organic compounds
2,6-Dimethyl-4-(1,3,4-oxadiazol-2-yl)quinoline
aSamara State Technical University, Molodogvardeyskay Str. 244, 443100 Samara, Russian Federation, and bDepartment of Chemistry, Moscow State University, 119992 Moscow, Russian Federation
*Correspondence e-mail: rybakov20021@yandex.ru
The title compound, C13H11N3O, a potential chemotherapeutic agent, contains a essential planar [maximum deviation = 0.0144 (14) Å] quinoline moiety. The quinoline ring system and the five-membered heterocycle form a dihedral angle of 7.81 (6)°. In the crystal, intermolecular non-classical C—H⋯N hydrogen bonding is present.
Related literature
For general background to the use of compounds containing a quinoline fragment as chemotherapeutical agents, see: Kaila et al. (2007); Vaitilingam et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810048683/ds2065sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810048683/ds2065Isup2.hkl
A solution of triethyl orthoformate (60 mmol) and 2,6-dimethyl-4-(1,3,4-oxadiazol-2-yl)quinoline (5 mmol) was refluxed for 20 h. Ester was removed in a vacuum. Recrystallization of the crude product from ethanol gave 0.89 g of colourless crystals. Yield 79%, mp 448-449 K.
IR, ν, cm-1: 3116 (C–H, oxadiazol), 1751 (CO), 1600 (C═C), 1508 (C═ N). MS, m/z: 225 (100) [M]+, 210 (17), 184 (11), 156 (32), 115 (15), 89 (8), 63 (9). 1H NMR, δ: 2.51 s (3H, 6-CH3), 2.71 s (3H, 2-CH3), 7.63 d (1H, J = 8.80, 7-H), 7.89 s (1H, 3-H), 7.92 d (1H, J = 8.80, 8-H), 8.71 s (1H, 5-H), 9.52 s (1H, C–H oxadiazol). Anal. calc. for C13H11N3O, %: C 69.32; H 4.92; N 18.66. Found, %: C 69.27; H 4.83; N 18.61.
Single crystals for X-ray analysis were obtained by slow evaporation of an ethanol. IR spectrum was recorded (in KBr) on Shimadzu FTIR-8400S.
was measured on Finnigan Trance DSQ spectrometer. 1H NMR spectrum was obtained in DMSO-d6 on Bruker AM 300 (300 MHz), using TMS as internal standard. Elemental composition was determined on Euro Vector EA-3000 elemental analyzer.C-bound H-atoms were placed in calculated positions (C–H 0.93 Å & 0.97 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).
The compounds containing a fragment of quinoline ring, are widely used as chemotherapeutical agents (Vaitilingam et al., 2004; Kaila et al., 2007). Synthesis of new quinoline derivatives and study of its properties to be of interest in theoretic and practical aspects as well. The 2,6-dimethyl-4-(1,3,4-oxadiazol-2-yl)quinoline II was synthesized from triethyl orthoformate and hydrazide 2,6-dimethyl-4-quinoline carboxylic acid I (Fig. 1).
In the
is found non-classical intermolecular hydrogen bond - C13–H13···N15i, where contacts H13···N15i = 2.594 Å, C13···N15i = 3.523 (2)Å and angle C13–H13···N15i = 178°. Symmetry code:(i) -x, y + 1/2, -z + 1/2. The short intramolecular contacts C6–H6···N15 (H6···N15 = 2.370 Å) and C3–H3···O12 (H3···O12 = 2.372 Å) are obliged by conjugation of oxadiazol and guinoline moieties - in title molecule, guinoline moiety is planar (max deviation of C7 = 0.0144 (14) Å) and essential planar oxadiazol moiety form dihedral angle 7.81 (6)° (Fig. 2).For general background to the use of compounds containing a quinoline fragment as chemotherapeutical agents, see: Kaila et al. (2007); Vaitilingam et al. (2004).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C13H11N3O | F(000) = 472 |
Mr = 225.25 | Dx = 1.358 Mg m−3 |
Monoclinic, P21/c | Melting point = 448–449 K |
Hall symbol: -P 2ybc | Cu Kα radiation, λ = 1.54184 Å |
a = 15.5372 (14) Å | Cell parameters from 25 reflections |
b = 9.7546 (7) Å | θ = 36.3–39.9° |
c = 7.3984 (5) Å | µ = 0.73 mm−1 |
β = 100.64 (1)° | T = 295 K |
V = 1102.02 (15) Å3 | Prism, colourless |
Z = 4 | 0.20 × 0.20 × 0.20 mm |
Enraf–Nonius CAD-4 diffractometer | 1855 reflections with I > 2σ(I) |
Radiation source: Fine-focus sealed tube | Rint = 0.000 |
Graphite monochromator | θmax = 74.9°, θmin = 2.9° |
Non–profiled ω scans | h = 0→19 |
Absorption correction: part of the (Walker & Stuart, 1983) | model (ΔF) k = 0→12 |
Tmin = 0.391, Tmax = 0.865 | l = −8→9 |
2236 measured reflections | 1 standard reflections every 60 min |
2236 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0669P)2 + 0.1662P] where P = (Fo2 + 2Fc2)/3 |
2236 reflections | (Δ/σ)max = 0.005 |
156 parameters | Δρmax = 0.18 e Å−3 |
0 restraints | Δρmin = −0.14 e Å−3 |
C13H11N3O | V = 1102.02 (15) Å3 |
Mr = 225.25 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 15.5372 (14) Å | µ = 0.73 mm−1 |
b = 9.7546 (7) Å | T = 295 K |
c = 7.3984 (5) Å | 0.20 × 0.20 × 0.20 mm |
β = 100.64 (1)° |
Enraf–Nonius CAD-4 diffractometer | 1855 reflections with I > 2σ(I) |
Absorption correction: part of the (Walker & Stuart, 1983) | model (ΔF) Rint = 0.000 |
Tmin = 0.391, Tmax = 0.865 | 1 standard reflections every 60 min |
2236 measured reflections | intensity decay: 1% |
2236 independent reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.18 e Å−3 |
2236 reflections | Δρmin = −0.14 e Å−3 |
156 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.39891 (8) | 0.63577 (13) | 0.05252 (18) | 0.0557 (3) | |
C2 | 0.36926 (10) | 0.75870 (16) | 0.0823 (2) | 0.0549 (4) | |
C21 | 0.42870 (12) | 0.87852 (19) | 0.0735 (3) | 0.0720 (5) | |
H21A | 0.4875 | 0.8464 | 0.0781 | 0.108* | |
H21B | 0.4271 | 0.9383 | 0.1758 | 0.108* | |
H21C | 0.4096 | 0.9276 | −0.0393 | 0.108* | |
C3 | 0.28466 (10) | 0.77894 (16) | 0.1206 (2) | 0.0537 (4) | |
H3 | 0.2663 | 0.8673 | 0.1417 | 0.064* | |
C4 | 0.22912 (9) | 0.67122 (14) | 0.12717 (19) | 0.0479 (3) | |
C5 | 0.25819 (9) | 0.53629 (15) | 0.09414 (18) | 0.0468 (3) | |
C6 | 0.20838 (9) | 0.41454 (15) | 0.09503 (19) | 0.0505 (3) | |
H6 | 0.1513 | 0.4206 | 0.1158 | 0.061* | |
C7 | 0.24197 (10) | 0.28864 (15) | 0.0662 (2) | 0.0532 (4) | |
C71 | 0.19028 (12) | 0.15983 (16) | 0.0748 (3) | 0.0656 (4) | |
H71A | 0.1315 | 0.1829 | 0.0868 | 0.098* | |
H71B | 0.2171 | 0.1062 | 0.1789 | 0.098* | |
H71C | 0.1891 | 0.1078 | −0.0358 | 0.098* | |
C8 | 0.32817 (11) | 0.28112 (16) | 0.0302 (2) | 0.0599 (4) | |
H8 | 0.3515 | 0.1959 | 0.0097 | 0.072* | |
C9 | 0.37777 (10) | 0.39518 (17) | 0.0249 (2) | 0.0587 (4) | |
H9 | 0.4340 | 0.3871 | −0.0003 | 0.070* | |
C10 | 0.34470 (9) | 0.52589 (15) | 0.0574 (2) | 0.0508 (3) | |
C11 | 0.14273 (9) | 0.69987 (15) | 0.1721 (2) | 0.0500 (3) | |
O12 | 0.11965 (7) | 0.83379 (11) | 0.18110 (16) | 0.0631 (3) | |
C13 | 0.03932 (11) | 0.8249 (2) | 0.2255 (3) | 0.0688 (5) | |
H13 | 0.0057 | 0.9013 | 0.2419 | 0.083* | |
N14 | 0.01403 (9) | 0.70333 (17) | 0.2429 (2) | 0.0739 (4) | |
N15 | 0.08253 (9) | 0.61910 (15) | 0.2072 (2) | 0.0651 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0469 (6) | 0.0603 (8) | 0.0626 (8) | −0.0012 (5) | 0.0168 (5) | 0.0026 (6) |
C2 | 0.0506 (8) | 0.0585 (9) | 0.0568 (8) | −0.0052 (6) | 0.0135 (6) | 0.0015 (6) |
C21 | 0.0661 (10) | 0.0651 (10) | 0.0887 (13) | −0.0142 (8) | 0.0241 (9) | 0.0008 (9) |
C3 | 0.0542 (8) | 0.0518 (8) | 0.0570 (9) | 0.0007 (6) | 0.0150 (6) | −0.0010 (6) |
C4 | 0.0464 (7) | 0.0516 (8) | 0.0468 (8) | 0.0019 (6) | 0.0117 (6) | 0.0008 (6) |
C5 | 0.0456 (7) | 0.0520 (8) | 0.0442 (7) | 0.0029 (6) | 0.0119 (5) | 0.0018 (5) |
C6 | 0.0472 (7) | 0.0558 (8) | 0.0508 (8) | 0.0007 (6) | 0.0150 (6) | 0.0008 (6) |
C7 | 0.0561 (8) | 0.0517 (8) | 0.0532 (8) | 0.0012 (6) | 0.0134 (6) | 0.0002 (6) |
C71 | 0.0701 (10) | 0.0550 (9) | 0.0745 (11) | −0.0045 (8) | 0.0207 (8) | −0.0047 (7) |
C8 | 0.0602 (9) | 0.0530 (8) | 0.0695 (10) | 0.0098 (7) | 0.0195 (7) | 0.0008 (7) |
C9 | 0.0491 (8) | 0.0616 (9) | 0.0693 (10) | 0.0082 (7) | 0.0209 (7) | 0.0009 (7) |
C10 | 0.0463 (7) | 0.0557 (8) | 0.0522 (8) | 0.0019 (6) | 0.0142 (6) | 0.0033 (6) |
C11 | 0.0501 (7) | 0.0510 (8) | 0.0506 (8) | 0.0051 (6) | 0.0138 (6) | −0.0015 (6) |
O12 | 0.0570 (6) | 0.0550 (6) | 0.0804 (8) | 0.0078 (5) | 0.0207 (5) | −0.0039 (5) |
C13 | 0.0575 (9) | 0.0735 (11) | 0.0795 (12) | 0.0173 (8) | 0.0235 (8) | −0.0056 (9) |
N14 | 0.0573 (8) | 0.0778 (10) | 0.0940 (11) | 0.0120 (7) | 0.0337 (7) | 0.0009 (8) |
N15 | 0.0538 (7) | 0.0647 (8) | 0.0840 (10) | 0.0053 (6) | 0.0315 (7) | 0.0014 (7) |
N1—C2 | 1.3177 (19) | C7—C8 | 1.415 (2) |
N1—C10 | 1.3677 (18) | C7—C71 | 1.499 (2) |
C2—C3 | 1.408 (2) | C71—H71A | 0.9600 |
C2—C21 | 1.499 (2) | C71—H71B | 0.9600 |
C21—H21A | 0.9600 | C71—H71C | 0.9600 |
C21—H21B | 0.9600 | C8—C9 | 1.358 (2) |
C21—H21C | 0.9600 | C8—H8 | 0.9300 |
C3—C4 | 1.366 (2) | C9—C10 | 1.412 (2) |
C3—H3 | 0.9300 | C9—H9 | 0.9300 |
C4—C5 | 1.4271 (19) | C11—N15 | 1.286 (2) |
C4—C11 | 1.4680 (19) | C11—O12 | 1.3596 (17) |
C5—C6 | 1.4182 (19) | O12—C13 | 1.3508 (19) |
C5—C10 | 1.4233 (19) | C13—N14 | 1.263 (2) |
C6—C7 | 1.366 (2) | C13—H13 | 0.9300 |
C6—H6 | 0.9300 | N14—N15 | 1.4075 (18) |
C2—N1—C10 | 118.21 (12) | C7—C71—H71A | 109.5 |
N1—C2—C3 | 121.95 (14) | C7—C71—H71B | 109.5 |
N1—C2—C21 | 117.71 (14) | H71A—C71—H71B | 109.5 |
C3—C2—C21 | 120.33 (14) | C7—C71—H71C | 109.5 |
C2—C21—H21A | 109.5 | H71A—C71—H71C | 109.5 |
C2—C21—H21B | 109.5 | H71B—C71—H71C | 109.5 |
H21A—C21—H21B | 109.5 | C9—C8—C7 | 121.66 (14) |
C2—C21—H21C | 109.5 | C9—C8—H8 | 119.2 |
H21A—C21—H21C | 109.5 | C7—C8—H8 | 119.2 |
H21B—C21—H21C | 109.5 | C8—C9—C10 | 120.58 (13) |
C4—C3—C2 | 121.23 (14) | C8—C9—H9 | 119.7 |
C4—C3—H3 | 119.4 | C10—C9—H9 | 119.7 |
C2—C3—H3 | 119.4 | N1—C10—C9 | 117.26 (13) |
C3—C4—C5 | 118.75 (13) | N1—C10—C5 | 123.86 (13) |
C3—C4—C11 | 118.15 (13) | C9—C10—C5 | 118.88 (13) |
C5—C4—C11 | 123.09 (12) | N15—C11—O12 | 111.76 (13) |
C6—C5—C10 | 118.46 (13) | N15—C11—C4 | 131.21 (14) |
C6—C5—C4 | 125.54 (12) | O12—C11—C4 | 117.03 (12) |
C10—C5—C4 | 116.00 (13) | C13—O12—C11 | 102.38 (12) |
C7—C6—C5 | 121.84 (13) | N14—C13—O12 | 113.79 (14) |
C7—C6—H6 | 119.1 | N14—C13—H13 | 123.1 |
C5—C6—H6 | 119.1 | O12—C13—H13 | 123.1 |
C6—C7—C8 | 118.56 (14) | C13—N14—N15 | 105.60 (13) |
C6—C7—C71 | 121.59 (13) | C11—N15—N14 | 106.47 (14) |
C8—C7—C71 | 119.84 (14) | ||
C10—N1—C2—C3 | 0.7 (2) | C2—N1—C10—C5 | −0.4 (2) |
C10—N1—C2—C21 | −178.99 (14) | C8—C9—C10—N1 | 179.04 (14) |
N1—C2—C3—C4 | −0.4 (2) | C8—C9—C10—C5 | −0.6 (2) |
C21—C2—C3—C4 | 179.24 (15) | C6—C5—C10—N1 | 179.88 (13) |
C2—C3—C4—C5 | −0.1 (2) | C4—C5—C10—N1 | −0.1 (2) |
C2—C3—C4—C11 | 178.58 (13) | C6—C5—C10—C9 | −0.5 (2) |
C3—C4—C5—C6 | −179.61 (13) | C4—C5—C10—C9 | 179.53 (13) |
C11—C4—C5—C6 | 1.8 (2) | C3—C4—C11—N15 | −171.28 (16) |
C3—C4—C5—C10 | 0.3 (2) | C5—C4—C11—N15 | 7.4 (3) |
C11—C4—C5—C10 | −178.28 (13) | C3—C4—C11—O12 | 8.1 (2) |
C10—C5—C6—C7 | 1.6 (2) | C5—C4—C11—O12 | −173.22 (12) |
C4—C5—C6—C7 | −178.43 (14) | N15—C11—O12—C13 | 0.07 (17) |
C5—C6—C7—C8 | −1.6 (2) | C4—C11—O12—C13 | −179.46 (13) |
C5—C6—C7—C71 | 177.53 (14) | C11—O12—C13—N14 | 0.0 (2) |
C6—C7—C8—C9 | 0.4 (2) | O12—C13—N14—N15 | −0.1 (2) |
C71—C7—C8—C9 | −178.70 (15) | O12—C11—N15—N14 | −0.13 (18) |
C7—C8—C9—C10 | 0.7 (3) | C4—C11—N15—N14 | 179.32 (15) |
C2—N1—C10—C9 | 179.94 (13) | C13—N14—N15—C11 | 0.14 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···N15i | 0.93 | 2.59 | 3.523 (2) | 178 |
Symmetry code: (i) −x, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C13H11N3O |
Mr | 225.25 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 15.5372 (14), 9.7546 (7), 7.3984 (5) |
β (°) | 100.64 (1) |
V (Å3) | 1102.02 (15) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.73 |
Crystal size (mm) | 0.20 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | Part of the refinement model (ΔF) (Walker & Stuart, 1983) |
Tmin, Tmax | 0.391, 0.865 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2236, 2236, 1855 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.626 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.130, 1.07 |
No. of reflections | 2236 |
No. of parameters | 156 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.14 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···N15i | 0.93 | 2.594 | 3.523 (2) | 178 |
Symmetry code: (i) −x, y+1/2, −z+1/2. |
Acknowledgements
The authors are indebted to Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database (Allen, 2002).
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Kaila, N., Janz, K., Huang, A., Moretto, A., DeBernardo, S., Bedard, P. W., Tam, S., Clerin, V., Keith, J. C., Tsao, H. H., Sushkova, N., Shaw, G. D., Camphausen, R. T. G., Schaub, R. G. & Qin Wang, Q. (2007). J. Med. Chem. 50, 40–64. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vaitilingam, B., Nayyar, A., Palde, P. B., Monga, V., Jain, R., Kaur, S. & Singh, P. P. (2004). Bioorg. Med. Chem. 12, 4179–4188. Web of Science CrossRef PubMed CAS Google Scholar
Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166. CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The compounds containing a fragment of quinoline ring, are widely used as chemotherapeutical agents (Vaitilingam et al., 2004; Kaila et al., 2007). Synthesis of new quinoline derivatives and study of its properties to be of interest in theoretic and practical aspects as well. The 2,6-dimethyl-4-(1,3,4-oxadiazol-2-yl)quinoline II was synthesized from triethyl orthoformate and hydrazide 2,6-dimethyl-4-quinoline carboxylic acid I (Fig. 1).
In the crystal structure is found non-classical intermolecular hydrogen bond - C13–H13···N15i, where contacts H13···N15i = 2.594 Å, C13···N15i = 3.523 (2)Å and angle C13–H13···N15i = 178°. Symmetry code:(i) -x, y + 1/2, -z + 1/2. The short intramolecular contacts C6–H6···N15 (H6···N15 = 2.370 Å) and C3–H3···O12 (H3···O12 = 2.372 Å) are obliged by conjugation of oxadiazol and guinoline moieties - in title molecule, guinoline moiety is planar (max deviation of C7 = 0.0144 (14) Å) and essential planar oxadiazol moiety form dihedral angle 7.81 (6)° (Fig. 2).