organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­dr­oxy-5-[(E)-(1H-indol-3-yl­methyl­­idene)aza­nium­yl]benzoate

aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and bDepartment of Chemistry, Govt. M. D. College, Toba Tek Singh, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 18 November 2010; accepted 22 November 2010; online 27 November 2010)

The zwitterionic title compound, C16H12N2O3, was obtained as a result of the condensation of 5-amino­salicylic acid and 1H-indole-3-carbaldehyde. The whole mol­ecule is roughly planar: the 4-hy­droxy­anilinic group and the 1H-indole-3-carbaldehyde moieties are only slightly twisted, making a dihedral angle of 7.77 (11)°, whereas, the carboxyl­ate group makes a dihedral angle of 3.34 (45)° with the parent 4-hy­droxy­anilinic group. S(6) ring motifs are formed due to intra­molecular O—H⋯O hydrogen bonding. In the crystal, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds build up pseudo-rings with R12(4), R21(7) and R22(14) ring motifs. These pseudo-dimers are further linked by N—H⋯O hydrogen bonds into a chain extending along [101]. C—H⋯π inter­actions also occur, along with offset ππ inter­actions between the anilinic phenyl and the heterocyclic five-membered rings with a centroid–centroid distance of 3.5716 (19) Å.

Related literature

For background to our ongoing work on the synthesis and ligand properties of Schiff bases derived from 2-hydroxy-5-aminobenzoic acid, see: Tahir et al. (2010a[Tahir, M. N., Shad, H. A., Khan, M. N. & Tariq, M. I. (2010a). Acta Cryst. E66, o2923.],b[Tahir, M. N., Tariq, M. I., Ahmad, S. & Sarfraz, M. (2010b). Acta Cryst. E66, o2553-o2554.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N2O3

  • Mr = 280.28

  • Monoclinic, P 21 /n

  • a = 7.3463 (6) Å

  • b = 15.5496 (12) Å

  • c = 11.5310 (8) Å

  • β = 104.619 (4)°

  • V = 1274.57 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.24 × 0.14 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.988

  • 9888 measured reflections

  • 2313 independent reflections

  • 1169 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.152

  • S = 1.00

  • 2313 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.90 2.735 (3) 162
N2—H2⋯O3ii 0.86 1.95 2.805 (3) 171
O3—H3⋯O2 0.82 1.70 2.448 (3) 150
C16—H16⋯O1i 0.93 2.48 3.279 (4) 144
C16—H16⋯O2i 0.93 2.55 3.439 (4) 160
C5—H5⋯Cg3iii 0.93 2.92 3.643 (4) 136
Symmetry codes: (i) -x+2, -y, -z; (ii) x-1, y, z-1; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

As a part of our on going project related to synthesize various Schiff bases of 2-hydroxy-5-aminobenzoic acid and then their metal complexation (Tahir et al., 2010a,b), we report here the title compound (I).

The title compound (I) is Zwitterion similar to 2-hydroxy-5-{[(E)-4-methoxybenzylidene]azaniumyl}benzoate (Tahir et al., 2010b). In (I), the group A (C2—C7/N1/O3) of 5-aminosalicylic acid moiety and the 1H-indole-3-carbaldehyde moiety B (C8—C15/N2) are almost planar with r. m. s. deviations of 0.0258 and 0.0175 Å, respectively (Fig. 1). The dihedral angle between A/B is 7.77 (11)°. The carboxylate group C (O1/C1/O2) is oriented at a dihedral angle of 3.34 (45)° with the parent group A. The observed values of CN and CO are 1.298 (5) and 1.254 (4) Å, respectively compared to 1.291 (2) and 1.242 (2) Å observed in related compound (Tahir et al., 2010b).

In the title compound S(6) ring motif (Etter, 1990; Bernstein et al., 1995), is formed due to intramolecular H-bonding of O—H···O type (Table 1, Fig. 1). The N—H···O type of H-bondings build up a pseudo dimer with R22(14) ring motifs (Table 1, Fig. 2). The C—H···O and N—H···O types of H-bondings (Table 2) complete R12(4) and R21(7) ring motifs (Table 1, Fig. 2). The pseudo dimers are interlinked due to H-bonding of N—H···O type (Table 1, Fig. 2) resulting in dimensional polymeric chains extending along the crystallographic [1 0 1] axis. A C—H···π (Table 1) and offset ππ interaction between the benzene ring (C2—C7) of anilinic and heterocyclic five membered (N2/C15/C10/C9/C16) groups at a distance of 3.5716 (19) Å, with plane to plane distance of 3.25 and 3.41 Å and mean offset angle of 20.9°, play important role in stabilizing the molecules.

Related literature top

For background to our ongoing project to synthesize various Schiff bases of

2-hydroxy-5-aminobenzoic acid and then their metal complexation and for related crystal structures, see: Tahir et al. (2010a,b). For graph-set notation, see: Bernstein et al. (1995); Etter (1990).

Experimental top

Equimolar quantities of 1H-indole-3-carbaldehyde and and 5-amino-2-hydroxybenzoic acid were refluxed in methanol along with few drops of acetic acid as catalyst for 30 min resulting in orange yellow solution. The solution was kept at room temperature which affoarded orange needles after five days.

Refinement top

The H-atoms were positioned geometrically (O–H = 0.82, N–H = 0.86, C–H = 0.93 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C, N, O).

Structure description top

As a part of our on going project related to synthesize various Schiff bases of 2-hydroxy-5-aminobenzoic acid and then their metal complexation (Tahir et al., 2010a,b), we report here the title compound (I).

The title compound (I) is Zwitterion similar to 2-hydroxy-5-{[(E)-4-methoxybenzylidene]azaniumyl}benzoate (Tahir et al., 2010b). In (I), the group A (C2—C7/N1/O3) of 5-aminosalicylic acid moiety and the 1H-indole-3-carbaldehyde moiety B (C8—C15/N2) are almost planar with r. m. s. deviations of 0.0258 and 0.0175 Å, respectively (Fig. 1). The dihedral angle between A/B is 7.77 (11)°. The carboxylate group C (O1/C1/O2) is oriented at a dihedral angle of 3.34 (45)° with the parent group A. The observed values of CN and CO are 1.298 (5) and 1.254 (4) Å, respectively compared to 1.291 (2) and 1.242 (2) Å observed in related compound (Tahir et al., 2010b).

In the title compound S(6) ring motif (Etter, 1990; Bernstein et al., 1995), is formed due to intramolecular H-bonding of O—H···O type (Table 1, Fig. 1). The N—H···O type of H-bondings build up a pseudo dimer with R22(14) ring motifs (Table 1, Fig. 2). The C—H···O and N—H···O types of H-bondings (Table 2) complete R12(4) and R21(7) ring motifs (Table 1, Fig. 2). The pseudo dimers are interlinked due to H-bonding of N—H···O type (Table 1, Fig. 2) resulting in dimensional polymeric chains extending along the crystallographic [1 0 1] axis. A C—H···π (Table 1) and offset ππ interaction between the benzene ring (C2—C7) of anilinic and heterocyclic five membered (N2/C15/C10/C9/C16) groups at a distance of 3.5716 (19) Å, with plane to plane distance of 3.25 and 3.41 Å and mean offset angle of 20.9°, play important role in stabilizing the molecules.

For background to our ongoing project to synthesize various Schiff bases of

2-hydroxy-5-aminobenzoic acid and then their metal complexation and for related crystal structures, see: Tahir et al. (2010a,b). For graph-set notation, see: Bernstein et al. (1995); Etter (1990).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The dotted line represent the intramolecular H-bonding.
[Figure 2] Fig. 2. Partial packing view showing the formation of dimers through different ring motifs and infinite one dimensional polymeric chains. [Symmetry codes: (i) -x+2, -y, -z; (ii) x-1, y, z-1]
2-Hydroxy-5-[(E)-(1H-indol-3-ylmethylidene)azaniumyl]benzoate top
Crystal data top
C16H12N2O3F(000) = 584
Mr = 280.28Dx = 1.461 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1169 reflections
a = 7.3463 (6) Åθ = 2.3–25.3°
b = 15.5496 (12) ŵ = 0.10 mm1
c = 11.5310 (8) ÅT = 296 K
β = 104.619 (4)°Needle, orange
V = 1274.57 (17) Å30.24 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2313 independent reflections
Radiation source: fine-focus sealed tube1169 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Detector resolution: 8.20 pixels mm-1θmax = 25.3°, θmin = 2.3°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1818
Tmin = 0.980, Tmax = 0.988l = 1313
9888 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0622P)2]
where P = (Fo2 + 2Fc2)/3
2313 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H12N2O3V = 1274.57 (17) Å3
Mr = 280.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.3463 (6) ŵ = 0.10 mm1
b = 15.5496 (12) ÅT = 296 K
c = 11.5310 (8) Å0.24 × 0.14 × 0.12 mm
β = 104.619 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2313 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1169 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.988Rint = 0.080
9888 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.00Δρmax = 0.19 e Å3
2313 reflectionsΔρmin = 0.22 e Å3
191 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.2830 (3)0.00635 (16)0.14061 (19)0.0527 (10)
O21.3616 (3)0.01396 (16)0.34045 (19)0.0529 (10)
O31.1429 (3)0.07152 (17)0.44973 (17)0.0486 (9)
N10.6066 (4)0.10087 (18)0.0169 (2)0.0394 (10)
N20.1653 (4)0.11644 (18)0.3115 (2)0.0408 (10)
C11.2446 (5)0.0237 (2)0.2380 (3)0.0375 (12)
C21.0566 (4)0.0584 (2)0.2369 (3)0.0334 (11)
C31.0142 (5)0.0819 (2)0.3454 (3)0.0364 (11)
C40.8368 (5)0.1138 (2)0.3417 (3)0.0459 (13)
C50.7012 (5)0.1219 (2)0.2364 (3)0.0424 (14)
C60.7423 (4)0.0983 (2)0.1288 (3)0.0338 (11)
C70.9190 (4)0.0666 (2)0.1312 (3)0.0349 (11)
C80.4406 (5)0.1355 (2)0.0070 (3)0.0387 (11)
C90.3080 (5)0.1370 (2)0.1184 (3)0.0344 (11)
C100.1205 (4)0.1715 (2)0.1405 (3)0.0324 (11)
C110.0164 (5)0.2123 (2)0.0705 (3)0.0410 (11)
C120.1644 (5)0.2377 (2)0.1229 (3)0.0451 (12)
C130.2477 (5)0.2216 (2)0.2434 (3)0.0476 (14)
C140.1494 (5)0.1805 (2)0.3140 (3)0.0411 (11)
C150.0346 (5)0.1569 (2)0.2617 (3)0.0350 (11)
C160.3256 (5)0.1038 (2)0.2278 (3)0.0411 (12)
H10.638090.076590.042210.0472*
H20.145810.101620.385480.0489*
H31.240720.053150.437050.0584*
H40.809010.130140.412930.0551*
H50.582710.142950.236330.0512*
H70.945850.050430.059620.0420*
H80.405830.162160.056370.0463*
H110.069060.222180.010600.0494*
H120.232900.266230.077040.0542*
H130.371220.238720.276420.0567*
H140.204700.169040.394350.0495*
H160.432380.077170.240270.0491*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0458 (16)0.076 (2)0.0390 (14)0.0109 (13)0.0160 (12)0.0088 (13)
O20.0373 (15)0.079 (2)0.0397 (15)0.0091 (13)0.0048 (12)0.0035 (14)
O30.0402 (16)0.0743 (19)0.0303 (13)0.0077 (14)0.0070 (11)0.0027 (12)
N10.0406 (19)0.0466 (19)0.0307 (15)0.0039 (16)0.0087 (13)0.0042 (14)
N20.0439 (19)0.0481 (19)0.0292 (15)0.0048 (15)0.0071 (14)0.0045 (14)
C10.036 (2)0.040 (2)0.035 (2)0.0021 (17)0.0063 (17)0.0006 (17)
C20.034 (2)0.036 (2)0.0306 (18)0.0016 (16)0.0087 (15)0.0013 (16)
C30.037 (2)0.041 (2)0.0285 (18)0.0015 (18)0.0033 (16)0.0003 (16)
C40.050 (2)0.060 (3)0.0279 (18)0.008 (2)0.0104 (17)0.0090 (18)
C50.037 (2)0.054 (3)0.036 (2)0.0112 (18)0.0086 (16)0.0048 (18)
C60.035 (2)0.038 (2)0.0260 (17)0.0012 (17)0.0031 (15)0.0027 (16)
C70.034 (2)0.042 (2)0.0295 (18)0.0013 (16)0.0093 (15)0.0038 (16)
C80.041 (2)0.040 (2)0.0348 (19)0.0065 (18)0.0090 (16)0.0011 (17)
C90.036 (2)0.037 (2)0.0288 (17)0.0008 (16)0.0056 (15)0.0030 (16)
C100.037 (2)0.031 (2)0.0279 (18)0.0014 (16)0.0058 (15)0.0007 (15)
C110.048 (2)0.042 (2)0.0332 (19)0.0006 (19)0.0109 (17)0.0011 (17)
C120.044 (2)0.048 (2)0.047 (2)0.0103 (19)0.0181 (18)0.0001 (19)
C130.040 (2)0.056 (3)0.045 (2)0.0095 (19)0.0075 (18)0.004 (2)
C140.043 (2)0.047 (2)0.0308 (19)0.0011 (19)0.0047 (17)0.0003 (17)
C150.037 (2)0.034 (2)0.0352 (19)0.0039 (17)0.0115 (16)0.0028 (16)
C160.037 (2)0.046 (2)0.038 (2)0.0066 (18)0.0050 (17)0.0019 (18)
Geometric parameters (Å, º) top
O1—C11.254 (4)C9—C101.440 (5)
O2—C11.283 (4)C9—C161.399 (5)
O3—C31.339 (4)C10—C151.399 (5)
O3—H30.8200C10—C111.397 (5)
N1—C61.418 (4)C11—C121.371 (5)
N1—C81.298 (5)C12—C131.392 (5)
N2—C161.335 (4)C13—C141.375 (5)
N2—C151.388 (5)C14—C151.384 (5)
N1—H10.8600C4—H40.9300
N2—H20.8600C5—H50.9300
C1—C21.480 (5)C7—H70.9300
C2—C71.379 (5)C8—H80.9300
C2—C31.412 (5)C11—H110.9300
C3—C41.385 (5)C12—H120.9300
C4—C51.368 (5)C13—H130.9300
C5—C61.398 (5)C14—H140.9300
C6—C71.382 (4)C16—H160.9300
C8—C91.403 (5)
C3—O3—H3109.00C9—C10—C11134.9 (3)
C6—N1—C8127.8 (3)C10—C11—C12119.1 (3)
C15—N2—C16110.1 (3)C11—C12—C13121.4 (3)
C8—N1—H1116.00C12—C13—C14120.7 (3)
C6—N1—H1116.00C13—C14—C15117.8 (3)
C16—N2—H2125.00C10—C15—C14122.5 (3)
C15—N2—H2125.00N2—C15—C10107.6 (3)
O2—C1—C2117.3 (3)N2—C15—C14129.9 (3)
O1—C1—O2123.3 (3)N2—C16—C9109.4 (3)
O1—C1—C2119.4 (3)C3—C4—H4119.00
C3—C2—C7118.9 (3)C5—C4—H4119.00
C1—C2—C3120.1 (3)C4—C5—H5120.00
C1—C2—C7121.0 (3)C6—C5—H5120.00
O3—C3—C4121.1 (3)C2—C7—H7119.00
O3—C3—C2120.1 (3)C6—C7—H7119.00
C2—C3—C4118.8 (3)N1—C8—H8117.00
C3—C4—C5121.9 (3)C9—C8—H8117.00
C4—C5—C6119.4 (3)C10—C11—H11120.00
C5—C6—C7119.2 (3)C12—C11—H11120.00
N1—C6—C5122.7 (3)C11—C12—H12119.00
N1—C6—C7118.0 (3)C13—C12—H12119.00
C2—C7—C6121.7 (3)C12—C13—H13120.00
N1—C8—C9126.8 (3)C14—C13—H13120.00
C8—C9—C10125.5 (3)C13—C14—H14121.00
C8—C9—C16128.2 (3)C15—C14—H14121.00
C10—C9—C16106.3 (3)N2—C16—H16125.00
C11—C10—C15118.4 (3)C9—C16—H16125.00
C9—C10—C15106.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.902.735 (3)162
N2—H2···O3ii0.861.952.805 (3)171
O3—H3···O20.821.702.448 (3)150
C16—H16···O1i0.932.483.279 (4)144
C16—H16···O2i0.932.553.439 (4)160
C5—H5···Cg3iii0.932.923.643 (4)136
Symmetry codes: (i) x+2, y, z; (ii) x1, y, z1; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H12N2O3
Mr280.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.3463 (6), 15.5496 (12), 11.5310 (8)
β (°) 104.619 (4)
V3)1274.57 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.24 × 0.14 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.980, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
9888, 2313, 1169
Rint0.080
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.152, 1.00
No. of reflections2313
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.902.735 (3)162
N2—H2···O3ii0.861.952.805 (3)171
O3—H3···O20.821.702.448 (3)150
C16—H16···O1i0.932.483.279 (4)144
C16—H16···O2i0.932.553.439 (4)160
C5—H5···Cg3iii0.932.923.643 (4)136
Symmetry codes: (i) x+2, y, z; (ii) x1, y, z1; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Shad, H. A., Khan, M. N. & Tariq, M. I. (2010a). Acta Cryst. E66, o2923.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTahir, M. N., Tariq, M. I., Ahmad, S. & Sarfraz, M. (2010b). Acta Cryst. E66, o2553–o2554.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds