metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-3-(2-hy­dr­oxy­phen­yl)propenoato]bis­­{aqua­(4,4′-bi­pyridine)­bis­­[3-(2-hy­droxy­phen­yl)propenoato]yttrium(III)} 4,4′-bi­pyridine disolvate

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: wyh@zjnu.edu.cn

(Received 13 October 2010; accepted 2 November 2010; online 6 November 2010)

The title compound, [Y2(C9H7O3)6(C10H8N2)2(H2O)2]·2C10H8N2, contains two eight-coordinated YIII ions, which are linked by two carboxyl­ate groups from two 2-hy­droxy­cinnamate anions, leading to a centrosymmetric dinuclear structure surrounded by solvent 4,4′-bipyridine mol­ecules. It forms a three-dimensional framework connected by extensive O—H⋯O and O—H⋯N hydrogen-bonding inter­actions.

Related literature

For related compounds, see: Casas et al. (2008[Casas, J., Couce, M. D., Garcia-Vega, M., Rosende, M., Sanchez, A., Sordo, J., Varela, J. M. & Vazquez-Lopez, E. M. (2008). Polyhedron, 27, 2436-2446.]); Chowdhury & Kariuki (2006[Chowdhury, M. & Kariuki, B. M. (2006). Cryst. Growth. Des. 6, 774-780.]); Crowther et al. (2008[Crowther, D., Chowdhury, M. & Kariuki, B. M. (2008). J. Mol. Struct. 872, 64-71.]); Darshak et al. (2006[Darshak, R., Trivedi, P. & Dastidar, P. (2006). Cryst. Growth. Des. 6, 2114-2121.]); Gossauer et al. (2004[Gossauer, A., Nydegger, F., Kiss, T., Sleziak, R. & Stoeckli-Evans, H. (2004). J. Am. Chem. Soc. 126, 1764-1783.]).

[Scheme 1]

Experimental

Crystal data
  • [Y2(C9H7O3)6(C10H8N2)2(H2O)2]·2C10H8N2

  • Mr = 1817.46

  • Triclinic, [P \overline 1]

  • a = 11.8464 (7) Å

  • b = 13.5272 (8) Å

  • c = 13.7350 (8) Å

  • α = 77.561 (3)°

  • β = 88.850 (3)°

  • γ = 82.283 (3)°

  • V = 2129.8 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.43 mm−1

  • T = 296 K

  • 0.18 × 0.16 × 0.13 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.77, Tmax = 0.83

  • 32270 measured reflections

  • 9803 independent reflections

  • 7446 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.087

  • S = 1.02

  • 9803 reflections

  • 574 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯N4i 0.83 (2) 2.00 (2) 2.830 (3) 172 (2)
O9—H9⋯O7ii 0.90 (2) 1.77 (2) 2.650 (2) 165 (3)
O1W—H1WB⋯O5iii 0.83 (2) 2.00 (2) 2.814 (2) 166 (3)
O6—H6⋯N2iv 0.91 (2) 1.81 (2) 2.708 (3) 167 (3)
O3—H3⋯O4v 0.90 (2) 1.72 (2) 2.609 (2) 168 (3)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+2, -y+1, -z; (iii) -x+2, -y, -z; (iv) x+1, y, z-1; (v) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Very recently, the compounds containing H2ca and different metal ions have been reported (Casas et al., 2008; Chowdhury & Kariuki, 2006; Crowther et al., 2008; Darshak et al., 2006; Gossauer et al., 2004). Furthermore, 4,4'-bipy is an excellent bridging ligand in coordination chemistry because of its rod-like shape that allows the ligand to connect metal ions into an extended array. Herein,we report the synthesis and the structure of a new dinuclear yttrium compound [Y2(Hca)6(4,4'-bipy)2(H2O)2].2(4,4'-bipy), (I), derived from H2ca and 4,4'-bipy ligands.

A perspective view of the molecular structure of (I) is presented in Fig. 1. It consists of two Y atoms, six Hca anions, two coordinated water molecules, two coordinated 4,4'-bipy and two lattice included non-coordinated 4,4'-bipy molecules. Two carboxylate group from two Hca anions adopt the bridging mode to bond two YIII ions [Y—O distances: 2.2074 (15) and 2.3143 (15) Å], which lead to the dinuclear structure with Y···Y separation of 4.5721 (4) Å. Furthermore, two chelate carboxylate groups (Y—O distances in the range of 2.3847 (14)–2.4317 (14) Å), one N atom of 4,4'-bipy (Y—N distance 2.5357 (17) Å), one water molecule (Y—O distance 2.3884 (16) Å) complete the eight-coordinated configuration of Y atom. In addition, there are two lattice included non-coordinated 4,4'-bipy molecules in the crystal structure. There are extensive hydrogen-bonding interactions involving the Hca anions, 4,4'-bipy and coordinated water molecules (Table 1). Among these interactions, the distances between the carboxylate O atoms and hydroxyl oxygen are shorter than those for the others implying that these are `stronger' hydrogen bonds. These hydrogen bonds play a vital role in the construction of the extended three-dimensional supramolecular network (Fig. 2).

Related literature top

For related compounds, see: Casas et al. (2008); Chowdhury & Kariuki (2006); Crowther et al. (2008); Darshak et al. (2006); Gossauer et al. (2004).

Experimental top

A mixture of Y(NO3)3.6H2O (0.1915 g, 0.5 mmol), 2-Hydroxycinnamic acid (0.2462 g, 1.5 mmol) and 4,4'-bipy (0.2343 g, 1.5 mmol) was dissolved in a 16 ml EtOH/H2O (v/v, 1:15 ml),and then sealed in a 25 ml Teflon-lined stainless steel reactor with a Telflon liner and heated at 433 K for 3 d. On completion of the reaction, the reactor was cooled slowly to room temperature and the mixture was filtered, giving colourless blocky single crystals suitable for X-ray analysis in 43% yield.

Refinement top

The Carbon-bound H atoms were positioned geometrically and included in the refinement using a riding model [C—H 0.93 Å Uiso(H) = 1.2Ueq(C)]. The water and hydroxyl H atoms were located from different maps, and their positions were refined isotropically, with O—H distances fixed by Owater—H = 0.85 (2) Å, Ohydroxyl—H = 0.96 (2) Å and H—H = 1.35 (2) Å, their displacement parameters were set to 1.5Ueq(Owater) and 1.2Ueq(Ohydroxyl).

Structure description top

Very recently, the compounds containing H2ca and different metal ions have been reported (Casas et al., 2008; Chowdhury & Kariuki, 2006; Crowther et al., 2008; Darshak et al., 2006; Gossauer et al., 2004). Furthermore, 4,4'-bipy is an excellent bridging ligand in coordination chemistry because of its rod-like shape that allows the ligand to connect metal ions into an extended array. Herein,we report the synthesis and the structure of a new dinuclear yttrium compound [Y2(Hca)6(4,4'-bipy)2(H2O)2].2(4,4'-bipy), (I), derived from H2ca and 4,4'-bipy ligands.

A perspective view of the molecular structure of (I) is presented in Fig. 1. It consists of two Y atoms, six Hca anions, two coordinated water molecules, two coordinated 4,4'-bipy and two lattice included non-coordinated 4,4'-bipy molecules. Two carboxylate group from two Hca anions adopt the bridging mode to bond two YIII ions [Y—O distances: 2.2074 (15) and 2.3143 (15) Å], which lead to the dinuclear structure with Y···Y separation of 4.5721 (4) Å. Furthermore, two chelate carboxylate groups (Y—O distances in the range of 2.3847 (14)–2.4317 (14) Å), one N atom of 4,4'-bipy (Y—N distance 2.5357 (17) Å), one water molecule (Y—O distance 2.3884 (16) Å) complete the eight-coordinated configuration of Y atom. In addition, there are two lattice included non-coordinated 4,4'-bipy molecules in the crystal structure. There are extensive hydrogen-bonding interactions involving the Hca anions, 4,4'-bipy and coordinated water molecules (Table 1). Among these interactions, the distances between the carboxylate O atoms and hydroxyl oxygen are shorter than those for the others implying that these are `stronger' hydrogen bonds. These hydrogen bonds play a vital role in the construction of the extended three-dimensional supramolecular network (Fig. 2).

For related compounds, see: Casas et al. (2008); Chowdhury & Kariuki (2006); Crowther et al. (2008); Darshak et al. (2006); Gossauer et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (a) -x + 2, -y, -z]
[Figure 2] Fig. 2. View of the supramolecular network connected by hydrogen bonds along the crystallographic b axis.
Bis[µ-3-(2-hydroxyphenyl)propenoato]bis{aqua(4,4'-bipyridine)bis[3-(2- hydroxyphenyl)propenoato]yttrium(III)} 4,4'-bipyridine disolvate top
Crystal data top
[Y2(C9H7O3)6(C10H8N2)2(H2O)2]·2C10H8N2Z = 1
Mr = 1817.46F(000) = 936
Triclinic, P1Dx = 1.417 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.8464 (7) ÅCell parameters from 7095 reflections
b = 13.5272 (8) Åθ = 1.5–27.7°
c = 13.7350 (8) ŵ = 1.43 mm1
α = 77.561 (3)°T = 296 K
β = 88.850 (3)°Block, colourless
γ = 82.283 (3)°0.18 × 0.16 × 0.13 mm
V = 2129.8 (2) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
9803 independent reflections
Radiation source: fine-focus sealed tube7446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 27.7°, θmin = 1.5°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.77, Tmax = 0.83k = 1717
32270 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.3503P]
where P = (Fo2 + 2Fc2)/3
9803 reflections(Δ/σ)max = 0.001
574 parametersΔρmax = 0.24 e Å3
6 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Y2(C9H7O3)6(C10H8N2)2(H2O)2]·2C10H8N2γ = 82.283 (3)°
Mr = 1817.46V = 2129.8 (2) Å3
Triclinic, P1Z = 1
a = 11.8464 (7) ÅMo Kα radiation
b = 13.5272 (8) ŵ = 1.43 mm1
c = 13.7350 (8) ÅT = 296 K
α = 77.561 (3)°0.18 × 0.16 × 0.13 mm
β = 88.850 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
9803 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
7446 reflections with I > 2σ(I)
Tmin = 0.77, Tmax = 0.83Rint = 0.041
32270 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0396 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.24 e Å3
9803 reflectionsΔρmin = 0.43 e Å3
574 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Y10.855694 (16)0.115806 (15)0.037114 (15)0.02694 (7)
C10.85488 (17)0.09980 (17)0.00980 (16)0.0313 (5)
C20.81774 (18)0.20075 (17)0.00737 (18)0.0372 (5)
H2A0.86920.25640.00140.045*
C30.71312 (18)0.21460 (17)0.03498 (18)0.0382 (5)
H3A0.66550.15580.04120.046*
C40.66089 (19)0.30778 (17)0.05719 (18)0.0394 (6)
C50.7169 (2)0.4020 (2)0.0459 (3)0.0669 (9)
H5A0.79160.40670.02340.080*
C60.6635 (3)0.4879 (2)0.0674 (3)0.0843 (11)
H6A0.70190.55040.05980.101*
C70.5530 (3)0.4810 (2)0.1002 (3)0.0707 (9)
H7A0.51690.53930.11460.085*
C80.4956 (2)0.3901 (2)0.1121 (2)0.0541 (7)
H8A0.42060.38650.13390.065*
C90.54909 (19)0.30313 (18)0.09145 (18)0.0392 (5)
C100.79402 (18)0.16610 (15)0.16351 (16)0.0302 (5)
C110.75080 (18)0.16500 (17)0.26180 (16)0.0348 (5)
H11A0.67250.17720.27310.042*
C120.81864 (19)0.14727 (17)0.33571 (16)0.0365 (5)
H12A0.89620.14570.32500.044*
C130.78627 (19)0.12985 (17)0.43196 (16)0.0345 (5)
C140.6792 (2)0.10547 (19)0.44966 (18)0.0432 (6)
H14A0.62380.10600.40080.052*
C150.6535 (2)0.0805 (2)0.53829 (19)0.0517 (7)
H15A0.58140.06470.54920.062*
C160.7360 (2)0.0794 (2)0.61052 (19)0.0533 (7)
H16A0.71960.06200.67010.064*
C170.8413 (2)0.1036 (2)0.59547 (18)0.0503 (7)
H17A0.89590.10290.64500.060*
C180.8679 (2)0.12931 (18)0.50698 (18)0.0407 (6)
C190.90218 (18)0.28475 (16)0.10206 (17)0.0323 (5)
C200.95262 (19)0.36770 (16)0.13052 (17)0.0370 (5)
H20A0.96580.42390.08140.044*
C210.98010 (18)0.36486 (16)0.22470 (17)0.0355 (5)
H21A0.96110.30860.27090.043*
C221.03534 (19)0.43649 (17)0.26637 (17)0.0365 (5)
C231.0520 (2)0.41712 (19)0.36885 (18)0.0463 (6)
H23A1.02550.36020.40840.056*
C241.1064 (3)0.4793 (2)0.4138 (2)0.0598 (8)
H24A1.11670.46420.48260.072*
C251.1453 (3)0.5639 (2)0.3562 (2)0.0640 (8)
H25A1.18210.60640.38600.077*
C261.1301 (2)0.58573 (19)0.2551 (2)0.0574 (8)
H26A1.15670.64320.21670.069*
C271.0756 (2)0.52335 (18)0.20906 (18)0.0442 (6)
C280.5203 (2)0.21910 (19)0.2066 (2)0.0488 (7)
H28A0.49740.27600.23350.059*
C290.6227 (2)0.21047 (19)0.1584 (2)0.0492 (7)
H29A0.66710.26300.15320.059*
C300.5944 (2)0.0591 (2)0.12545 (19)0.0476 (7)
H30A0.61870.00360.09700.057*
C310.4906 (2)0.06210 (19)0.17222 (19)0.0477 (6)
H31A0.44700.00940.17490.057*
C320.45146 (18)0.14325 (17)0.21511 (16)0.0334 (5)
C330.34283 (18)0.14721 (17)0.27048 (16)0.0348 (5)
C340.25087 (19)0.10641 (18)0.24193 (18)0.0401 (6)
H34A0.25630.07650.18680.048*
C350.1513 (2)0.11016 (19)0.29536 (18)0.0439 (6)
H35A0.08990.08390.27390.053*
C360.2274 (2)0.1885 (2)0.40364 (19)0.0517 (7)
H36A0.22000.21590.46040.062*
C370.3294 (2)0.1908 (2)0.35354 (19)0.0474 (6)
H37A0.38780.22090.37480.057*
C380.3050 (3)0.5444 (2)0.6251 (2)0.0644 (8)
H38A0.22580.55110.62590.077*
C390.3596 (3)0.6296 (2)0.6092 (3)0.0781 (10)
H39A0.31460.69290.59970.094*
C400.5311 (3)0.5367 (2)0.6197 (2)0.0680 (8)
H40A0.61010.53250.61800.082*
C410.4845 (2)0.4467 (2)0.6360 (2)0.0598 (7)
H41A0.53170.38460.64430.072*
C420.3678 (2)0.44854 (19)0.64000 (19)0.0473 (6)
C430.3136 (2)0.35367 (19)0.66164 (19)0.0469 (6)
C440.3667 (3)0.2638 (2)0.6406 (2)0.0621 (8)
H44A0.43670.26210.60860.075*
C450.3156 (3)0.1764 (2)0.6670 (2)0.0691 (9)
H45A0.35380.11680.65240.083*
C460.1643 (3)0.2586 (2)0.7290 (2)0.0654 (8)
H46A0.09290.25850.75840.078*
C470.2090 (3)0.3497 (2)0.7062 (2)0.0625 (8)
H47A0.16850.40840.72100.075*
N10.66204 (15)0.13120 (14)0.11866 (13)0.0344 (4)
N20.13905 (16)0.14964 (16)0.37618 (15)0.0449 (5)
N30.4718 (2)0.6286 (2)0.6064 (2)0.0741 (8)
N40.2160 (2)0.17128 (18)0.71180 (18)0.0598 (6)
O10.78538 (13)0.02351 (12)0.00007 (12)0.0421 (4)
O1W0.90535 (14)0.01639 (11)0.18130 (12)0.0392 (4)
H1WA0.8654 (17)0.0576 (17)0.2143 (18)0.059*
H1WB0.9676 (14)0.0511 (18)0.1776 (19)0.059*
O20.95636 (12)0.09016 (12)0.03507 (12)0.0438 (4)
O30.49790 (14)0.21136 (14)0.10525 (15)0.0548 (5)
H30.4223 (15)0.213 (2)0.107 (2)0.066*
O40.72411 (12)0.18905 (11)0.09735 (11)0.0347 (4)
O50.89816 (12)0.14171 (11)0.13982 (11)0.0341 (3)
O60.97039 (16)0.15478 (17)0.48826 (14)0.0640 (6)
H61.019 (2)0.150 (2)0.5393 (17)0.077*
O70.87559 (14)0.29257 (11)0.01038 (11)0.0396 (4)
O80.88615 (13)0.20519 (11)0.16396 (11)0.0394 (4)
O91.05892 (19)0.54442 (14)0.10954 (13)0.0667 (6)
H91.090 (2)0.5997 (17)0.077 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y10.02205 (11)0.02963 (11)0.03082 (12)0.00781 (8)0.00578 (8)0.00801 (8)
C10.0242 (11)0.0434 (13)0.0299 (12)0.0105 (10)0.0032 (9)0.0124 (10)
C20.0252 (11)0.0333 (12)0.0560 (16)0.0043 (9)0.0063 (10)0.0159 (11)
C30.0293 (12)0.0339 (12)0.0535 (15)0.0057 (10)0.0042 (11)0.0131 (11)
C40.0280 (12)0.0346 (13)0.0557 (16)0.0076 (10)0.0033 (11)0.0081 (11)
C50.0367 (15)0.0421 (16)0.125 (3)0.0090 (12)0.0115 (16)0.0235 (17)
C60.054 (2)0.0366 (17)0.162 (4)0.0062 (14)0.004 (2)0.0219 (19)
C70.058 (2)0.0433 (17)0.108 (3)0.0230 (15)0.0014 (18)0.0018 (16)
C80.0366 (14)0.0595 (18)0.0646 (19)0.0209 (13)0.0047 (13)0.0016 (14)
C90.0295 (12)0.0410 (14)0.0467 (15)0.0104 (10)0.0008 (10)0.0048 (11)
C100.0286 (12)0.0284 (11)0.0343 (13)0.0062 (9)0.0070 (9)0.0077 (9)
C110.0279 (12)0.0449 (14)0.0331 (13)0.0054 (10)0.0027 (10)0.0112 (10)
C120.0349 (13)0.0410 (13)0.0344 (13)0.0079 (10)0.0062 (10)0.0083 (10)
C130.0370 (13)0.0373 (13)0.0296 (12)0.0047 (10)0.0042 (10)0.0086 (10)
C140.0434 (14)0.0523 (15)0.0351 (14)0.0087 (12)0.0068 (11)0.0111 (11)
C150.0524 (16)0.0611 (17)0.0453 (16)0.0169 (13)0.0020 (13)0.0133 (13)
C160.073 (2)0.0581 (17)0.0314 (14)0.0142 (14)0.0013 (13)0.0129 (12)
C170.0599 (18)0.0602 (17)0.0322 (14)0.0095 (14)0.0138 (12)0.0133 (12)
C180.0403 (14)0.0466 (14)0.0356 (14)0.0077 (11)0.0100 (11)0.0098 (11)
C190.0302 (12)0.0314 (12)0.0362 (14)0.0056 (9)0.0037 (10)0.0087 (10)
C200.0445 (14)0.0308 (12)0.0374 (14)0.0125 (10)0.0005 (11)0.0061 (10)
C210.0388 (13)0.0304 (12)0.0365 (14)0.0060 (10)0.0025 (10)0.0050 (10)
C220.0414 (13)0.0329 (12)0.0358 (13)0.0043 (10)0.0035 (10)0.0092 (10)
C230.0602 (17)0.0436 (15)0.0351 (14)0.0094 (12)0.0001 (12)0.0067 (11)
C240.081 (2)0.0647 (19)0.0384 (16)0.0166 (16)0.0114 (14)0.0152 (13)
C250.083 (2)0.0558 (18)0.063 (2)0.0227 (16)0.0197 (17)0.0230 (15)
C260.080 (2)0.0408 (15)0.0557 (18)0.0258 (14)0.0111 (15)0.0071 (13)
C270.0567 (16)0.0387 (14)0.0384 (15)0.0126 (12)0.0078 (12)0.0062 (11)
C280.0415 (14)0.0401 (14)0.0697 (18)0.0071 (11)0.0208 (13)0.0236 (13)
C290.0395 (14)0.0410 (14)0.0712 (19)0.0131 (11)0.0196 (13)0.0184 (13)
C300.0404 (14)0.0539 (16)0.0591 (17)0.0148 (12)0.0224 (12)0.0323 (13)
C310.0408 (14)0.0523 (16)0.0610 (17)0.0211 (12)0.0231 (12)0.0289 (13)
C320.0278 (11)0.0400 (13)0.0312 (12)0.0011 (9)0.0054 (9)0.0073 (10)
C330.0298 (12)0.0376 (13)0.0348 (13)0.0029 (10)0.0089 (10)0.0048 (10)
C340.0339 (13)0.0492 (15)0.0380 (14)0.0066 (11)0.0075 (10)0.0114 (11)
C350.0329 (13)0.0528 (15)0.0468 (16)0.0080 (11)0.0086 (11)0.0117 (12)
C360.0432 (15)0.0711 (19)0.0448 (16)0.0010 (13)0.0129 (12)0.0262 (14)
C370.0350 (14)0.0633 (17)0.0499 (16)0.0068 (12)0.0072 (12)0.0259 (13)
C380.0583 (19)0.0477 (17)0.087 (2)0.0085 (14)0.0032 (16)0.0132 (15)
C390.083 (3)0.0433 (18)0.107 (3)0.0095 (17)0.003 (2)0.0139 (17)
C400.0600 (19)0.066 (2)0.084 (2)0.0198 (16)0.0074 (16)0.0220 (17)
C410.0568 (19)0.0515 (17)0.072 (2)0.0071 (14)0.0044 (15)0.0145 (14)
C420.0543 (17)0.0445 (15)0.0437 (15)0.0103 (12)0.0002 (12)0.0086 (11)
C430.0530 (16)0.0418 (15)0.0435 (15)0.0056 (12)0.0042 (12)0.0043 (11)
C440.0626 (19)0.0506 (17)0.075 (2)0.0148 (14)0.0149 (16)0.0138 (15)
C450.082 (2)0.0460 (17)0.082 (2)0.0144 (16)0.0139 (19)0.0163 (15)
C460.0580 (19)0.061 (2)0.073 (2)0.0144 (15)0.0144 (16)0.0024 (16)
C470.0607 (19)0.0456 (16)0.077 (2)0.0049 (14)0.0115 (16)0.0073 (14)
N10.0287 (10)0.0413 (11)0.0335 (11)0.0077 (8)0.0077 (8)0.0078 (8)
N20.0329 (11)0.0554 (13)0.0436 (13)0.0020 (9)0.0134 (9)0.0082 (10)
N30.078 (2)0.0586 (17)0.092 (2)0.0252 (15)0.0038 (16)0.0210 (14)
N40.0672 (16)0.0496 (15)0.0607 (16)0.0169 (12)0.0058 (13)0.0026 (11)
O10.0378 (9)0.0371 (9)0.0579 (11)0.0117 (7)0.0155 (8)0.0214 (8)
O1W0.0356 (9)0.0345 (9)0.0434 (10)0.0032 (7)0.0126 (8)0.0016 (7)
O20.0232 (8)0.0552 (11)0.0524 (11)0.0140 (7)0.0030 (7)0.0052 (8)
O30.0249 (9)0.0573 (12)0.0887 (14)0.0105 (8)0.0123 (9)0.0277 (10)
O40.0255 (8)0.0467 (9)0.0341 (9)0.0023 (7)0.0061 (6)0.0151 (7)
O50.0244 (8)0.0434 (9)0.0348 (9)0.0039 (7)0.0068 (6)0.0098 (7)
O60.0425 (11)0.1103 (17)0.0502 (12)0.0252 (11)0.0212 (9)0.0342 (11)
O70.0542 (10)0.0331 (9)0.0328 (9)0.0128 (7)0.0063 (8)0.0054 (7)
O80.0505 (10)0.0374 (9)0.0339 (9)0.0196 (8)0.0055 (7)0.0076 (7)
O90.1122 (17)0.0543 (12)0.0388 (11)0.0483 (12)0.0121 (11)0.0028 (9)
Geometric parameters (Å, º) top
Y1—O2i2.2074 (15)C23—H23A0.9300
Y1—O12.3143 (15)C24—C251.373 (4)
Y1—O72.3827 (14)C24—H24A0.9300
Y1—O82.3827 (15)C25—C261.366 (4)
Y1—O1W2.3884 (16)C25—H25A0.9300
Y1—O42.3948 (15)C26—C271.387 (3)
Y1—O52.4317 (14)C26—H26A0.9300
Y1—N12.5357 (17)C27—O91.348 (3)
Y1—C192.749 (2)C28—C291.374 (3)
Y1—C102.780 (2)C28—C321.379 (3)
C1—O21.260 (2)C28—H28A0.9300
C1—O11.260 (3)C29—N11.332 (3)
C1—C21.460 (3)C29—H29A0.9300
C2—C31.315 (3)C30—N11.330 (3)
C2—H2A0.9300C30—C311.376 (3)
C3—C41.449 (3)C30—H30A0.9300
C3—H3A0.9300C31—C321.378 (3)
C4—C51.394 (3)C31—H31A0.9300
C4—C91.395 (3)C32—C331.482 (3)
C5—C61.370 (4)C33—C341.385 (3)
C5—H5A0.9300C33—C371.390 (3)
C6—C71.374 (4)C34—C351.378 (3)
C6—H6A0.9300C34—H34A0.9300
C7—C81.364 (4)C35—N21.329 (3)
C7—H7A0.9300C35—H35A0.9300
C8—C91.384 (3)C36—N21.328 (3)
C8—H8A0.9300C36—C371.379 (3)
C9—O31.356 (3)C36—H36A0.9300
C10—O51.264 (2)C37—H37A0.9300
C10—O41.277 (2)C38—C391.372 (4)
C10—C111.457 (3)C38—C421.382 (4)
C11—C121.325 (3)C38—H38A0.9300
C11—H11A0.9300C39—N31.327 (4)
C12—C131.459 (3)C39—H39A0.9300
C12—H12A0.9300C40—N31.320 (4)
C13—C141.391 (3)C40—C411.377 (4)
C13—C181.399 (3)C40—H40A0.9300
C14—C151.381 (3)C41—C421.380 (4)
C14—H14A0.9300C41—H41A0.9300
C15—C161.380 (4)C42—C431.482 (3)
C15—H15A0.9300C43—C471.374 (4)
C16—C171.362 (4)C43—C441.378 (4)
C16—H16A0.9300C44—C451.376 (4)
C17—C181.387 (3)C44—H44A0.9300
C17—H17A0.9300C45—N41.323 (4)
C18—O61.350 (3)C45—H45A0.9300
C19—O81.254 (2)C46—N41.321 (4)
C19—O71.283 (3)C46—C471.379 (4)
C19—C201.465 (3)C46—H46A0.9300
C20—C211.331 (3)C47—H47A0.9300
C20—H20A0.9300O1W—H1WA0.833 (16)
C21—C221.456 (3)O1W—H1WB0.826 (16)
C21—H21A0.9300O2—Y1i2.2074 (15)
C22—C231.388 (3)O3—H30.898 (17)
C22—C271.402 (3)O6—H60.909 (17)
C23—C241.374 (3)O9—H90.904 (17)
O2i—Y1—O1109.25 (6)O8—C19—Y159.95 (11)
O2i—Y1—O785.57 (6)O7—C19—Y160.01 (10)
O1—Y1—O7153.90 (6)C20—C19—Y1167.40 (15)
O2i—Y1—O883.23 (6)C21—C20—C19121.9 (2)
O1—Y1—O8145.87 (5)C21—C20—H20A119.1
O7—Y1—O854.49 (5)C19—C20—H20A119.1
O2i—Y1—O1W76.14 (6)C20—C21—C22129.8 (2)
O1—Y1—O1W76.64 (6)C20—C21—H21A115.1
O7—Y1—O1W128.80 (5)C22—C21—H21A115.1
O8—Y1—O1W75.87 (5)C23—C22—C27117.4 (2)
O2i—Y1—O4129.23 (5)C23—C22—C21118.6 (2)
O1—Y1—O475.98 (6)C27—C22—C21124.0 (2)
O7—Y1—O478.03 (5)C24—C23—C22122.2 (2)
O8—Y1—O4121.30 (5)C24—C23—H23A118.9
O1W—Y1—O4147.86 (5)C22—C23—H23A118.9
O2i—Y1—O576.88 (5)C25—C24—C23119.4 (3)
O1—Y1—O580.03 (5)C25—C24—H24A120.3
O7—Y1—O582.79 (5)C23—C24—H24A120.3
O8—Y1—O5134.09 (5)C26—C25—C24120.1 (2)
O1W—Y1—O5135.74 (5)C26—C25—H25A119.9
O4—Y1—O553.74 (5)C24—C25—H25A119.9
O2i—Y1—N1155.07 (6)C25—C26—C27120.9 (2)
O1—Y1—N179.86 (5)C25—C26—H26A119.5
O7—Y1—N195.71 (6)C27—C26—H26A119.5
O8—Y1—N177.47 (6)O9—C27—C26121.6 (2)
O1W—Y1—N183.90 (6)O9—C27—C22118.4 (2)
O4—Y1—N175.01 (5)C26—C27—C22120.0 (2)
O5—Y1—N1128.02 (5)C29—C28—C32119.9 (2)
O2i—Y1—C1980.28 (6)C29—C28—H28A120.1
O1—Y1—C19169.10 (6)C32—C28—H28A120.1
O7—Y1—C1927.79 (6)N1—C29—C28123.8 (2)
O8—Y1—C1927.09 (6)N1—C29—H29A118.1
O1W—Y1—C19101.28 (6)C28—C29—H29A118.1
O4—Y1—C19102.40 (6)N1—C30—C31123.7 (2)
O5—Y1—C19107.92 (6)N1—C30—H30A118.1
N1—Y1—C1989.29 (6)C31—C30—H30A118.1
O2i—Y1—C10103.85 (6)C30—C31—C32119.9 (2)
O1—Y1—C1072.50 (6)C30—C31—H31A120.0
O7—Y1—C1083.30 (6)C32—C31—H31A120.0
O8—Y1—C10136.88 (6)C31—C32—C28116.6 (2)
O1W—Y1—C10147.24 (6)C31—C32—C33121.8 (2)
O4—Y1—C1027.29 (5)C28—C32—C33121.6 (2)
O5—Y1—C1027.02 (5)C34—C33—C37117.3 (2)
N1—Y1—C10101.02 (6)C34—C33—C32121.1 (2)
C19—Y1—C10111.08 (6)C37—C33—C32121.6 (2)
O2—C1—O1120.8 (2)C35—C34—C33119.9 (2)
O2—C1—C2119.2 (2)C35—C34—H34A120.0
O1—C1—C2119.90 (19)C33—C34—H34A120.0
C3—C2—C1121.3 (2)N2—C35—C34122.9 (2)
C3—C2—H2A119.3N2—C35—H35A118.5
C1—C2—H2A119.3C34—C35—H35A118.5
C2—C3—C4129.7 (2)N2—C36—C37124.3 (2)
C2—C3—H3A115.2N2—C36—H36A117.9
C4—C3—H3A115.2C37—C36—H36A117.9
C5—C4—C9118.2 (2)C36—C37—C33118.5 (2)
C5—C4—C3123.2 (2)C36—C37—H37A120.8
C9—C4—C3118.5 (2)C33—C37—H37A120.8
C6—C5—C4121.0 (3)C39—C38—C42119.9 (3)
C6—C5—H5A119.5C39—C38—H38A120.1
C4—C5—H5A119.5C42—C38—H38A120.1
C5—C6—C7119.5 (3)N3—C39—C38124.9 (3)
C5—C6—H6A120.2N3—C39—H39A117.6
C7—C6—H6A120.2C38—C39—H39A117.6
C8—C7—C6121.1 (3)N3—C40—C41124.8 (3)
C8—C7—H7A119.5N3—C40—H40A117.6
C6—C7—H7A119.5C41—C40—H40A117.6
C7—C8—C9119.8 (2)C40—C41—C42119.9 (3)
C7—C8—H8A120.1C40—C41—H41A120.0
C9—C8—H8A120.1C42—C41—H41A120.0
O3—C9—C8122.6 (2)C41—C42—C38115.7 (2)
O3—C9—C4117.1 (2)C41—C42—C43122.0 (2)
C8—C9—C4120.3 (2)C38—C42—C43122.3 (2)
O5—C10—O4118.35 (19)C47—C43—C44116.2 (2)
O5—C10—C11122.43 (19)C47—C43—C42121.9 (2)
O4—C10—C11119.18 (19)C44—C43—C42121.9 (2)
O5—C10—Y160.94 (11)C45—C44—C43119.6 (3)
O4—C10—Y159.30 (11)C45—C44—H44A120.2
C11—C10—Y1164.18 (15)C43—C44—H44A120.2
C12—C11—C10122.6 (2)N4—C45—C44124.7 (3)
C12—C11—H11A118.7N4—C45—H45A117.7
C10—C11—H11A118.7C44—C45—H45A117.7
C11—C12—C13127.8 (2)N4—C46—C47124.4 (3)
C11—C12—H12A116.1N4—C46—H46A117.8
C13—C12—H12A116.1C47—C46—H46A117.8
C14—C13—C18118.2 (2)C43—C47—C46119.8 (3)
C14—C13—C12122.3 (2)C43—C47—H47A120.1
C18—C13—C12119.3 (2)C46—C47—H47A120.1
C15—C14—C13121.4 (2)C30—N1—C29116.08 (19)
C15—C14—H14A119.3C30—N1—Y1121.52 (15)
C13—C14—H14A119.3C29—N1—Y1122.39 (14)
C16—C15—C14119.2 (2)C36—N2—C35117.1 (2)
C16—C15—H15A120.4C40—N3—C39114.8 (3)
C14—C15—H15A120.4C46—N4—C45115.2 (2)
C17—C16—C15120.7 (2)C1—O1—Y1118.61 (13)
C17—C16—H16A119.7Y1—O1W—H1WA129.3 (18)
C15—C16—H16A119.7Y1—O1W—H1WB114.1 (18)
C16—C17—C18120.6 (2)H1WA—O1W—H1WB104 (2)
C16—C17—H17A119.7C1—O2—Y1i161.16 (15)
C18—C17—H17A119.7C9—O3—H3108.1 (17)
O6—C18—C17123.2 (2)C10—O4—Y193.42 (12)
O6—C18—C13116.9 (2)C10—O5—Y192.04 (12)
C17—C18—C13119.9 (2)C18—O6—H6111.6 (18)
O8—C19—O7118.66 (19)C19—O7—Y192.20 (12)
O8—C19—C20122.2 (2)C19—O8—Y192.96 (13)
O7—C19—C20119.08 (19)C27—O9—H9113.7 (19)
O2—C1—C2—C3179.2 (2)C28—C32—C33—C34147.9 (2)
O1—C1—C2—C31.3 (3)C31—C32—C33—C37145.1 (3)
C1—C2—C3—C4178.8 (2)C28—C32—C33—C3732.8 (3)
C2—C3—C4—C54.2 (4)C37—C33—C34—C350.0 (3)
C2—C3—C4—C9175.9 (2)C32—C33—C34—C35179.3 (2)
C9—C4—C5—C60.3 (5)C33—C34—C35—N21.6 (4)
C3—C4—C5—C6179.7 (3)N2—C36—C37—C332.0 (4)
C4—C5—C6—C70.3 (6)C34—C33—C37—C361.7 (4)
C5—C6—C7—C80.2 (6)C32—C33—C37—C36177.6 (2)
C6—C7—C8—C90.5 (5)C42—C38—C39—N30.2 (5)
C7—C8—C9—O3177.5 (3)N3—C40—C41—C420.5 (5)
C7—C8—C9—C41.0 (4)C40—C41—C42—C381.1 (4)
C5—C4—C9—O3177.7 (2)C40—C41—C42—C43177.3 (3)
C3—C4—C9—O32.4 (3)C39—C38—C42—C410.9 (4)
C5—C4—C9—C80.9 (4)C39—C38—C42—C43177.4 (3)
C3—C4—C9—C8179.0 (2)C41—C42—C43—C47152.0 (3)
O2i—Y1—C10—O53.52 (13)C38—C42—C43—C4726.2 (4)
O1—Y1—C10—O5102.64 (12)C41—C42—C43—C4426.2 (4)
O7—Y1—C10—O587.26 (12)C38—C42—C43—C44155.5 (3)
O8—Y1—C10—O598.43 (13)C47—C43—C44—C451.9 (4)
O1W—Y1—C10—O582.29 (15)C42—C43—C44—C45176.5 (3)
O4—Y1—C10—O5164.1 (2)C43—C44—C45—N40.6 (5)
N1—Y1—C10—O5178.19 (11)C44—C43—C47—C461.3 (4)
C19—Y1—C10—O588.28 (12)C42—C43—C47—C46177.1 (3)
O2i—Y1—C10—O4160.56 (11)N4—C46—C47—C430.7 (5)
O1—Y1—C10—O493.28 (12)C31—C30—N1—C291.5 (4)
O7—Y1—C10—O476.82 (12)C31—C30—N1—Y1177.5 (2)
O8—Y1—C10—O465.65 (14)C28—C29—N1—C301.7 (4)
O1W—Y1—C10—O4113.62 (13)C28—C29—N1—Y1177.3 (2)
O5—Y1—C10—O4164.1 (2)O2i—Y1—N1—C30106.9 (2)
N1—Y1—C10—O417.73 (13)O1—Y1—N1—C307.31 (18)
C19—Y1—C10—O475.81 (12)O7—Y1—N1—C30161.33 (18)
O2i—Y1—C10—C11110.3 (6)O8—Y1—N1—C30147.00 (19)
O1—Y1—C10—C114.2 (5)O1W—Y1—N1—C3070.16 (19)
O7—Y1—C10—C11165.9 (6)O4—Y1—N1—C3085.37 (18)
O8—Y1—C10—C11154.7 (5)O5—Y1—N1—C3076.0 (2)
O1W—Y1—C10—C1124.5 (6)C19—Y1—N1—C30171.59 (19)
O4—Y1—C10—C1189.1 (6)C10—Y1—N1—C3077.07 (19)
O5—Y1—C10—C11106.8 (6)O2i—Y1—N1—C2972.1 (2)
N1—Y1—C10—C1171.4 (6)O1—Y1—N1—C29173.75 (19)
C19—Y1—C10—C11164.9 (5)O7—Y1—N1—C2919.73 (19)
O5—C10—C11—C126.2 (3)O8—Y1—N1—C2931.94 (18)
O4—C10—C11—C12176.3 (2)O1W—Y1—N1—C29108.78 (19)
Y1—C10—C11—C12103.7 (5)O4—Y1—N1—C2995.69 (19)
C10—C11—C12—C13170.6 (2)O5—Y1—N1—C29105.04 (19)
C11—C12—C13—C1415.9 (4)C19—Y1—N1—C297.35 (19)
C11—C12—C13—C18169.4 (2)C10—Y1—N1—C29104.00 (19)
C18—C13—C14—C150.5 (4)C37—C36—N2—C350.4 (4)
C12—C13—C14—C15174.3 (2)C34—C35—N2—C361.4 (4)
C13—C14—C15—C160.3 (4)C41—C40—N3—C390.3 (5)
C14—C15—C16—C170.7 (4)C38—C39—N3—C400.4 (5)
C15—C16—C17—C180.3 (4)C47—C46—N4—C452.0 (5)
C16—C17—C18—O6179.4 (2)C44—C45—N4—C461.3 (5)
C16—C17—C18—C130.4 (4)O2—C1—O1—Y125.4 (3)
C14—C13—C18—O6179.0 (2)C2—C1—O1—Y1155.05 (16)
C12—C13—C18—O66.1 (3)O2i—Y1—O1—C15.03 (17)
C14—C13—C18—C170.8 (4)O7—Y1—O1—C1126.82 (17)
C12—C13—C18—C17174.1 (2)O8—Y1—O1—C1101.99 (17)
O2i—Y1—C19—O894.15 (13)O1W—Y1—O1—C164.87 (16)
O1—Y1—C19—O857.4 (4)O4—Y1—O1—C1132.13 (16)
O7—Y1—C19—O8166.8 (2)O5—Y1—O1—C177.24 (16)
O1W—Y1—C19—O820.54 (13)N1—Y1—O1—C1150.95 (16)
O4—Y1—C19—O8137.58 (12)C19—Y1—O1—C1145.1 (3)
O5—Y1—C19—O8166.85 (12)C10—Y1—O1—C1103.98 (16)
N1—Y1—C19—O863.10 (13)O1—C1—O2—Y1i131.2 (4)
C10—Y1—C19—O8164.65 (12)C2—C1—O2—Y1i49.3 (6)
O2i—Y1—C19—O799.04 (13)O5—C10—O4—Y115.81 (19)
O1—Y1—C19—O7109.5 (3)C11—C10—O4—Y1161.81 (17)
O8—Y1—C19—O7166.8 (2)O2i—Y1—O4—C1024.65 (14)
O1W—Y1—C19—O7172.66 (12)O1—Y1—O4—C1078.93 (12)
O4—Y1—C19—O729.23 (13)O7—Y1—O4—C1098.69 (12)
O5—Y1—C19—O726.35 (13)O8—Y1—O4—C10133.22 (11)
N1—Y1—C19—O7103.70 (12)O1W—Y1—O4—C10111.25 (13)
C10—Y1—C19—O72.16 (14)O5—Y1—O4—C108.89 (11)
O2i—Y1—C19—C209.6 (7)N1—Y1—O4—C10161.98 (13)
O1—Y1—C19—C20161.1 (6)C19—Y1—O4—C10112.15 (12)
O7—Y1—C19—C2089.5 (7)O4—C10—O5—Y115.54 (19)
O8—Y1—C19—C20103.7 (8)C11—C10—O5—Y1161.99 (18)
O1W—Y1—C19—C2083.2 (7)O2i—Y1—O5—C10176.49 (13)
O4—Y1—C19—C20118.7 (7)O1—Y1—O5—C1070.89 (12)
O5—Y1—C19—C2063.1 (7)O7—Y1—O5—C1089.38 (12)
N1—Y1—C19—C20166.8 (7)O8—Y1—O5—C10109.71 (12)
C10—Y1—C19—C2091.6 (7)O1W—Y1—O5—C10129.79 (12)
O8—C19—C20—C212.7 (3)O4—Y1—O5—C108.97 (11)
O7—C19—C20—C21178.8 (2)N1—Y1—O5—C102.25 (14)
Y1—C19—C20—C2198.9 (7)C19—Y1—O5—C10101.42 (12)
C19—C20—C21—C22176.6 (2)O8—C19—O7—Y113.0 (2)
C20—C21—C22—C23178.3 (2)C20—C19—O7—Y1165.54 (18)
C20—C21—C22—C273.2 (4)O2i—Y1—O7—C1977.50 (13)
C27—C22—C23—C240.5 (4)O1—Y1—O7—C19156.09 (13)
C21—C22—C23—C24178.1 (2)O8—Y1—O7—C197.34 (12)
C22—C23—C24—C250.3 (4)O1W—Y1—O7—C199.26 (15)
C23—C24—C25—C260.1 (5)O4—Y1—O7—C19150.83 (13)
C24—C25—C26—C270.0 (5)O5—Y1—O7—C19154.81 (13)
C25—C26—C27—O9179.3 (3)N1—Y1—O7—C1977.50 (13)
C25—C26—C27—C220.1 (4)C10—Y1—O7—C19177.97 (13)
C23—C22—C27—O9179.1 (2)O7—C19—O8—Y113.0 (2)
C21—C22—C27—O92.4 (4)C20—C19—O8—Y1165.49 (19)
C23—C22—C27—C260.3 (4)O2i—Y1—O8—C1981.87 (13)
C21—C22—C27—C26178.1 (2)O1—Y1—O8—C19163.51 (12)
C32—C28—C29—N10.6 (4)O7—Y1—O8—C197.51 (12)
N1—C30—C31—C320.2 (4)O1W—Y1—O8—C19159.22 (14)
C30—C31—C32—C281.0 (4)O4—Y1—O8—C1950.45 (14)
C30—C31—C32—C33177.0 (2)O5—Y1—O8—C1917.54 (16)
C29—C28—C32—C310.8 (4)N1—Y1—O8—C19114.00 (14)
C29—C28—C32—C33177.2 (2)C10—Y1—O8—C1921.19 (16)
C31—C32—C33—C3434.2 (3)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N4ii0.83 (2)2.00 (2)2.830 (3)172 (2)
O9—H9···O7iii0.90 (2)1.77 (2)2.650 (2)165 (3)
O1W—H1WB···O5i0.83 (2)2.00 (2)2.814 (2)166 (3)
O6—H6···N2iv0.91 (2)1.81 (2)2.708 (3)167 (3)
O3—H3···O4v0.90 (2)1.72 (2)2.609 (2)168 (3)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z+1; (iii) x+2, y+1, z; (iv) x+1, y, z1; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Y2(C9H7O3)6(C10H8N2)2(H2O)2]·2C10H8N2
Mr1817.46
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)11.8464 (7), 13.5272 (8), 13.7350 (8)
α, β, γ (°)77.561 (3), 88.850 (3), 82.283 (3)
V3)2129.8 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.43
Crystal size (mm)0.18 × 0.16 × 0.13
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.77, 0.83
No. of measured, independent and
observed [I > 2σ(I)] reflections
32270, 9803, 7446
Rint0.041
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.087, 1.02
No. of reflections9803
No. of parameters574
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.43

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N4i0.833 (16)2.002 (17)2.830 (3)172 (2)
O9—H9···O7ii0.904 (17)1.766 (19)2.650 (2)165 (3)
O1W—H1WB···O5iii0.826 (16)2.004 (17)2.814 (2)166 (3)
O6—H6···N2iv0.909 (17)1.814 (18)2.708 (3)167 (3)
O3—H3···O4v0.898 (17)1.723 (18)2.609 (2)168 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+1, z; (iii) x+2, y, z; (iv) x+1, y, z1; (v) x+1, y, z.
 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasas, J., Couce, M. D., Garcia-Vega, M., Rosende, M., Sanchez, A., Sordo, J., Varela, J. M. & Vazquez-Lopez, E. M. (2008). Polyhedron, 27, 2436–2446.  Web of Science CSD CrossRef CAS Google Scholar
First citationChowdhury, M. & Kariuki, B. M. (2006). Cryst. Growth. Des. 6, 774–780.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrowther, D., Chowdhury, M. & Kariuki, B. M. (2008). J. Mol. Struct. 872, 64–71.  Web of Science CSD CrossRef CAS Google Scholar
First citationDarshak, R., Trivedi, P. & Dastidar, P. (2006). Cryst. Growth. Des. 6, 2114–2121.  Google Scholar
First citationGossauer, A., Nydegger, F., Kiss, T., Sleziak, R. & Stoeckli-Evans, H. (2004). J. Am. Chem. Soc. 126, 1764–1783.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds