organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino­anilinium benzoate

aDepartment of Chemical & Environmental Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China
*Correspondence e-mail: ayitzhang@yahoo.com.cn

(Received 17 November 2010; accepted 18 November 2010; online 24 November 2010)

In the crystal of the title molecular salt, C6H9N2+·C7H5O2, the cations and anions are linked by N—H⋯O hydrogen bonds, buiding an R22(9) ring. Futher N—H⋯O hydrogen bonds generate chains, which develop parallel to the a axis through the formation of R43(10) rings.,

Related literature

For the properties of amino compounds, see: Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Aminabhavi et al. (1986[Aminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125-128.]); Dai & Fu (2008a[Dai, W. & Fu, D.-W. (2008a). Acta Cryst. E64, m1016.],b[Dai, W. & Fu, D.-W. (2008b). Acta Cryst. E64, m1017.]). For hydrogen-bond motifs, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C7H5O2

  • Mr = 230.26

  • Orthorhombic, P 21 21 21

  • a = 6.0211 (12) Å

  • b = 12.237 (2) Å

  • c = 16.639 (3) Å

  • V = 1226.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.30 × 0.15 × 0.10 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.970, Tmax = 1.000

  • 12656 measured reflections

  • 1638 independent reflections

  • 1133 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.118

  • S = 1.08

  • 1638 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O1 0.89 1.83 2.699 (3) 166
N2—H2A⋯O2 1.00 2.16 3.093 (3) 155
N1—H1B⋯O1i 0.89 1.94 2.815 (3) 168
N1—H1A⋯O2ii 0.89 1.90 2.753 (3) 161
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amino derivatives have found wide range of applications in material science, such as magnetic, fluorescent and dielectric behaviors. And there has been an increased interest in the preparation of amino coordination compound (Aminabhavi et al., 1986; Dai & Fu 2008a; Dai & Fu 2008b; Fu, et al. 2009). As an extension on the structural characterization, we report here the crystal structure of the title compound 2-aminoanilinium benzoate.

The asymmetrical unit of the title compound consists of one benzene-1,2-diamine cation and one benzoic acid anion linked by N-H···O hydrogen bonds buiding a R22(9) ring (Etter, 1990, Bernstein et al., 1995) (Fig.1; Table 1). As expected The carboxyl acid group has protonated one of the amine N atom.

N—H···O hydrogen bonds generate chains which develop parallel to the a axis through the formation of R34(10) ring (Etter, 1990; Bernstein et al., 1995)(Fig. 2; Table 1).

Related literature top

For the properties of amino compounds, see: Fu et al. (2009); Aminabhavi et al. (1986); Dai & Fu (2008a,b). For hydrogen-bond motifs, see: Etter (1990); Bernstein et al. (1995).

Experimental top

A mixture of benzene-1,2-diamine (0.1 mmol) and benzoic acid (0.1 mmol) was dissolved in ethanol (20 ml). The solution was allowed to evaporate to obtain colourless block-shaped crystals of the title compound.

Refinement top

All H atoms attached to C atoms and N(NH3) were fixed geometrically and treated as riding with C—H = 0.93 Å and N-H = 0.85Å with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(N) . H atoms bonded to N(NH2) atom were located in difference Fourier maps and their coordinates were refined using restraints (N-H=1.00 (1)Å; H···H = 1.80 (2) Å) with Uiso(H) = 1.5Ueq(N). In the last cycle of refinement they were treated as riding on the N.

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Structure description top

The amino derivatives have found wide range of applications in material science, such as magnetic, fluorescent and dielectric behaviors. And there has been an increased interest in the preparation of amino coordination compound (Aminabhavi et al., 1986; Dai & Fu 2008a; Dai & Fu 2008b; Fu, et al. 2009). As an extension on the structural characterization, we report here the crystal structure of the title compound 2-aminoanilinium benzoate.

The asymmetrical unit of the title compound consists of one benzene-1,2-diamine cation and one benzoic acid anion linked by N-H···O hydrogen bonds buiding a R22(9) ring (Etter, 1990, Bernstein et al., 1995) (Fig.1; Table 1). As expected The carboxyl acid group has protonated one of the amine N atom.

N—H···O hydrogen bonds generate chains which develop parallel to the a axis through the formation of R34(10) ring (Etter, 1990; Bernstein et al., 1995)(Fig. 2; Table 1).

For the properties of amino compounds, see: Fu et al. (2009); Aminabhavi et al. (1986); Dai & Fu (2008a,b). For hydrogen-bond motifs, see: Etter (1990); Bernstein et al. (1995).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. H bonds are shown as dashed lines.
[Figure 2] Fig. 2. Partial packing view of the title compound showing the formation of the chain through the R34(10) rings. H atoms not involved in hydrogen bonding have been omitted for clarity. H bonds are shown as dashed lines. [Symmetry codes: (i) -x-1, y+3/2, -z+3/2; (ii) -x, y+3/2, -z+3/2]
2-Aminoanilinium benzoate top
Crystal data top
C6H9N2+·C7H5O2F(000) = 488
Mr = 230.26Dx = 1.247 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2805 reflections
a = 6.0211 (12) Åθ = 3.3–27.5°
b = 12.237 (2) ŵ = 0.09 mm1
c = 16.639 (3) ÅT = 298 K
V = 1226.0 (4) Å3Block, colourless
Z = 40.30 × 0.15 × 0.10 mm
Data collection top
Rigaku Mercury2
diffractometer
1638 independent reflections
Radiation source: fine-focus sealed tube1133 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.3°
CCD profile fitting scansh = 77
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1515
Tmin = 0.970, Tmax = 1.000l = 2121
12656 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.0477P]
where P = (Fo2 + 2Fc2)/3
1638 reflections(Δ/σ)max = 0.002
155 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C6H9N2+·C7H5O2V = 1226.0 (4) Å3
Mr = 230.26Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.0211 (12) ŵ = 0.09 mm1
b = 12.237 (2) ÅT = 298 K
c = 16.639 (3) Å0.30 × 0.15 × 0.10 mm
Data collection top
Rigaku Mercury2
diffractometer
1638 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1133 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 1.000Rint = 0.053
12656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.08Δρmax = 0.11 e Å3
1638 reflectionsΔρmin = 0.16 e Å3
155 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7176 (3)0.63438 (15)0.49671 (11)0.0429 (5)
H1A0.83390.61560.52670.064*
H1B0.61710.66790.52720.064*
H1C0.76170.67930.45780.064*
N20.3415 (4)0.65071 (19)0.39767 (14)0.0658 (7)
H2A0.45350.71090.39270.099*
H2B0.21370.64710.35970.099*
C10.4321 (4)0.5481 (2)0.41353 (14)0.0475 (6)
C20.6195 (4)0.53644 (19)0.46122 (13)0.0417 (6)
C30.7065 (5)0.4356 (2)0.47948 (17)0.0601 (8)
H30.83260.43010.51150.072*
C40.6058 (8)0.3428 (2)0.4501 (2)0.0846 (11)
H40.66380.27430.46190.101*
C50.4195 (8)0.3522 (3)0.4032 (2)0.0845 (10)
H50.35110.28950.38360.101*
C60.3325 (6)0.4528 (3)0.38492 (18)0.0706 (9)
H60.20590.45760.35310.085*
O10.8819 (3)0.79093 (13)0.39910 (9)0.0512 (5)
O20.5619 (3)0.87900 (18)0.39486 (13)0.0749 (7)
C70.7644 (4)0.8731 (2)0.38177 (14)0.0450 (6)
C80.8786 (4)0.9670 (2)0.34141 (13)0.0416 (6)
C90.7821 (6)1.0692 (2)0.33900 (17)0.0630 (8)
H90.64271.07990.36180.076*
C100.8903 (8)1.1555 (3)0.3032 (2)0.0858 (11)
H100.82531.22440.30290.103*
C111.0919 (8)1.1402 (3)0.2682 (2)0.0893 (12)
H111.16421.19860.24380.107*
C121.1892 (5)1.0385 (3)0.26864 (17)0.0764 (10)
H121.32541.02780.24350.092*
C131.0847 (4)0.9529 (2)0.30625 (14)0.0535 (7)
H131.15310.88480.30810.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0360 (10)0.0443 (11)0.0485 (11)0.0012 (10)0.0044 (9)0.0033 (9)
N20.0584 (14)0.0684 (15)0.0706 (15)0.0104 (13)0.0274 (14)0.0004 (12)
C10.0447 (14)0.0537 (16)0.0441 (13)0.0013 (14)0.0019 (12)0.0034 (12)
C20.0403 (13)0.0442 (13)0.0405 (12)0.0028 (13)0.0009 (12)0.0013 (11)
C30.070 (2)0.0463 (15)0.0638 (17)0.0067 (16)0.0119 (16)0.0006 (14)
C40.117 (3)0.0464 (17)0.090 (2)0.004 (2)0.018 (3)0.0056 (16)
C50.117 (3)0.057 (2)0.080 (2)0.022 (2)0.015 (2)0.0091 (17)
C60.073 (2)0.077 (2)0.0612 (17)0.0195 (18)0.0146 (17)0.0081 (16)
O10.0547 (11)0.0483 (10)0.0506 (10)0.0027 (9)0.0006 (10)0.0044 (8)
O20.0383 (10)0.1060 (17)0.0804 (14)0.0014 (11)0.0130 (11)0.0259 (13)
C70.0371 (13)0.0587 (16)0.0393 (13)0.0023 (14)0.0003 (11)0.0004 (13)
C80.0395 (13)0.0518 (14)0.0334 (11)0.0025 (13)0.0023 (11)0.0032 (11)
C90.0675 (19)0.0622 (18)0.0592 (16)0.0089 (17)0.0015 (16)0.0070 (15)
C100.125 (3)0.0573 (18)0.075 (2)0.001 (2)0.013 (3)0.0192 (17)
C110.109 (3)0.095 (3)0.063 (2)0.046 (3)0.016 (2)0.032 (2)
C120.058 (2)0.117 (3)0.0539 (17)0.022 (2)0.0012 (15)0.022 (2)
C130.0426 (14)0.0721 (18)0.0458 (14)0.0039 (15)0.0010 (13)0.0107 (13)
Geometric parameters (Å, º) top
N1—C21.461 (3)C6—H60.9300
N1—H1A0.8900O1—C71.263 (3)
N1—H1B0.8900O2—C71.241 (3)
N1—H1C0.8900C7—C81.499 (3)
N2—C11.394 (3)C8—C91.379 (4)
N2—H2A1.0021C8—C131.383 (4)
N2—H2B0.9968C9—C101.376 (5)
C1—C21.387 (4)C9—H90.9300
C1—C61.395 (4)C10—C111.359 (6)
C2—C31.375 (3)C10—H100.9300
C3—C41.377 (4)C11—C121.375 (5)
C3—H30.9300C11—H110.9300
C4—C51.371 (6)C12—C131.373 (4)
C4—H40.9300C12—H120.9300
C5—C61.373 (5)C13—H130.9300
C5—H50.9300
C2—N1—H1A109.5C5—C6—C1120.7 (3)
C2—N1—H1B109.5C5—C6—H6119.7
H1A—N1—H1B109.5C1—C6—H6119.7
C2—N1—H1C109.5O2—C7—O1123.9 (3)
H1A—N1—H1C109.5O2—C7—C8119.0 (3)
H1B—N1—H1C109.5O1—C7—C8117.1 (2)
C1—N2—H2A114.5C9—C8—C13118.7 (3)
C1—N2—H2B112.5C9—C8—C7121.0 (2)
H2A—N2—H2B120.0C13—C8—C7120.3 (2)
C2—C1—N2121.3 (2)C10—C9—C8120.6 (3)
C2—C1—C6117.3 (2)C10—C9—H9119.7
N2—C1—C6121.4 (2)C8—C9—H9119.7
C3—C2—C1121.9 (2)C11—C10—C9120.2 (3)
C3—C2—N1119.6 (2)C11—C10—H10119.9
C1—C2—N1118.4 (2)C9—C10—H10119.9
C2—C3—C4119.6 (3)C10—C11—C12120.2 (3)
C2—C3—H3120.2C10—C11—H11119.9
C4—C3—H3120.2C12—C11—H11119.9
C5—C4—C3119.6 (3)C13—C12—C11119.9 (3)
C5—C4—H4120.2C13—C12—H12120.1
C3—C4—H4120.2C11—C12—H12120.1
C4—C5—C6120.9 (3)C12—C13—C8120.5 (3)
C4—C5—H5119.6C12—C13—H13119.7
C6—C5—H5119.6C8—C13—H13119.7
N2—C1—C2—C3177.9 (2)O1—C7—C8—C9163.0 (2)
C6—C1—C2—C30.5 (4)O2—C7—C8—C13162.2 (2)
N2—C1—C2—N11.7 (4)O1—C7—C8—C1316.5 (3)
C6—C1—C2—N1175.7 (2)C13—C8—C9—C100.8 (4)
C1—C2—C3—C40.2 (4)C7—C8—C9—C10178.7 (3)
N1—C2—C3—C4176.0 (3)C8—C9—C10—C111.5 (5)
C2—C3—C4—C50.3 (5)C9—C10—C11—C120.3 (5)
C3—C4—C5—C60.3 (6)C10—C11—C12—C131.5 (5)
C4—C5—C6—C10.1 (5)C11—C12—C13—C82.2 (4)
C2—C1—C6—C50.5 (4)C9—C8—C13—C121.0 (4)
N2—C1—C6—C5177.8 (3)C7—C8—C13—C12179.5 (2)
O2—C7—C8—C918.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O10.891.832.699 (3)166
N2—H2A···O21.002.163.093 (3)155
N1—H1B···O1i0.891.942.815 (3)168
N1—H1A···O2ii0.891.902.753 (3)161
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C7H5O2
Mr230.26
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)6.0211 (12), 12.237 (2), 16.639 (3)
V3)1226.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.15 × 0.10
Data collection
DiffractometerRigaku Mercury2
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.970, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12656, 1638, 1133
Rint0.053
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.118, 1.08
No. of reflections1638
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.16

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O10.891.832.699 (3)165.5
N2—H2A···O21.002.163.093 (3)154.5
N1—H1B···O1i0.891.942.815 (3)167.6
N1—H1A···O2ii0.891.902.753 (3)161.3
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+3/2, z+1.
 

Acknowledgements

This work was supported by a start-up grant from Anyang Institute of Technology.

References

First citationAminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125–128.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDai, W. & Fu, D.-W. (2008a). Acta Cryst. E64, m1016.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDai, W. & Fu, D.-W. (2008b). Acta Cryst. E64, m1017.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds