organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-[1-(4-Chloro­phen­yl)eth­yl]-3,5-di­methyl-N-nitro-1,3,5-triazinan-2-imine

aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: qknhs@yahoo.com.cn

(Received 4 November 2010; accepted 9 November 2010; online 17 November 2010)

In the title compound, C13H18ClN5O2, the 1,3,5-triazinane ring exhibits an envelope conformation with an E form. The chloro­phenyl ring and the nitro group are each twisted with respect to the mean plane of the triazinane ring, making dihedral angles of 67.30 (9) and 83.54 (8)°, respectively. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds build up a corrugated layer parallel to the (101) plane.

Related literature

The title compound was synthesized as a new compound with better insecticidal activity. For similar compounds with insecticidal properties, see: Koln et al. (2002[Koln, J. S., Wolfenbuttel, K. L., Dusseldorf, W. S., Bergisch Gladbach, A. H. & Koln, T. T. (2002). US Patent 0869120.]). For related structures, see: Zhao et al. (2008[Zhao, C., Yang, W., Hu, Y., Shen, L. & Lu, X. (2008). Acta Cryst. E64, o1515.]); Hu et al. (2008[Hu, Z.-Q., Yang, X.-D., An, G.-W., Yang, Z. & Xu, L.-Z. (2008). Acta Cryst. E64, o121.]); Xu et al. (2010[Xu, L.-Z., Yin, R.-F. & Li, H.-X. (2010). Acta Cryst. E66, o867.]) For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C13H18ClN5O2

  • Mr = 311.77

  • Monoclinic, P 21 /c

  • a = 7.2483 (14) Å

  • b = 29.568 (6) Å

  • c = 7.2306 (14) Å

  • β = 108.75 (3)°

  • V = 1467.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 113 K

  • 0.20 × 0.16 × 0.12 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.947, Tmax = 0.968

  • 9753 measured reflections

  • 2585 independent reflections

  • 2303 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.104

  • S = 1.08

  • 2585 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O2i 0.98 2.29 3.273 (2) 178
C10—H10A⋯O1ii 0.99 2.43 3.278 (2) 143
C11—H11B⋯O2i 0.99 2.49 3.434 (3) 160
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Takyo, Japan]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound was synthesized as a new compound with better insecticide activity. Lots of similar insecticide compounds with (I) were synthesized (Koln et al., 2002). We report here the crystal struture of (I).

The 1,3,5-triazinan ring exhibits envelope conformation with puckering parameters Q= 0.4777 (19)Å, θ= 57.8 (2)° and φ= 238.5 (3)° (Cremer & Pople, 1975). The chlorophenyl ring as well as the nitro group are twisted with respect to the mean plane of the triazinan ring making dihedral angles of 67.30 (9)° and 83.54 (8)° respectively (Fig. 1). All bond lengths and angles are normal and in a good agreement with those recently reported (Hu et al., 2008; Zhao et al., 2008; Xu et al., 2010).

Weak intermolecular C–H···O hydrogen bonds build up a corrugated layer parallel to the (1 0 1) plane (Table 1).

Related literature top

The title compound was synthesized as a new compound with better insecticidal activity. For similar compounds with insecticidal properties, see: Koln et al. (2002). For related structures, see: Zhao et al. (2008); Hu et al. (2008); Xu et al. (2010) For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of 1,5-dimethyl-2-(nitromethylene)-1,3,5-triazinane (20.64 g, 0.12 mol), potassium carbonate (20.7 g, 0.15 mol), potassium iodization (2 g) and ethyl acetate (150 ml) was stirred and heated in a 500 ml flask. The mixture was slowly heated to 353 K - 363 K and kept for 1 h. Then ,1-chloro-4-(1-chloroethyl)benzene (21 g, 0.12 mol, dissolved in 100 ml of ethyl acetate) was added dropwise into the flask, and the mixture was futher stirred at 353 K - 363 K for 15 h. After cooling, the precipitate was filtered,washed with ethyl acetate and water, and recrystallized from ethyl acetate to obtain flaxen powder. Yield: 86%.

Refinement top

All H atoms were placed in calculated positions, with C–H = 0.93–0.98 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) for aryl, methylene and 1.5Ueq(C) for methyl H atoms.

Structure description top

The title compound was synthesized as a new compound with better insecticide activity. Lots of similar insecticide compounds with (I) were synthesized (Koln et al., 2002). We report here the crystal struture of (I).

The 1,3,5-triazinan ring exhibits envelope conformation with puckering parameters Q= 0.4777 (19)Å, θ= 57.8 (2)° and φ= 238.5 (3)° (Cremer & Pople, 1975). The chlorophenyl ring as well as the nitro group are twisted with respect to the mean plane of the triazinan ring making dihedral angles of 67.30 (9)° and 83.54 (8)° respectively (Fig. 1). All bond lengths and angles are normal and in a good agreement with those recently reported (Hu et al., 2008; Zhao et al., 2008; Xu et al., 2010).

Weak intermolecular C–H···O hydrogen bonds build up a corrugated layer parallel to the (1 0 1) plane (Table 1).

The title compound was synthesized as a new compound with better insecticidal activity. For similar compounds with insecticidal properties, see: Koln et al. (2002). For related structures, see: Zhao et al. (2008); Hu et al. (2008); Xu et al. (2010) For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound (I) with the atoms labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
(E)-1-[1-(4-Chlorophenyl)ethyl]-3,5-dimethyl-N-nitro-1,3,5- triazinan-2-imine top
Crystal data top
C13H18ClN5O2F(000) = 656
Mr = 311.77Dx = 1.411 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3278 reflections
a = 7.2483 (14) Åθ = 1.4–27.9°
b = 29.568 (6) ŵ = 0.27 mm1
c = 7.2306 (14) ÅT = 113 K
β = 108.75 (3)°Needle, colourless
V = 1467.4 (5) Å30.20 × 0.16 × 0.12 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2585 independent reflections
Radiation source: rotating anode2303 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.039
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 1.4°
ω and φ scansh = 88
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 3534
Tmin = 0.947, Tmax = 0.968l = 88
9753 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.7943P]
where P = (Fo2 + 2Fc2)/3
2585 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C13H18ClN5O2V = 1467.4 (5) Å3
Mr = 311.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2483 (14) ŵ = 0.27 mm1
b = 29.568 (6) ÅT = 113 K
c = 7.2306 (14) Å0.20 × 0.16 × 0.12 mm
β = 108.75 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2585 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2303 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.968Rint = 0.039
9753 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.08Δρmax = 0.46 e Å3
2585 reflectionsΔρmin = 0.51 e Å3
193 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.37472 (9)0.56523 (2)0.15716 (10)0.0546 (2)
O10.25418 (19)0.29503 (4)0.41241 (18)0.0236 (3)
O20.48276 (18)0.33395 (5)0.47562 (18)0.0254 (3)
N10.0516 (2)0.36893 (5)0.2166 (2)0.0173 (3)
N20.2858 (2)0.32380 (5)0.0044 (2)0.0175 (3)
N30.0492 (2)0.31375 (5)0.0208 (2)0.0181 (3)
N40.3580 (2)0.36095 (5)0.2595 (2)0.0197 (3)
N50.3641 (2)0.32910 (5)0.3838 (2)0.0181 (3)
C10.3035 (3)0.44147 (6)0.3422 (3)0.0261 (4)
H10.38130.41530.38530.031*
C20.3844 (3)0.47936 (7)0.2862 (3)0.0321 (5)
H20.51590.47890.28760.038*
C30.2725 (3)0.51775 (7)0.2283 (3)0.0323 (5)
C40.0823 (3)0.51896 (7)0.2250 (3)0.0326 (5)
H40.00710.54570.18710.039*
C50.0016 (3)0.48064 (6)0.2776 (3)0.0265 (4)
H50.13070.48130.27360.032*
C60.1093 (3)0.44127 (6)0.3362 (3)0.0206 (4)
C70.0118 (3)0.39993 (6)0.3875 (3)0.0200 (4)
H70.10810.41050.41430.024*
C80.1367 (3)0.37472 (6)0.5690 (3)0.0231 (4)
H8A0.25200.36220.54460.035*
H8B0.06050.35010.59910.035*
H8C0.17760.39570.67970.035*
C90.2273 (2)0.34984 (5)0.1609 (2)0.0166 (4)
C100.1503 (3)0.31248 (6)0.1043 (3)0.0199 (4)
H10A0.18080.28190.16160.024*
H10B0.16830.33430.21270.024*
C110.0888 (3)0.35748 (6)0.1119 (3)0.0184 (4)
H11A0.08100.38070.01100.022*
H11B0.22290.35780.20560.022*
C120.0994 (3)0.27654 (6)0.1633 (3)0.0231 (4)
H12A0.07570.24750.09400.035*
H12B0.01880.27850.24890.035*
H12C0.23730.27870.24200.035*
C130.4771 (3)0.30192 (6)0.0593 (3)0.0226 (4)
H13A0.57010.32040.01930.034*
H13B0.46720.27190.00070.034*
H13C0.52220.29880.20180.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0535 (4)0.0359 (3)0.0547 (4)0.0206 (3)0.0102 (3)0.0202 (3)
O10.0254 (7)0.0221 (7)0.0255 (7)0.0071 (5)0.0111 (6)0.0057 (5)
O20.0188 (7)0.0410 (8)0.0203 (7)0.0038 (6)0.0120 (5)0.0028 (6)
N10.0174 (8)0.0186 (7)0.0171 (7)0.0002 (6)0.0071 (6)0.0011 (6)
N20.0142 (7)0.0210 (8)0.0176 (7)0.0000 (6)0.0057 (6)0.0004 (6)
N30.0165 (8)0.0198 (8)0.0185 (7)0.0008 (6)0.0062 (6)0.0019 (6)
N40.0190 (8)0.0220 (8)0.0207 (8)0.0039 (6)0.0100 (6)0.0035 (6)
N50.0151 (7)0.0233 (8)0.0155 (7)0.0002 (6)0.0045 (6)0.0007 (6)
C10.0241 (10)0.0198 (9)0.0300 (10)0.0014 (7)0.0026 (8)0.0005 (8)
C20.0260 (11)0.0310 (11)0.0346 (11)0.0077 (8)0.0033 (9)0.0021 (9)
C30.0390 (12)0.0229 (10)0.0254 (10)0.0100 (9)0.0032 (9)0.0030 (8)
C40.0439 (13)0.0204 (10)0.0262 (11)0.0063 (9)0.0012 (9)0.0000 (8)
C50.0286 (10)0.0269 (10)0.0223 (10)0.0049 (8)0.0059 (8)0.0039 (8)
C60.0249 (10)0.0188 (9)0.0164 (9)0.0012 (7)0.0044 (7)0.0038 (7)
C70.0206 (9)0.0214 (9)0.0184 (9)0.0015 (7)0.0067 (7)0.0046 (7)
C80.0247 (10)0.0262 (10)0.0189 (9)0.0005 (8)0.0075 (8)0.0005 (7)
C90.0175 (9)0.0155 (8)0.0165 (8)0.0039 (7)0.0052 (7)0.0038 (7)
C100.0196 (9)0.0253 (10)0.0159 (8)0.0008 (7)0.0073 (7)0.0021 (7)
C110.0175 (9)0.0204 (9)0.0195 (9)0.0012 (7)0.0088 (7)0.0010 (7)
C120.0223 (10)0.0215 (9)0.0250 (10)0.0027 (7)0.0070 (8)0.0004 (7)
C130.0146 (9)0.0290 (10)0.0232 (9)0.0024 (7)0.0045 (7)0.0022 (8)
Geometric parameters (Å, º) top
Cl1—C31.740 (2)C4—C51.383 (3)
O1—N51.2595 (19)C4—H40.9500
O2—N51.2522 (19)C5—C61.390 (3)
N1—C91.332 (2)C5—H50.9500
N1—C71.488 (2)C6—C71.516 (3)
N1—C111.490 (2)C7—C81.527 (3)
N2—C91.321 (2)C7—H71.0000
N2—C131.464 (2)C8—H8A0.9800
N2—C101.480 (2)C8—H8B0.9800
N3—C111.437 (2)C8—H8C0.9800
N3—C101.439 (2)C10—H10A0.9900
N3—C121.471 (2)C10—H10B0.9900
N4—N51.312 (2)C11—H11A0.9900
N4—C91.395 (2)C11—H11B0.9900
C1—C21.384 (3)C12—H12A0.9800
C1—C61.394 (3)C12—H12B0.9800
C1—H10.9500C12—H12C0.9800
C2—C31.379 (3)C13—H13A0.9800
C2—H20.9500C13—H13B0.9800
C3—C41.372 (3)C13—H13C0.9800
C9—N1—C7121.49 (14)C6—C7—H7107.3
C9—N1—C11119.58 (14)C8—C7—H7107.3
C7—N1—C11118.87 (13)C7—C8—H8A109.5
C9—N2—C13122.48 (15)C7—C8—H8B109.5
C9—N2—C10120.15 (14)H8A—C8—H8B109.5
C13—N2—C10117.16 (14)C7—C8—H8C109.5
C11—N3—C10108.91 (14)H8A—C8—H8C109.5
C11—N3—C12112.59 (14)H8B—C8—H8C109.5
C10—N3—C12113.18 (14)N2—C9—N1121.19 (15)
N5—N4—C9111.03 (14)N2—C9—N4119.45 (15)
O2—N5—O1120.71 (14)N1—C9—N4119.10 (15)
O2—N5—N4117.46 (14)N3—C10—N2111.35 (14)
O1—N5—N4121.83 (14)N3—C10—H10A109.4
C2—C1—C6120.84 (18)N2—C10—H10A109.4
C2—C1—H1119.6N3—C10—H10B109.4
C6—C1—H1119.6N2—C10—H10B109.4
C3—C2—C1119.5 (2)H10A—C10—H10B108.0
C3—C2—H2120.3N3—C11—N1111.63 (14)
C1—C2—H2120.3N3—C11—H11A109.3
C4—C3—C2121.07 (19)N1—C11—H11A109.3
C4—C3—Cl1119.65 (16)N3—C11—H11B109.3
C2—C3—Cl1119.28 (18)N1—C11—H11B109.3
C3—C4—C5119.04 (18)H11A—C11—H11B108.0
C3—C4—H4120.5N3—C12—H12A109.5
C5—C4—H4120.5N3—C12—H12B109.5
C4—C5—C6121.61 (19)H12A—C12—H12B109.5
C4—C5—H5119.2N3—C12—H12C109.5
C6—C5—H5119.2H12A—C12—H12C109.5
C5—C6—C1117.94 (17)H12B—C12—H12C109.5
C5—C6—C7119.32 (17)N2—C13—H13A109.5
C1—C6—C7122.73 (16)N2—C13—H13B109.5
N1—C7—C6109.73 (14)H13A—C13—H13B109.5
N1—C7—C8110.65 (14)N2—C13—H13C109.5
C6—C7—C8114.18 (15)H13A—C13—H13C109.5
N1—C7—H7107.3H13B—C13—H13C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O2i0.982.293.273 (2)178
C10—H10A···O1ii0.992.433.278 (2)143
C11—H11B···O2i0.992.493.434 (3)160
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H18ClN5O2
Mr311.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)7.2483 (14), 29.568 (6), 7.2306 (14)
β (°) 108.75 (3)
V3)1467.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.20 × 0.16 × 0.12
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.947, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
9753, 2585, 2303
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.104, 1.08
No. of reflections2585
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.51

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXTL (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O2i0.982.293.273 (2)177.8
C10—H10A···O1ii0.992.433.278 (2)142.9
C11—H11B···O2i0.992.493.434 (3)160.0
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z1/2.
 

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHu, Z.-Q., Yang, X.-D., An, G.-W., Yang, Z. & Xu, L.-Z. (2008). Acta Cryst. E64, o121.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoln, J. S., Wolfenbuttel, K. L., Dusseldorf, W. S., Bergisch Gladbach, A. H. & Koln, T. T. (2002). US Patent 0869120.  Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Takyo, Japan  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, L.-Z., Yin, R.-F. & Li, H.-X. (2010). Acta Cryst. E66, o867.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhao, C., Yang, W., Hu, Y., Shen, L. & Lu, X. (2008). Acta Cryst. E64, o1515.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds