organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-[1-(Carb­­oxy­meth­yl)pyridinium-4-yl]-1,2,3,4-tetra­zol-1-ide

aDepartment of Chemical & Environmental Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China
*Correspondence e-mail: ayitzhao@yahoo.com.cn

(Received 16 November 2010; accepted 20 November 2010; online 27 November 2010)

In the title compound, C8H7N5O2, the tetra­zole and pyridine rings are twisted from each other by a dihedral angle of 17.97 (1)°. The zwitterionic mol­ecules are connected by O—H⋯N hydrogen bonds into a chain parallel to [20[\overline{1}]]. Further C—H⋯O and C—H⋯N hydrogen bonds link the chains, building up a three-dimensional network.

Related literature

For the chemisty of tetra­zoles and for related structures, see: Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Wen (2008[Wen, X.-C. (2008). Acta Cryst. E64, m768.]); Dai & Fu (2008[Dai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1444.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7N5O2

  • Mr = 205.19

  • Monoclinic, C c

  • a = 8.8094 (18) Å

  • b = 9.3732 (19) Å

  • c = 11.189 (2) Å

  • β = 101.80 (3)°

  • V = 904.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.10 × 0.03 × 0.03 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 4629 measured reflections

  • 1043 independent reflections

  • 971 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.082

  • S = 1.07

  • 1043 reflections

  • 137 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N4i 0.82 1.84 2.648 (3) 170
C1—H1⋯O2ii 0.93 2.55 3.165 (3) 124
C1—H1⋯N3iii 0.93 2.59 3.440 (3) 152
C5—H5⋯N3iv 0.93 2.39 3.270 (3) 158
Symmetry codes: (i) [x+1, -y, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past few years, there was increasing interest in the chemistry of tetrazole derivatives owing their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Dai & Fu 2008; Fu et al., 2009; Wen, 2008). We report here the crystal structure of the title compound, 5-(1-(carboxymethyl)pyridinium-4-yl)tetrazol-1-ide.

In the title compound (Fig.1), a carboxymethanide group was connected to the pyridine N atom, thus indicating a positive charge in the pyridine N atom. And the tetrazole ring was showing a negative charge to make the charge balance. The tetrazole and pyridine rings are twisted from each other by a dihedral angle of 17.97 (1)°. The geometric parameters of the tetrazole rings are comparable to those in related molecules (Fu et al., 2009).

In the crystal structure, the zwitterionic molecules are connected by the O—H···N hydrogen bonds, with the O···N distance of 2.646 (2)Å. This H-bonds link the zwitterionic units into a one-dimentional chain parallel to the [2 0 -1] direction (Table 1 and Fig.2). Futhermore, C-H···O and C-H···N link the chain building up a three dimensionnal network (Table 1, Fig. 2).

Related literature top

For the chemisty of tetrazoles and for related structures, see: Fu et al. (2009); Wen (2008); Dai & Fu (2008).

Experimental top

5-(1-(carboxymethyl)pyridinium-4-yl)tetrazol-1-ide (4 mmol) was dissolved in ethanol (20 ml). The solution was allowed to evaporate to obtain colourless block-shaped crystals of the title compound.

Refinement top

All H atoms attached to C and atoms were fixed geometrically and treated as riding on their parent atoms with C–H = 0.93 Å (aromatic), 0.97 Å (methylene) and O-H = 0.82 Å with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O).

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Structure description top

In the past few years, there was increasing interest in the chemistry of tetrazole derivatives owing their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Dai & Fu 2008; Fu et al., 2009; Wen, 2008). We report here the crystal structure of the title compound, 5-(1-(carboxymethyl)pyridinium-4-yl)tetrazol-1-ide.

In the title compound (Fig.1), a carboxymethanide group was connected to the pyridine N atom, thus indicating a positive charge in the pyridine N atom. And the tetrazole ring was showing a negative charge to make the charge balance. The tetrazole and pyridine rings are twisted from each other by a dihedral angle of 17.97 (1)°. The geometric parameters of the tetrazole rings are comparable to those in related molecules (Fu et al., 2009).

In the crystal structure, the zwitterionic molecules are connected by the O—H···N hydrogen bonds, with the O···N distance of 2.646 (2)Å. This H-bonds link the zwitterionic units into a one-dimentional chain parallel to the [2 0 -1] direction (Table 1 and Fig.2). Futhermore, C-H···O and C-H···N link the chain building up a three dimensionnal network (Table 1, Fig. 2).

For the chemisty of tetrazoles and for related structures, see: Fu et al. (2009); Wen (2008); Dai & Fu (2008).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view of the title compound showing the hydrogen bond pattern. H bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) x+1, -y, z-1/2; (ii) x-1/2, y+1/2, z; (iii) x+1/2, -y+1/2, z-1/2; (iv) x+1, y, z.]
5-[1-(Carboxymethyl)pyridinium-4-yl]-1,2,3,4-tetrazol-1-ide top
Crystal data top
C8H7N5O2F(000) = 424
Mr = 205.19Dx = 1.507 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2059 reflections
a = 8.8094 (18) Åθ = 3.2–27.5°
b = 9.3732 (19) ŵ = 0.12 mm1
c = 11.189 (2) ÅT = 298 K
β = 101.80 (3)°Block, colourless
V = 904.4 (3) Å30.10 × 0.03 × 0.03 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
1043 independent reflections
Radiation source: fine-focus sealed tube971 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD profile fitting scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1212
Tmin = 0.910, Tmax = 1.000l = 1414
4629 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.1896P]
where P = (Fo2 + 2Fc2)/3
1043 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.14 e Å3
2 restraintsΔρmin = 0.20 e Å3
Crystal data top
C8H7N5O2V = 904.4 (3) Å3
Mr = 205.19Z = 4
Monoclinic, CcMo Kα radiation
a = 8.8094 (18) ŵ = 0.12 mm1
b = 9.3732 (19) ÅT = 298 K
c = 11.189 (2) Å0.10 × 0.03 × 0.03 mm
β = 101.80 (3)°
Data collection top
Rigaku Mercury2
diffractometer
1043 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
971 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.021
4629 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0312 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.07Δρmax = 0.14 e Å3
1043 reflectionsΔρmin = 0.20 e Å3
137 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1510 (2)0.22028 (18)0.28067 (17)0.0424 (4)
H1A1.19880.15810.25230.064*
O20.9872 (2)0.04264 (18)0.30239 (18)0.0473 (4)
N10.83175 (19)0.21616 (19)0.43834 (16)0.0302 (4)
N20.3137 (2)0.1524 (3)0.5601 (2)0.0498 (6)
N30.2244 (2)0.0761 (3)0.6185 (2)0.0488 (6)
N40.2990 (2)0.0370 (2)0.66513 (19)0.0411 (5)
N50.4411 (2)0.0394 (2)0.6403 (2)0.0414 (5)
C10.6906 (3)0.2695 (3)0.3907 (2)0.0374 (5)
H10.67950.33660.32830.045*
C20.5627 (3)0.2256 (3)0.4332 (2)0.0383 (5)
H20.46580.26450.40110.046*
C30.5786 (2)0.1231 (2)0.5242 (2)0.0306 (4)
C40.7249 (3)0.0675 (2)0.5702 (2)0.0371 (5)
H40.73800.00230.63040.045*
C50.8499 (3)0.1156 (2)0.5265 (2)0.0375 (5)
H50.94800.07880.55780.045*
C60.4446 (2)0.0779 (2)0.57437 (19)0.0320 (5)
C70.9702 (2)0.2699 (2)0.3979 (2)0.0339 (5)
H7A1.04940.29340.46900.041*
H7B0.94350.35670.35110.041*
C81.0352 (2)0.1622 (2)0.32033 (19)0.0308 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0384 (8)0.0479 (9)0.0486 (9)0.0017 (7)0.0268 (8)0.0014 (8)
O20.0452 (10)0.0420 (9)0.0610 (11)0.0036 (8)0.0258 (9)0.0095 (8)
N10.0251 (9)0.0346 (9)0.0351 (9)0.0004 (7)0.0156 (7)0.0006 (7)
N20.0292 (9)0.0692 (14)0.0553 (13)0.0078 (10)0.0184 (9)0.0190 (11)
N30.0272 (9)0.0736 (16)0.0495 (11)0.0015 (10)0.0168 (8)0.0095 (11)
N40.0321 (9)0.0537 (12)0.0429 (10)0.0090 (9)0.0202 (8)0.0053 (9)
N50.0333 (10)0.0468 (11)0.0504 (11)0.0008 (8)0.0232 (9)0.0039 (9)
C10.0328 (11)0.0421 (12)0.0406 (11)0.0048 (9)0.0152 (9)0.0104 (10)
C20.0256 (10)0.0484 (13)0.0431 (13)0.0047 (9)0.0121 (9)0.0081 (10)
C30.0247 (9)0.0385 (11)0.0312 (10)0.0004 (8)0.0116 (8)0.0031 (8)
C40.0295 (10)0.0417 (11)0.0434 (12)0.0028 (9)0.0150 (9)0.0125 (11)
C50.0246 (9)0.0462 (12)0.0438 (12)0.0072 (9)0.0119 (9)0.0103 (10)
C60.0276 (10)0.0389 (11)0.0320 (10)0.0029 (8)0.0117 (9)0.0016 (8)
C70.0296 (11)0.0359 (11)0.0419 (12)0.0011 (8)0.0205 (9)0.0005 (9)
C80.0284 (9)0.0334 (10)0.0331 (10)0.0035 (8)0.0120 (8)0.0014 (9)
Geometric parameters (Å, º) top
O1—C81.311 (3)C1—H10.9300
O1—H1A0.8200C2—C31.386 (3)
O2—C81.200 (3)C2—H20.9300
N1—C11.345 (3)C3—C41.388 (3)
N1—C51.350 (3)C3—C61.469 (3)
N1—C71.474 (3)C4—C51.370 (3)
N2—N31.329 (3)C4—H40.9300
N2—C61.330 (3)C5—H50.9300
N3—N41.299 (3)C7—C81.517 (3)
N4—N51.337 (3)C7—H7A0.9700
N5—C61.328 (3)C7—H7B0.9700
C1—C21.373 (3)
C8—O1—H1A109.5C5—C4—H4120.1
C1—N1—C5120.71 (18)C3—C4—H4120.1
C1—N1—C7120.49 (18)N1—C5—C4120.5 (2)
C5—N1—C7118.77 (18)N1—C5—H5119.8
N3—N2—C6104.1 (2)C4—C5—H5119.8
N4—N3—N2109.6 (2)N5—C6—N2112.5 (2)
N3—N4—N5110.4 (2)N5—C6—C3124.28 (19)
C6—N5—N4103.3 (2)N2—C6—C3123.2 (2)
N1—C1—C2120.6 (2)N1—C7—C8112.40 (17)
N1—C1—H1119.7N1—C7—H7A109.1
C2—C1—H1119.7C8—C7—H7A109.1
C1—C2—C3119.7 (2)N1—C7—H7B109.1
C1—C2—H2120.2C8—C7—H7B109.1
C3—C2—H2120.2H7A—C7—H7B107.9
C2—C3—C4118.6 (2)O2—C8—O1127.1 (2)
C2—C3—C6120.81 (19)O2—C8—C7123.7 (2)
C4—C3—C6120.52 (19)O1—C8—C7109.16 (17)
C5—C4—C3119.8 (2)
C6—N2—N3—N40.3 (3)N4—N5—C6—N21.3 (3)
N2—N3—N4—N50.5 (3)N4—N5—C6—C3179.9 (2)
N3—N4—N5—C61.0 (3)N3—N2—C6—N51.0 (3)
C5—N1—C1—C21.9 (4)N3—N2—C6—C3179.9 (2)
C7—N1—C1—C2176.2 (2)C2—C3—C6—N5164.3 (2)
N1—C1—C2—C31.5 (4)C4—C3—C6—N517.9 (3)
C1—C2—C3—C40.1 (3)C2—C3—C6—N217.0 (3)
C1—C2—C3—C6177.9 (2)C4—C3—C6—N2160.8 (2)
C2—C3—C4—C50.9 (4)C1—N1—C7—C8108.5 (2)
C6—C3—C4—C5176.9 (2)C5—N1—C7—C873.4 (3)
C1—N1—C5—C40.9 (4)N1—C7—C8—O25.8 (3)
C7—N1—C5—C4177.2 (2)N1—C7—C8—O1175.68 (18)
C3—C4—C5—N10.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N4i0.821.842.648 (3)170
C1—H1···O2ii0.932.553.165 (3)124
C1—H1···N3iii0.932.593.440 (3)152
C5—H5···N3iv0.932.393.270 (3)158
Symmetry codes: (i) x+1, y, z1/2; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z1/2; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC8H7N5O2
Mr205.19
Crystal system, space groupMonoclinic, Cc
Temperature (K)298
a, b, c (Å)8.8094 (18), 9.3732 (19), 11.189 (2)
β (°) 101.80 (3)
V3)904.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.10 × 0.03 × 0.03
Data collection
DiffractometerRigaku Mercury2
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4629, 1043, 971
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 1.07
No. of reflections1043
No. of parameters137
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.20

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N4i0.821.842.648 (3)170.4
C1—H1···O2ii0.932.553.165 (3)124.3
C1—H1···N3iii0.932.593.440 (3)151.8
C5—H5···N3iv0.932.393.270 (3)157.7
Symmetry codes: (i) x+1, y, z1/2; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z1/2; (iv) x+1, y, z.
 

Acknowledgements

This work was supported by a start-up grant from Henan province.

References

First citationDai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1444.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, X.-C. (2008). Acta Cryst. E64, m768.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds