organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Di­bromo-4-butyl­aniline

aDepartment of Chemical & Environmental Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China
*Correspondence e-mail: ayitzhao@yahoo.com.cn

(Received 12 November 2010; accepted 16 November 2010; online 24 November 2010)

In the title compound, C10H13Br2N, the amino N atom is essentially coplanar with the benzene ring, with an r.m.s. deviation of 0.004 Å. Weak intra­molecular N—H⋯Br hydrogen bonds occur. In the crystal, mol­ecules are linked into a zigzag chain parallel to the b axis by weak N—H⋯N hydrogen bonds.

Related literature

For related compounds, see: Fender et al. (2002[Fender, N. S., Kahwa, I. A. & Fronczek, F. R. (2002). J. Solid State Chem. 163, 286-293.]); Grabowski (2005[Grabowski, S. J. (2005). Struct. Chem. 16, 175-176.]); Kryatova et al. (2004[Kryatova, O. P., Korendovych, I. V. & Rybak-Akimova, E. V. (2004). Tetrahedron, 60, 4579-4588.]); Lehn (1995[Lehn, J. M. (1995). In Supramolecular Chemistry: Concepts and Perspectives. Weinheim: VCH.]); Pedersen (1967[Pedersen, C. J. (1967). J. Am. Chem. Soc. 89, 2495-2495.]); Scheiner (1997[Scheiner, S. (1997). In Hydrogen Bonding. New York: Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13Br2N

  • Mr = 307.03

  • Monoclinic, C 2/c

  • a = 17.566 (4) Å

  • b = 4.6083 (9) Å

  • c = 29.023 (6) Å

  • β = 98.93 (3)°

  • V = 2320.8 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.94 mm−1

  • T = 298 K

  • 0.10 × 0.03 × 0.03 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 9142 measured reflections

  • 2633 independent reflections

  • 1286 reflections with I > 2σ(I)

  • Rint = 0.117

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.187

  • S = 0.98

  • 2633 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N1i 0.86 2.53 3.181 (7) 134
N1—H1A⋯Br1 0.86 2.68 3.095 (5) 111
N1—H1B⋯Br2 0.86 2.64 3.074 (5) 113
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years there has been a rapidly increasing interest in the construction of various kinds of supramolecular systems for understanding molecular self-assembly principles and for designing molecular recognition devices (Fender et al., 2002; Kryatova et al., 2004; Pedersen, 1967). The supramolecular system generally refers to an assembly of molecules which are not covalently connected but assembled by other weak intermolecular interactions, such as hydrogen bonds (Grabowski, 2005; Lehn, 1995; Scheiner, 1997). We report here the crystal structure of the title compound, 2,6-dibromo-4-butylaniline.

In the title compound (Fig.1), the N atom of the amine group is essentially coplanar with the phenyl ring, with a r.m.s. deviation of 0.004 Å. This planar conformation might be resulting from weak intramolecular N-H···Br hydrogen bonds (Table 1). The butyl group is twisted with respect to the phenyl ring resulting in torsion angles of -179.1 (7)° for C9—C8—C7—C6 and -174.7 (7)° for C7—C8—C9—C10. Bond lengths and angles lie within normal ranges.

In the crystal structure, the organic molecules are linked to form a one-dimensional chain along b axis by N1—H···N1 hydrogen bonds (Table 1, Fig.2).

Related literature top

For supramolecular self-assembly chemisty, see: Fender et al. (2002); Grabowski (2005); Kryatova et al. (2004); Lehn (1995); Pedersen (1967); Scheiner (1997).

Experimental top

2,6-dibromo-4-butylaniline (3 mmol) was dissolved in ethanol (20 ml). The solution was allowed to evaporate to obtain colourless block-shaped crystals of the title compound.

Refinement top

All H atoms attached to C and N atoms were calculated geometrically and treated as riding on their parent atoms with C–H = 0.93 Å (aromatic), 0.96 Å (methyl), 0.97 Å (methylene) and N-H = 0.86 Å, with Uiso(H) = 1.2Ueq(C, N) or Uiso(H) = 1.5Ueq(Cmethyl).

Structure description top

In recent years there has been a rapidly increasing interest in the construction of various kinds of supramolecular systems for understanding molecular self-assembly principles and for designing molecular recognition devices (Fender et al., 2002; Kryatova et al., 2004; Pedersen, 1967). The supramolecular system generally refers to an assembly of molecules which are not covalently connected but assembled by other weak intermolecular interactions, such as hydrogen bonds (Grabowski, 2005; Lehn, 1995; Scheiner, 1997). We report here the crystal structure of the title compound, 2,6-dibromo-4-butylaniline.

In the title compound (Fig.1), the N atom of the amine group is essentially coplanar with the phenyl ring, with a r.m.s. deviation of 0.004 Å. This planar conformation might be resulting from weak intramolecular N-H···Br hydrogen bonds (Table 1). The butyl group is twisted with respect to the phenyl ring resulting in torsion angles of -179.1 (7)° for C9—C8—C7—C6 and -174.7 (7)° for C7—C8—C9—C10. Bond lengths and angles lie within normal ranges.

In the crystal structure, the organic molecules are linked to form a one-dimensional chain along b axis by N1—H···N1 hydrogen bonds (Table 1, Fig.2).

For supramolecular self-assembly chemisty, see: Fender et al. (2002); Grabowski (2005); Kryatova et al. (2004); Lehn (1995); Pedersen (1967); Scheiner (1997).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view of the title compound along the a axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity. [Symmetry code: (i) -x+1/2, y-1/2, -z+1/2]
2,6-Dibromo-4-butylaniline top
Crystal data top
C10H13Br2NF(000) = 1200
Mr = 307.03Dx = 1.757 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2633 reflections
a = 17.566 (4) Åθ = 3.4–27.5°
b = 4.6083 (9) ŵ = 6.94 mm1
c = 29.023 (6) ÅT = 298 K
β = 98.93 (3)°Block, colourless
V = 2320.8 (8) Å30.10 × 0.03 × 0.03 mm
Z = 8
Data collection top
Rigaku Mercury2
diffractometer
2633 independent reflections
Radiation source: fine-focus sealed tube1286 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.117
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.4°
CCD profile fitting scansh = 2222
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 55
Tmin = 0.910, Tmax = 1.000l = 3737
9142 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.063P)2]
where P = (Fo2 + 2Fc2)/3
2633 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
C10H13Br2NV = 2320.8 (8) Å3
Mr = 307.03Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.566 (4) ŵ = 6.94 mm1
b = 4.6083 (9) ÅT = 298 K
c = 29.023 (6) Å0.10 × 0.03 × 0.03 mm
β = 98.93 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2633 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1286 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.117
9142 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.187H-atom parameters constrained
S = 0.98Δρmax = 0.80 e Å3
2633 reflectionsΔρmin = 0.60 e Å3
118 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.14631 (4)0.22239 (18)0.32043 (3)0.0773 (4)
Br20.46385 (4)0.3101 (2)0.30522 (3)0.0848 (4)
C30.3061 (3)0.2877 (13)0.31725 (18)0.0482 (17)
C60.3272 (5)0.6955 (13)0.3926 (2)0.0576 (18)
C20.2466 (3)0.3776 (13)0.3404 (2)0.0512 (16)
C40.3781 (3)0.4182 (15)0.33358 (18)0.0533 (16)
C50.3878 (4)0.6137 (13)0.36996 (19)0.0544 (17)
H50.43630.69310.37960.065*
C10.2562 (4)0.5724 (16)0.3769 (2)0.0596 (18)
H10.21410.62180.39120.072*
N10.2963 (3)0.1017 (12)0.28006 (16)0.0621 (15)
H1A0.25130.03350.26980.074*
H1B0.33510.05300.26700.074*
C80.3747 (5)0.7421 (14)0.4792 (2)0.076 (2)
H8A0.34040.58510.48470.091*
H8B0.42350.65660.47490.091*
C70.3402 (4)0.8986 (16)0.43391 (19)0.072 (2)
H7A0.29140.98620.43800.086*
H7B0.37471.05300.42770.086*
C90.3877 (4)0.9328 (19)0.5218 (2)0.086 (2)
H9A0.41821.09950.51550.104*
H9B0.33841.00340.52820.104*
C100.4278 (5)0.7778 (17)0.5637 (2)0.102 (3)
H10A0.43520.90840.58980.153*
H10B0.47690.70940.55770.153*
H10C0.39710.61600.57070.153*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0492 (5)0.0947 (7)0.0848 (6)0.0081 (4)0.0005 (4)0.0069 (4)
Br20.0537 (6)0.1252 (9)0.0770 (6)0.0047 (4)0.0148 (4)0.0111 (4)
C30.046 (4)0.059 (4)0.039 (3)0.001 (3)0.004 (3)0.008 (3)
C60.080 (5)0.046 (4)0.043 (4)0.008 (4)0.004 (3)0.005 (3)
C20.055 (4)0.045 (4)0.052 (4)0.004 (3)0.002 (3)0.008 (3)
C40.047 (4)0.066 (5)0.044 (3)0.001 (3)0.003 (3)0.000 (3)
C50.058 (4)0.057 (4)0.044 (4)0.004 (3)0.004 (3)0.010 (3)
C10.054 (5)0.076 (5)0.051 (4)0.011 (4)0.014 (3)0.017 (4)
N10.057 (3)0.075 (4)0.049 (3)0.005 (3)0.008 (2)0.008 (3)
C80.094 (6)0.073 (5)0.059 (4)0.018 (4)0.010 (4)0.004 (4)
C70.099 (6)0.062 (5)0.051 (4)0.009 (4)0.002 (4)0.000 (4)
C90.112 (6)0.091 (6)0.054 (4)0.011 (5)0.005 (4)0.014 (4)
C100.104 (7)0.146 (9)0.050 (4)0.024 (5)0.008 (4)0.009 (5)
Geometric parameters (Å, º) top
Br1—C21.906 (6)N1—H1B0.8600
Br2—C41.891 (6)C8—C91.504 (9)
C3—N11.368 (7)C8—C71.539 (9)
C3—C21.392 (8)C8—H8A0.9700
C3—C41.414 (8)C8—H8B0.9700
C6—C11.382 (9)C7—H7A0.9700
C6—C51.387 (9)C7—H7B0.9700
C6—C71.510 (9)C9—C101.491 (10)
C2—C11.379 (8)C9—H9A0.9700
C4—C51.378 (8)C9—H9B0.9700
C5—H50.9300C10—H10A0.9600
C1—H10.9300C10—H10B0.9600
N1—H1A0.8600C10—H10C0.9600
N1—C3—C2123.7 (5)C7—C8—H8A108.6
N1—C3—C4121.9 (5)C9—C8—H8B108.6
C2—C3—C4114.3 (5)C7—C8—H8B108.6
C1—C6—C5116.9 (6)H8A—C8—H8B107.6
C1—C6—C7122.2 (7)C6—C7—C8112.2 (6)
C5—C6—C7120.9 (6)C6—C7—H7A109.2
C1—C2—C3123.6 (6)C8—C7—H7A109.2
C1—C2—Br1118.3 (5)C6—C7—H7B109.2
C3—C2—Br1118.0 (5)C8—C7—H7B109.2
C5—C4—C3122.1 (6)H7A—C7—H7B107.9
C5—C4—Br2119.6 (5)C10—C9—C8112.6 (7)
C3—C4—Br2118.2 (4)C10—C9—H9A109.1
C4—C5—C6121.9 (6)C8—C9—H9A109.1
C4—C5—H5119.0C10—C9—H9B109.1
C6—C5—H5119.0C8—C9—H9B109.1
C2—C1—C6121.1 (6)H9A—C9—H9B107.8
C2—C1—H1119.4C9—C10—H10A109.5
C6—C1—H1119.4C9—C10—H10B109.5
C3—N1—H1A120.0H10A—C10—H10B109.5
C3—N1—H1B120.0C9—C10—H10C109.5
H1A—N1—H1B120.0H10A—C10—H10C109.5
C9—C8—C7114.7 (6)H10B—C10—H10C109.5
C9—C8—H8A108.6
N1—C3—C2—C1177.8 (6)C1—C6—C5—C40.2 (9)
C4—C3—C2—C11.3 (8)C7—C6—C5—C4176.9 (6)
N1—C3—C2—Br12.2 (8)C3—C2—C1—C60.8 (10)
C4—C3—C2—Br1178.7 (4)Br1—C2—C1—C6179.1 (5)
N1—C3—C4—C5177.6 (5)C5—C6—C1—C20.0 (9)
C2—C3—C4—C51.1 (8)C7—C6—C1—C2177.1 (6)
N1—C3—C4—Br24.1 (8)C1—C6—C7—C897.6 (8)
C2—C3—C4—Br2179.3 (4)C5—C6—C7—C879.4 (8)
C3—C4—C5—C60.3 (9)C9—C8—C7—C6179.1 (6)
Br2—C4—C5—C6178.6 (4)C7—C8—C9—C10174.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N1i0.862.533.181 (7)134
N1—H1A···Br10.862.683.095 (5)111
N1—H1B···Br20.862.643.074 (5)113
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H13Br2N
Mr307.03
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)17.566 (4), 4.6083 (9), 29.023 (6)
β (°) 98.93 (3)
V3)2320.8 (8)
Z8
Radiation typeMo Kα
µ (mm1)6.94
Crystal size (mm)0.10 × 0.03 × 0.03
Data collection
DiffractometerRigaku Mercury2
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9142, 2633, 1286
Rint0.117
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.187, 0.98
No. of reflections2633
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.60

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N1i0.862.533.181 (7)134.0
N1—H1A···Br10.862.683.095 (5)111
N1—H1B···Br20.862.643.074 (5)113
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by a School Start-up Grant to LZ.

References

First citationFender, N. S., Kahwa, I. A. & Fronczek, F. R. (2002). J. Solid State Chem. 163, 286–293.  Web of Science CSD CrossRef CAS Google Scholar
First citationGrabowski, S. J. (2005). Struct. Chem. 16, 175–176.  Web of Science CrossRef CAS Google Scholar
First citationKryatova, O. P., Korendovych, I. V. & Rybak-Akimova, E. V. (2004). Tetrahedron, 60, 4579–4588.  Web of Science CSD CrossRef CAS Google Scholar
First citationLehn, J. M. (1995). In Supramolecular Chemistry: Concepts and Perspectives. Weinheim: VCH.  Google Scholar
First citationPedersen, C. J. (1967). J. Am. Chem. Soc. 89, 2495–2495.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationScheiner, S. (1997). In Hydrogen Bonding. New York: Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds