular O—H⋯O and C—H⋯O hydrogen bonds complete S(6) ring motifs. In the crystal, mol­ecules are linked into chains along [101] by inter­molecular O—H⋯O hydrogen bonds. ππ inter­actions [centroid–centroid distances = 3.6296 (15), 3.8104 (15) and 3.6513 (14) Å] might play a role in stabilizing the structure.

Related literature

For background to estrogens, see: Schwartz et al. (1995[Schwartz, J., Freeman, R. & Frishman, W. (1995). J. Clin. Pharmacol. 35, 1-16.]); O'Donnell et al. (2001)[O'Donnell, L., Kristen, M. R., Margaret, E. J. & Evan, R. S. (2001). Endocr. Rev. 22, 289-318.]. For related structures, see: Filipenko et al. (2001[Filipenko, O. S., Chuev, I. I., Leonova, L. S., Shilov, G. V. & Aldoshin, S. M. (2001). Dokl. Phys. Chem. 376, 27-30.]); Rozycka-Sokolowska et al. (2004[Rozycka-Sokolowska, E., Marciniak, B. & Pavlyuk, V. (2004). Acta Cryst. E60, o884-o885.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ππ inter­actions, see: Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6N2O5

  • Mr = 234.17

  • Monoclinic, P 21 /n

  • a = 7.0512 (10) Å

  • b = 16.3541 (19) Å

  • c = 8.7988 (10) Å

  • β = 111.452 (6)°

  • V = 944.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 296 K

  • 0.32 × 0.14 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.982

  • 6868 measured reflections

  • 1684 independent reflections

  • 1058 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.119

  • S = 1.00

  • 1684 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O1i 0.82 2.53 3.006 (3) 118
O5—H5A⋯O4 0.82 1.87 2.573 (2) 142
O5—H5A⋯N2 0.82 2.47 2.892 (3) 113
C5—H5⋯O1 0.93 2.35 2.902 (3) 118
Symmetry code: (i) x+1, y, z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Estrogens have been found to have maintenance effects on bone, brain, skin, cardiovascular system (Schwartz et al., 1995). In spite of their beneficial biological effects, estrogens are suspected to have relationship with the risk of cancer and thromboemetic diseases (O'Donnell et al., 2001). The title compound was obtained as an interesting side product while synthesizing substituted 1-tetralone as AB ring of the estrogen skeleton which will bear substituent at positions not found in nature.

The title compound (I) is related to the published crystal structures of 1-naphthalenol (Rozycka-Sokolowska et al., 2004) and hydroxonium 2,4-dinitro-1-hydroxy-7-sulfonatonaphthalene monohydrate (Filipenko et al., 2001).

In (I), the two fused rings (C1—C10) are neraly planar with the largest deviation being 0.033 (2)Å at C10 (Fig. 1). The hydroxyl O5 atom is only deviating by 0.129 (2)Å from the mean plane. Owing to the intramolecular O5–H···O4 hydrogen bond (Table 1), the O3 and O4 atoms are only slightly displaced from the mean plane of the fused rings by -0.074 (2)Å and 0.023 (2) Å, respectively. The other nitro group is twisted by 44.72 (12)° with respect to the fused rings.

Strong intramolecular H-bondings of O—H···O and C—H···O types (Table 1, Fig. 1) complete S(6) ring motifs (Bernstein et al., 1995). The molecules are stabilized in the form of polymeric chains due to intermolecular O—H···O hydrogen bonds (Table 1, Fig. 2). Slippest weak ππ interactions (Table 2) might play a role in stabilizing the packing.

Related literature top

For background to estrogens, see: Schwartz et al. (1995); O'Donnell et al. (2001). For related structures, see: Filipenko et al. (2001); Rozycka-Sokolowska et al. (2004). For graph-set notation, see: Bernstein et al. (1995). For ππ interactions, see: Janiak (2000).

Experimental top

The 1-tetralone (1 ml, 1.1 g, 1 eq) was added to a chilled and well stirred nitrating mixture containing H2SO4 (2 ml, 0.57 g, 2 eq) and HNO3 (0.5 ml, 0.7 g, 1.5 eq). The reaction mixture was then neutralized and extracted with EtOAc (3 × 25 ml) and the combined organic extract was dried over anhydrous Na2SO4 and concentrated under reduced pressure. The crude product was purified by column chromatography and the title compound (I) was obtained as dull brown crystalline solid in 61–79th fraction (20 ml each) using 2.5% CHCl3 (3 × 500 ml) as mobile phase. Yield: 15%.

Refinement top

The H-atoms were positioned geometrically with (O–H = 0.82, C–H = 0.93 Å) and treated as riding with Uiso(H) = 1.2Ueq(C, O).

Structure description top

Estrogens have been found to have maintenance effects on bone, brain, skin, cardiovascular system (Schwartz et al., 1995). In spite of their beneficial biological effects, estrogens are suspected to have relationship with the risk of cancer and thromboemetic diseases (O'Donnell et al., 2001). The title compound was obtained as an interesting side product while synthesizing substituted 1-tetralone as AB ring of the estrogen skeleton which will bear substituent at positions not found in nature.

The title compound (I) is related to the published crystal structures of 1-naphthalenol (Rozycka-Sokolowska et al., 2004) and hydroxonium 2,4-dinitro-1-hydroxy-7-sulfonatonaphthalene monohydrate (Filipenko et al., 2001).

In (I), the two fused rings (C1—C10) are neraly planar with the largest deviation being 0.033 (2)Å at C10 (Fig. 1). The hydroxyl O5 atom is only deviating by 0.129 (2)Å from the mean plane. Owing to the intramolecular O5–H···O4 hydrogen bond (Table 1), the O3 and O4 atoms are only slightly displaced from the mean plane of the fused rings by -0.074 (2)Å and 0.023 (2) Å, respectively. The other nitro group is twisted by 44.72 (12)° with respect to the fused rings.

Strong intramolecular H-bondings of O—H···O and C—H···O types (Table 1, Fig. 1) complete S(6) ring motifs (Bernstein et al., 1995). The molecules are stabilized in the form of polymeric chains due to intermolecular O—H···O hydrogen bonds (Table 1, Fig. 2). Slippest weak ππ interactions (Table 2) might play a role in stabilizing the packing.

For background to estrogens, see: Schwartz et al. (1995); O'Donnell et al. (2001). For related structures, see: Filipenko et al. (2001); Rozycka-Sokolowska et al. (2004). For graph-set notation, see: Bernstein et al. (1995). For ππ interactions, see: Janiak (2000).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The dotted line indicate the intramolecular H-bond.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form polymeric chains.
2,4-Dinitro-1-naphthol top
Crystal data top
C10H6N2O5F(000) = 480
Mr = 234.17Dx = 1.647 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1058 reflections
a = 7.0512 (10) Åθ = 2.5–25.1°
b = 16.3541 (19) ŵ = 0.14 mm1
c = 8.7988 (10) ÅT = 296 K
β = 111.452 (6)°Needle, brown
V = 944.4 (2) Å30.32 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1684 independent reflections
Radiation source: fine-focus sealed tube1058 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 8.20 pixels mm-1θmax = 25.1°, θmin = 2.5°
ω scansh = 78
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1919
Tmin = 0.978, Tmax = 0.982l = 1010
6868 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.059P)2]
where P = (Fo2 + 2Fc2)/3
1684 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C10H6N2O5V = 944.4 (2) Å3
Mr = 234.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.0512 (10) ŵ = 0.14 mm1
b = 16.3541 (19) ÅT = 296 K
c = 8.7988 (10) Å0.32 × 0.14 × 0.12 mm
β = 111.452 (6)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1684 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1058 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.982Rint = 0.052
6868 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.00Δρmax = 0.18 e Å3
1684 reflectionsΔρmin = 0.17 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3884 (3)0.45828 (13)0.10925 (19)0.0656 (6)
O20.6120 (3)0.36519 (11)0.1294 (2)0.0663 (6)
O30.8511 (3)0.26242 (11)0.6881 (2)0.0762 (7)
O41.0038 (3)0.34485 (11)0.8845 (2)0.0735 (6)
O50.9984 (3)0.49989 (10)0.83341 (16)0.0500 (5)
H5A1.03560.45870.88960.060*
N10.5444 (3)0.42063 (12)0.1860 (2)0.0441 (5)
N20.8995 (3)0.33110 (13)0.7401 (3)0.0497 (6)
C10.8052 (3)0.54453 (12)0.5693 (2)0.0313 (5)
C20.8467 (4)0.62585 (14)0.6216 (3)0.0415 (6)
H20.91970.63700.73120.050*
C30.7809 (4)0.68880 (14)0.5131 (3)0.0465 (7)
H30.80770.74260.54890.056*
C40.6744 (4)0.67246 (15)0.3500 (3)0.0487 (7)
H40.63290.71570.27660.058*
C50.6283 (4)0.59409 (15)0.2936 (3)0.0419 (6)
H50.55570.58480.18320.050*
C60.6905 (3)0.52753 (13)0.4024 (2)0.0313 (5)
C70.6553 (3)0.44389 (13)0.3569 (2)0.0334 (5)
C80.7224 (3)0.38182 (13)0.4646 (2)0.0373 (6)
H80.69480.32790.42990.045*
C90.8335 (3)0.39941 (13)0.6284 (2)0.0354 (6)
C100.8816 (3)0.47868 (13)0.6824 (2)0.0345 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0468 (12)0.0892 (14)0.0412 (10)0.0043 (11)0.0071 (9)0.0067 (9)
O20.0875 (16)0.0570 (12)0.0489 (11)0.0026 (11)0.0184 (10)0.0192 (9)
O30.110 (2)0.0391 (11)0.0731 (13)0.0007 (11)0.0256 (12)0.0117 (9)
O40.0881 (16)0.0695 (13)0.0441 (11)0.0059 (11)0.0017 (11)0.0225 (9)
O50.0560 (12)0.0565 (10)0.0260 (9)0.0001 (9)0.0012 (8)0.0046 (7)
N10.0459 (14)0.0488 (12)0.0320 (11)0.0085 (11)0.0075 (10)0.0052 (9)
N20.0521 (15)0.0483 (14)0.0490 (13)0.0019 (11)0.0190 (11)0.0158 (10)
C10.0258 (13)0.0386 (12)0.0291 (11)0.0020 (10)0.0096 (9)0.0002 (9)
C20.0405 (15)0.0446 (14)0.0385 (13)0.0023 (11)0.0132 (11)0.0055 (11)
C30.0493 (17)0.0376 (14)0.0519 (15)0.0043 (12)0.0175 (13)0.0013 (11)
C40.0490 (17)0.0448 (15)0.0489 (15)0.0094 (12)0.0139 (13)0.0142 (12)
C50.0368 (15)0.0526 (15)0.0317 (12)0.0054 (12)0.0070 (10)0.0065 (11)
C60.0235 (12)0.0401 (12)0.0298 (11)0.0026 (10)0.0093 (9)0.0016 (9)
C70.0267 (13)0.0435 (13)0.0272 (11)0.0026 (10)0.0066 (9)0.0030 (10)
C80.0347 (14)0.0384 (13)0.0388 (13)0.0021 (11)0.0137 (11)0.0017 (10)
C90.0337 (14)0.0404 (13)0.0321 (12)0.0021 (10)0.0120 (10)0.0083 (10)
C100.0307 (13)0.0474 (14)0.0247 (11)0.0008 (11)0.0093 (10)0.0021 (10)
Geometric parameters (Å, º) top
O1—N11.225 (2)C2—H20.9300
O2—N11.213 (2)C3—C41.381 (3)
O3—N21.214 (3)C3—H30.9300
O4—N21.234 (3)C4—C51.370 (3)
O5—C101.328 (2)C4—H40.9300
O5—H5A0.8200C5—C61.409 (3)
N1—C71.469 (3)C5—H50.9300
N2—C91.448 (3)C6—C71.421 (3)
C1—C21.403 (3)C7—C81.351 (3)
C1—C61.421 (3)C8—C91.395 (3)
C1—C101.431 (3)C8—H80.9300
C2—C31.365 (3)C9—C101.380 (3)
C10—O5—H5A109.5C4—C5—C6120.2 (2)
O2—N1—O1123.9 (2)C4—C5—H5119.9
O2—N1—C7118.2 (2)C6—C5—H5119.9
O1—N1—C7117.9 (2)C5—C6—C7124.98 (19)
O3—N2—O4122.4 (2)C5—C6—C1118.0 (2)
O3—N2—C9118.8 (2)C7—C6—C1117.00 (19)
O4—N2—C9118.8 (2)C8—C7—C6123.06 (19)
C2—C1—C6119.75 (19)C8—C7—N1116.25 (19)
C2—C1—C10120.33 (19)C6—C7—N1120.68 (18)
C6—C1—C10119.90 (19)C7—C8—C9119.3 (2)
C3—C2—C1120.6 (2)C7—C8—H8120.3
C3—C2—H2119.7C9—C8—H8120.3
C1—C2—H2119.7C10—C9—C8121.60 (19)
C2—C3—C4119.8 (2)C10—C9—N2120.89 (19)
C2—C3—H3120.1C8—C9—N2117.5 (2)
C4—C3—H3120.1O5—C10—C9125.07 (19)
C5—C4—C3121.6 (2)O5—C10—C1115.92 (19)
C5—C4—H4119.2C9—C10—C1119.00 (18)
C3—C4—H4119.2
C6—C1—C2—C31.1 (3)O1—N1—C7—C644.9 (3)
C10—C1—C2—C3177.5 (2)C6—C7—C8—C90.7 (3)
C1—C2—C3—C40.7 (4)N1—C7—C8—C9178.4 (2)
C2—C3—C4—C51.5 (4)C7—C8—C9—C101.9 (3)
C3—C4—C5—C60.4 (4)C7—C8—C9—N2179.0 (2)
C4—C5—C6—C7178.5 (2)O3—N2—C9—C10178.8 (2)
C4—C5—C6—C11.4 (3)O4—N2—C9—C101.5 (3)
C2—C1—C6—C52.1 (3)O3—N2—C9—C82.1 (3)
C10—C1—C6—C5176.42 (19)O4—N2—C9—C8177.6 (2)
C2—C1—C6—C7179.44 (19)C8—C9—C10—O5175.0 (2)
C10—C1—C6—C70.9 (3)N2—C9—C10—O54.1 (3)
C5—C6—C7—C8178.2 (2)C8—C9—C10—C13.8 (3)
C1—C6—C7—C81.1 (3)N2—C9—C10—C1177.11 (19)
C5—C6—C7—N10.8 (3)C2—C1—C10—O52.9 (3)
C1—C6—C7—N1177.9 (2)C6—C1—C10—O5175.7 (2)
O2—N1—C7—C843.7 (3)C2—C1—C10—C9178.2 (2)
O1—N1—C7—C8136.1 (2)C6—C1—C10—C93.2 (3)
O2—N1—C7—C6135.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O1i0.822.533.006 (3)118
O5—H5A···O40.821.872.573 (2)142
O5—H5A···N20.822.472.892 (3)113
C5—H5···O10.932.352.902 (3)118
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H6N2O5
Mr234.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.0512 (10), 16.3541 (19), 8.7988 (10)
β (°) 111.452 (6)
V3)944.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.32 × 0.14 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.978, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
6868, 1684, 1058
Rint0.052
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.119, 1.00
No. of reflections1684
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O1i0.822.533.006 (3)118
O5—H5A···O40.821.872.573 (2)142
O5—H5A···N20.822.472.892 (3)113
C5—H5···O10.932.352.902 (3)118
Symmetry code: (i) x+1, y, z+1.
ππ interactions (Å, °) top
Cg1 and Cg2 are the centroids of the C1–C6 and C1/C6–C10 rings, respectively. ipd is the mean interplanar distance (distance from one plane to the neighbouring centroid) and sa is the slippage angle (angle subtended by the intercentroid vector to the plane normal). For details, see Janiak (2000)
Cg···Cgipdsa
Cg1···Cg2i3.6296 (15)3.3651.305
Cg1···Cg2ii3.8104 (15)3.5521.323
Cg2···Cg2i3.6513 (14)3.3781.386
Symmetry codes: (i) 1-x, 1-y, 1-z, (ii) 2-x, 1-y, 1-z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. ARR also acknowledges the Higher Education Commission, Government of Pakistan, for generous support of the research project (20–819).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFilipenko, O. S., Chuev, I. I., Leonova, L. S., Shilov, G. V. & Aldoshin, S. M. (2001). Dokl. Phys. Chem. 376, 27–30.  Web of Science CrossRef Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationO'Donnell, L., Kristen, M. R., Margaret, E. J. & Evan, R. S. (2001). Endocr. Rev. 22, 289–318.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRozycka-Sokolowska, E., Marciniak, B. & Pavlyuk, V. (2004). Acta Cryst. E60, o884–o885.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchwartz, J., Freeman, R. & Frishman, W. (1995). J. Clin. Pharmacol. 35, 1–16.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds