organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,5-Trimeth­­oxy­benzaldehyde monohydrate

aThe Center of Excellence for Advanced Materials Research, King Abdul Aziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, bDepartment of Chemistry, Faculty of Science, King Abdul Aziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, and cDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 7 November 2010; accepted 17 November 2010; online 24 November 2010)

In the title compound, C10H12O4·H2O, the 2,4,5-trimeth­oxy­benzaldehyde mol­ecule is almost planar (rms deviation = 0.0183 Å). There is an R12(5) ring motif due to O—H⋯O hydrogen bonding. In the crystal, the mol­ecules are stabilized in the form of one-dimensional polymeric chains extending along [010] due to O—H⋯O hydrogen bonding with adjacent water mol­ecules. The H atoms involved in inter­molecular hydrogen bonding are disordered over two sets of sites of equal occupancy.

Related literature

For related background and related structures, see: Asiri et al. (2010a[Asiri, A. M., Khan, S. A. & Tahir, M. N. (2010a). Acta Cryst. E66, o2099.],b[Asiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010b). Acta Cryst. E66, o2019.]), Hussain et al. (2010[Hussain, A., Tahir, M. N., Tariq, M. I., Ahmad, S. & Asiri, A. M. (2010). Acta Cryst. E66, o1953.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12O4·H2O

  • Mr = 214.21

  • Monoclinic, P 21 /c

  • a = 18.084 (5) Å

  • b = 4.2456 (10) Å

  • c = 14.600 (4) Å

  • β = 108.290 (9)°

  • V = 1064.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.22 × 0.10 × 0.08 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.992, Tmax = 0.995

  • 8287 measured reflections

  • 1915 independent reflections

  • 983 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.212

  • S = 1.05

  • 1915 reflections

  • 148 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯O2 0.85 (4) 2.54 (5) 3.181 (5) 133 (4)
O5—H51⋯O3 0.85 (4) 2.19 (4) 3.006 (5) 160 (4)
O5—H52⋯O5i 0.83 (10) 1.89 (10) 2.710 (6) 174 (19)
O5—H53⋯O5ii 0.86 (10) 1.86 (10) 2.714 (6) 169 (7)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The crystal structure of (II) i.e., (E)-1-(2,5-dimethyl-3-thienyl)-3- (2,4,5-trimethoxyphenyl)prop-2-en-1-one (Asiri et al., 2010a), (III) i.e., 3,4-dimethyl-N-(2,4,5-trimethoxybenzylidene)-1,2-isoxazol-5-amine (Asiri et al., 2010b) and (IV) i.e., 2,3-Dimethyl-N-[(E)-2,4,5 -trimethoxybenzylidene]aniline (Hussain et al., 2010) have been published which contain the aldehyde moiety. The title compound (I, Fig. 1) is being reported here in which the aldehyde has reacted with water instead of aniline.

In (I), the 2,4,5-trimethoxybenzaldehyde is planar with r. m. s. deviation of 0.0183 Å. One of the H-atoms of water molecule is disordered over two set of sites with equal occupancy ratio. The non-disordered H-atom of H2O makes H-bonding with adjacent two methoxy groups through O—H···O type and complete an R12(5) ring motif (Bernstein et al., 1995). The disordered H-atoms of H2O makes H-bonding of O—H···O type with adjacent water molecules (Table 1, Fig. 2). Due to these H-bondings molecules are stabilized in the form of one dimensional polymeric chains extending along the b axis i.e [010]. There does not appear any appreciable π interaction.

Related literature top

For related background and related structures, see: Asiri et al. (2010a,b), Hussain et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A mixture of 2,4,5-methoxy benzaldehyde (0.50 g, 2.5 mmol) and 4H-[1,2,4] Triazol-3-ylamine (0.21 g, 2.5 mmol) in ethanol (15 ml) was refluxed for 5 h with stirring to give a light yellow precipitate. This material was filtered off and washed with ethanol to give the starting aldehyde coordinated to water. m.p. 376 K

Refinement top

The coordinates of H-atoms of water molecule are refined under distance restraints. One H-atom of H2O is disordered over two sites with equal occupancy ratio. The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.5 for methyl and x = 1.2 for other H-atoms.

Structure description top

The crystal structure of (II) i.e., (E)-1-(2,5-dimethyl-3-thienyl)-3- (2,4,5-trimethoxyphenyl)prop-2-en-1-one (Asiri et al., 2010a), (III) i.e., 3,4-dimethyl-N-(2,4,5-trimethoxybenzylidene)-1,2-isoxazol-5-amine (Asiri et al., 2010b) and (IV) i.e., 2,3-Dimethyl-N-[(E)-2,4,5 -trimethoxybenzylidene]aniline (Hussain et al., 2010) have been published which contain the aldehyde moiety. The title compound (I, Fig. 1) is being reported here in which the aldehyde has reacted with water instead of aniline.

In (I), the 2,4,5-trimethoxybenzaldehyde is planar with r. m. s. deviation of 0.0183 Å. One of the H-atoms of water molecule is disordered over two set of sites with equal occupancy ratio. The non-disordered H-atom of H2O makes H-bonding with adjacent two methoxy groups through O—H···O type and complete an R12(5) ring motif (Bernstein et al., 1995). The disordered H-atoms of H2O makes H-bonding of O—H···O type with adjacent water molecules (Table 1, Fig. 2). Due to these H-bondings molecules are stabilized in the form of one dimensional polymeric chains extending along the b axis i.e [010]. There does not appear any appreciable π interaction.

For related background and related structures, see: Asiri et al. (2010a,b), Hussain et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii. The dotted lines represent the intramolecular H-bondings or bonds of disordered H-atoms.
[Figure 2] Fig. 2. Partial packing view showing the polymeric chains extending along the b axis.
2,4,5-Trimethoxybenzaldehyde monohydrate top
Crystal data top
C10H12O4·H2OF(000) = 456
Mr = 214.21Dx = 1.337 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 983 reflections
a = 18.084 (5) Åθ = 2.4–25.3°
b = 4.2456 (10) ŵ = 0.11 mm1
c = 14.600 (4) ÅT = 296 K
β = 108.290 (9)°Needle, colourless
V = 1064.3 (5) Å30.22 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1915 independent reflections
Radiation source: fine-focus sealed tube983 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
Detector resolution: 8.20 pixels mm-1θmax = 25.3°, θmin = 2.4°
ω scansh = 2121
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 35
Tmin = 0.992, Tmax = 0.995l = 1717
8287 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.212H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0973P)2 + 0.249P]
where P = (Fo2 + 2Fc2)/3
1915 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.18 e Å3
3 restraintsΔρmin = 0.22 e Å3
Crystal data top
C10H12O4·H2OV = 1064.3 (5) Å3
Mr = 214.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.084 (5) ŵ = 0.11 mm1
b = 4.2456 (10) ÅT = 296 K
c = 14.600 (4) Å0.22 × 0.10 × 0.08 mm
β = 108.290 (9)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1915 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
983 reflections with I > 2σ(I)
Tmin = 0.992, Tmax = 0.995Rint = 0.066
8287 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0603 restraints
wR(F2) = 0.212H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.18 e Å3
1915 reflectionsΔρmin = 0.22 e Å3
148 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.08087 (15)0.7631 (7)0.1135 (2)0.0705 (11)
O20.33240 (14)0.6231 (6)0.35470 (16)0.0572 (9)
O30.38101 (14)0.2960 (6)0.23792 (17)0.0588 (9)
O40.14718 (16)0.2497 (8)0.0759 (2)0.0873 (14)
C10.1290 (2)0.4010 (10)0.0160 (3)0.0697 (16)
C20.1803 (2)0.4721 (8)0.0809 (2)0.0501 (12)
C30.1560 (2)0.6509 (8)0.1459 (3)0.0511 (12)
C40.2054 (2)0.7063 (8)0.2389 (3)0.0480 (12)
C50.2800 (2)0.5845 (7)0.2667 (2)0.0452 (11)
C60.3059 (2)0.4044 (8)0.2018 (2)0.0454 (12)
C70.2562 (2)0.3514 (8)0.1105 (3)0.0479 (12)
C80.0523 (2)0.9331 (10)0.1787 (3)0.0740 (16)
C90.3107 (2)0.8019 (9)0.4243 (3)0.0635 (16)
C100.4117 (2)0.1230 (9)0.1747 (3)0.0636 (14)
O50.4918 (2)0.2497 (10)0.4398 (3)0.0985 (18)
H10.078290.477780.033010.0837*
H40.188300.824310.282050.0578*
H70.273210.232880.067480.0575*
H8A0.082621.121020.198620.1111*
H8B0.056070.804820.234120.1111*
H8C0.001170.988830.147570.1111*
H9A0.265260.710630.434140.0950*
H9B0.299591.014510.401770.0950*
H9C0.352690.801710.484060.0950*
H10A0.410960.252220.120430.0949*
H10B0.380520.061510.152450.0949*
H10C0.464290.061410.208370.0949*
H510.452 (2)0.274 (13)0.390 (3)0.1180*
H520.498 (9)0.09 (2)0.474 (9)0.1180*0.500
H530.492 (9)0.42 (2)0.472 (9)0.1180*0.500
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0409 (16)0.094 (2)0.0703 (19)0.0102 (14)0.0084 (14)0.0162 (15)
O20.0539 (16)0.0718 (16)0.0397 (14)0.0065 (12)0.0060 (13)0.0050 (12)
O30.0494 (16)0.0691 (17)0.0519 (16)0.0141 (13)0.0071 (13)0.0061 (12)
O40.056 (2)0.140 (3)0.0593 (19)0.0016 (17)0.0087 (16)0.0300 (19)
C10.047 (2)0.095 (3)0.059 (3)0.000 (2)0.005 (2)0.012 (2)
C20.043 (2)0.058 (2)0.048 (2)0.0036 (18)0.0126 (18)0.0013 (18)
C30.038 (2)0.058 (2)0.056 (2)0.0028 (17)0.0127 (19)0.0030 (18)
C40.045 (2)0.053 (2)0.045 (2)0.0003 (17)0.0127 (18)0.0022 (16)
C50.047 (2)0.0455 (19)0.040 (2)0.0056 (17)0.0092 (18)0.0024 (15)
C60.040 (2)0.050 (2)0.045 (2)0.0006 (16)0.0115 (18)0.0065 (16)
C70.044 (2)0.055 (2)0.047 (2)0.0051 (17)0.0177 (18)0.0022 (17)
C80.045 (2)0.080 (3)0.095 (3)0.005 (2)0.019 (2)0.011 (2)
C90.068 (3)0.068 (3)0.050 (2)0.000 (2)0.012 (2)0.0073 (19)
C100.052 (2)0.067 (2)0.069 (3)0.0106 (19)0.015 (2)0.005 (2)
O50.074 (2)0.124 (4)0.083 (3)0.002 (3)0.004 (2)0.020 (2)
Geometric parameters (Å, º) top
O1—C31.376 (5)C5—C61.407 (5)
O1—C81.415 (5)C6—C71.372 (5)
O2—C51.346 (4)C1—H10.9300
O2—C91.419 (5)C4—H40.9300
O3—C61.373 (4)C7—H70.9300
O3—C101.422 (5)C8—H8A0.9600
O4—C11.211 (5)C8—H8B0.9600
O5—H530.86 (10)C8—H8C0.9600
O5—H510.85 (4)C9—H9C0.9600
O5—H520.83 (10)C9—H9A0.9600
C1—C21.459 (5)C9—H9B0.9600
C2—C31.390 (5)C10—H10A0.9600
C2—C71.400 (5)C10—H10B0.9600
C3—C41.391 (6)C10—H10C0.9600
C4—C51.382 (5)
O2···O32.559 (4)H4···C92.5200
O2···O53.181 (5)H4···H9B2.3600
O3···O53.006 (5)H4···H9A2.2700
O3···O22.559 (4)H4···C82.4900
O5···O5i2.714 (6)H7···O42.5700
O5···C10ii3.191 (6)H7···C102.5500
O5···O33.006 (5)H7···H10A2.3700
O5···O5iii2.710 (6)H7···H10B2.3100
O5···O23.181 (5)H8A···C3vii2.8400
O1···H12.4500H8A···C42.7500
O2···H512.54 (5)H8A···H42.2900
O2···H9Biv2.7900H8B···C42.7100
O3···H10Cii2.8900H8B···C8xii3.0800
O3···H512.19 (4)H8B···H42.2700
O4···H9Av2.8600H8C···O4vi2.7100
O4···H72.5700H8C···C1vi3.0000
O4···H8Cvi2.7100H9A···H42.2700
O5···H9Ci2.6900H9A···C42.7100
O5···H10Cii2.8500H9A···O4xiii2.8600
O5···H52iii1.89 (10)H9B···C42.7800
O5···H53i1.86 (11)H9B···O2vii2.7900
C4···C7vii3.597 (5)H9B···H42.3600
C7···C4iv3.597 (5)H9B···C5vii3.0700
C7···C9viii3.494 (6)H9C···O5i2.6900
C9···C7ix3.494 (6)H9C···H10Bxiii2.5600
C10···O5x3.191 (6)H10A···H72.3700
C1···H8Cvi3.0000H10A···C72.7900
C3···H8Aiv2.8400H10B···C6iv2.8400
C4···H8B2.7100H10B···H9Cv2.5600
C4···H9A2.7100H10B···H72.3100
C4···H9B2.7800H10B···C72.7600
C4···H8A2.7500H10C···O5x2.8500
C5···H9Biv3.0700H10C···O3x2.8900
C6···H10Bvii2.8400H10C···H10Cii2.5800
C7···H10B2.7600H10C···C10x3.0000
C7···H10A2.7900H10C···H10Cx2.5800
C8···H8Bxi3.0800H51···O22.54 (5)
C8···H42.4900H51···O32.19 (4)
C9···H42.5200H51···C103.06 (4)
C10···H72.5500H51···H52iii2.45 (12)
C10···H10Cii3.0000H51···H53i2.34 (13)
C10···H513.06 (4)H52···O5iii1.89 (10)
H1···O12.4500H52···H51iii2.45 (12)
H4···H8A2.2900H53···O5i1.86 (10)
H4···H8B2.2700H53···H51i2.34 (12)
C3—O1—C8118.4 (3)C3—C4—H4120.00
C5—O2—C9118.6 (3)C5—C4—H4120.00
C6—O3—C10117.7 (3)C6—C7—H7119.00
H52—O5—H53112 (10)C2—C7—H7119.00
H51—O5—H52122 (10)O1—C8—H8A109.00
H51—O5—H53103 (10)O1—C8—H8B109.00
O4—C1—C2125.2 (4)O1—C8—H8C109.00
C3—C2—C7118.6 (3)H8B—C8—H8C109.00
C1—C2—C3122.3 (3)H8A—C8—H8B109.00
C1—C2—C7119.1 (3)H8A—C8—H8C109.00
O1—C3—C2116.4 (3)O2—C9—H9B109.00
O1—C3—C4122.6 (3)H9A—C9—H9C110.00
C2—C3—C4121.0 (3)O2—C9—H9C109.00
C3—C4—C5119.5 (3)H9A—C9—H9B110.00
C4—C5—C6120.4 (3)O2—C9—H9A109.00
O2—C5—C6115.2 (3)H9B—C9—H9C109.00
O2—C5—C4124.4 (3)O3—C10—H10C110.00
C5—C6—C7119.2 (3)H10A—C10—H10C109.00
O3—C6—C7125.8 (3)H10B—C10—H10C109.00
O3—C6—C5114.9 (3)H10A—C10—H10B109.00
C2—C7—C6121.3 (3)O3—C10—H10A109.00
O4—C1—H1117.00O3—C10—H10B109.00
C2—C1—H1117.00
C8—O1—C3—C2176.9 (3)C1—C2—C7—C6178.2 (3)
C8—O1—C3—C42.0 (5)C3—C2—C7—C60.6 (5)
C9—O2—C5—C40.4 (5)O1—C3—C4—C5179.6 (3)
C9—O2—C5—C6180.0 (3)C2—C3—C4—C50.7 (5)
C10—O3—C6—C5177.6 (3)C3—C4—C5—O2179.9 (3)
C10—O3—C6—C72.5 (5)C3—C4—C5—C60.3 (5)
O4—C1—C2—C3179.2 (4)O2—C5—C6—O30.3 (4)
O4—C1—C2—C72.1 (6)O2—C5—C6—C7179.7 (3)
C1—C2—C3—O11.1 (5)C4—C5—C6—O3179.9 (3)
C1—C2—C3—C4177.9 (3)C4—C5—C6—C70.1 (5)
C7—C2—C3—O1179.8 (3)O3—C6—C7—C2179.7 (3)
C7—C2—C3—C40.8 (5)C5—C6—C7—C20.2 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z+1; (iv) x, y1, z; (v) x, y+1/2, z1/2; (vi) x, y+1, z; (vii) x, y+1, z; (viii) x, y+3/2, z1/2; (ix) x, y+3/2, z+1/2; (x) x+1, y1/2, z+1/2; (xi) x, y+1/2, z+1/2; (xii) x, y1/2, z+1/2; (xiii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O20.85 (4)2.54 (5)3.181 (5)133 (4)
O5—H51···O30.85 (4)2.19 (4)3.006 (5)160 (4)
O5—H52···O5iii0.83 (10)1.89 (10)2.710 (6)174 (19)
O5—H53···O5i0.86 (10)1.86 (10)2.714 (6)169 (7)
Symmetry codes: (i) x+1, y+1, z+1; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H12O4·H2O
Mr214.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)18.084 (5), 4.2456 (10), 14.600 (4)
β (°) 108.290 (9)
V3)1064.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.22 × 0.10 × 0.08
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.992, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
8287, 1915, 983
Rint0.066
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.212, 1.05
No. of reflections1915
No. of parameters148
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Bruno et al., 2002), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O20.85 (4)2.54 (5)3.181 (5)133 (4)
O5—H51···O30.85 (4)2.19 (4)3.006 (5)160 (4)
O5—H52···O5i0.83 (10)1.89 (10)2.710 (6)174 (19)
O5—H53···O5ii0.86 (10)1.86 (10)2.714 (6)169 (7)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors would like to thank the Chemistry Department, King Abdul Aziz University, Jeddah, Saudi Arabia for providing research facilities and for the financial support of this work via grant No. (3–045/430).

References

First citationAsiri, A. M., Khan, S. A. & Tahir, M. N. (2010a). Acta Cryst. E66, o2099.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010b). Acta Cryst. E66, o2019.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHussain, A., Tahir, M. N., Tariq, M. I., Ahmad, S. & Asiri, A. M. (2010). Acta Cryst. E66, o1953.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds