organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2-Sulfanyl­­idene-1,3-benzo­thia­zol-3-yl)butan-2-one

aSchool of Biology and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, People's Republic of China
*Correspondence e-mail: chjdu@yahoo.com.cn

(Received 2 November 2010; accepted 18 November 2010; online 27 November 2010)

In the title compound, C11H11NOS2, the benzine ring is coplanar with the thia­zole ring, making a dihedral angle of 0.81 (1)°. In the crystal, adjacent mol­ecules are connected into a helical chain along the b axis by S⋯S contacts [3.4345 (18) Å]. These helical chains are further assembled into a three-dimensional supermolecular network by inter­molecular C—H⋯O hydrogen bond between aromatic ring H atoms and carbonyl groups.

Related literature

For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For a related structure, see: Zhu et al. (2009[Zhu, J.-Q., Fang, H.-C., Chen, B.-Y., Feng, M.-S. & Li, J.-N. (2009). Acta Cryst. E65, o1640.]). For S⋯S contacts, see: Dai et al. (1997[Dai, J., Munakata, M., Wu, L.-P., Kuroda-Sowa, T. & Suenaga, Y. (1997). Inorg. Chim. Acta, 258, 65-69.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11NOS2

  • Mr = 237.33

  • Orthorhombic, P 21 21 21

  • a = 4.9457 (19) Å

  • b = 11.586 (4) Å

  • c = 19.830 (7) Å

  • V = 1136.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 296 K

  • 0.23 × 0.19 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.905, Tmax = 0.936

  • 12565 measured reflections

  • 1476 independent reflections

  • 1176 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.117

  • S = 1.07

  • 1476 reflections

  • 120 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O1i 0.96 2.60 3.541 (5) 167
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For a description of the Cambridge Structural Database, see: Allen (2002). For a related structure, see: Zhu et al. (2009). For S···S contacts, see: Dai et al. (1997).

Experimental top

A solution of benzothiazole-2-thiol (167.2 mg, 1.00 mmol) and in acetone (15 ml) was slowly added to a solution of CH2Cl2 (170.0 mg, 2.00 mmol) in acetone (15 ml). The resultant solution was stirred and refluxed for 16 h and then filtered. Colorless crystals suitable for X-ray diffraction were obtained in about two weeks by slow diffusion of diethyl ether into a dilute solution of the title compound in methanol. yield: ca 35.8% (based on benzothiazole-2-thiol).

Refinement top

The structure was solved using direct methods followed by Fourier synthesis. Non-H atoms were refined anisotropically. All of H atoms were placed in idealized positions (C—H = 0.93, 0.96 or 0.97 Å), forced to ride on the atom to which they are bonded, and were included in the refinement in the riding-model approximation. Uiso values were set equal to 1.5Ueq(parent atom) for methylic H atom and to 1.2Ueq(parent atom)for all other H atoms. Friedel opposites were merged as the data could not resolve the absolute structure and consequently, the Flack paarameter was not reported.

Structure description top

For a description of the Cambridge Structural Database, see: Allen (2002). For a related structure, see: Zhu et al. (2009). For S···S contacts, see: Dai et al. (1997).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. View of right-handle helical chain connected by S···S contacts along b axis.
[Figure 3] Fig. 3. View of three-dimensional supermolecular network connected by S···S contacts and C—H···O hydrogen bonds along the c direction.
4-(2-Sulfanylidene-1,3-benzothiazol-3-yl)butan-2-one top
Crystal data top
C11H11NOS2F(000) = 496
Mr = 237.33Dx = 1.387 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2911 reflections
a = 4.9457 (19) Åθ = 2.7–22.7°
b = 11.586 (4) ŵ = 0.44 mm1
c = 19.830 (7) ÅT = 296 K
V = 1136.3 (7) Å3Block, colorless
Z = 40.23 × 0.19 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
1476 independent reflections
Radiation source: fine-focus sealed tube1176 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 66
Tmin = 0.905, Tmax = 0.936k = 1414
12565 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.413P]
where P = (Fo2 + 2Fc2)/3
1476 reflections(Δ/σ)max < 0.001
120 parametersΔρmax = 0.27 e Å3
2 restraintsΔρmin = 0.31 e Å3
Crystal data top
C11H11NOS2V = 1136.3 (7) Å3
Mr = 237.33Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.9457 (19) ŵ = 0.44 mm1
b = 11.586 (4) ÅT = 296 K
c = 19.830 (7) Å0.23 × 0.19 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
1476 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
1176 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.936Rint = 0.036
12565 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.07Δρmax = 0.27 e Å3
1476 reflectionsΔρmin = 0.31 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.4190 (4)0.16020 (16)0.16706 (8)0.0559 (8)
C30.5987 (5)0.25022 (15)0.15525 (10)0.0688 (10)
H30.61610.30940.18660.083*
C40.7524 (5)0.25173 (19)0.09657 (12)0.0762 (11)
H40.87260.31200.08870.091*
C50.7264 (5)0.1632 (2)0.04970 (10)0.0727 (10)
H50.82930.16420.01040.087*
C60.5468 (5)0.07320 (17)0.06150 (9)0.0635 (9)
H60.52940.01400.03010.076*
C70.3931 (4)0.07169 (15)0.12018 (10)0.0517 (8)
S10.2105 (2)0.13581 (7)0.23522 (4)0.0652 (2)
S20.1380 (2)0.07257 (8)0.23950 (6)0.0796 (3)
O10.0395 (7)0.3256 (2)0.04435 (16)0.0938 (9)
N10.2077 (6)0.0109 (2)0.13995 (13)0.0527 (6)
C10.0920 (7)0.0080 (3)0.20141 (17)0.0563 (8)
C80.1402 (8)0.1127 (2)0.09994 (17)0.0595 (9)
H8A0.04930.13120.10640.071*
H8B0.16700.09530.05260.071*
C90.3097 (8)0.2163 (3)0.11870 (18)0.0604 (9)
H9A0.29410.22950.16680.072*
H9B0.49780.19950.10890.072*
C100.2300 (5)0.3236 (2)0.08225 (17)0.0677 (7)
C110.3976 (7)0.4283 (2)0.09581 (18)0.0677 (7)
H11A0.32970.49190.06990.102*
H11B0.58180.41320.08330.102*
H11C0.38920.44690.14290.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0587 (19)0.0440 (15)0.0651 (18)0.0037 (15)0.0112 (17)0.0018 (14)
C30.071 (2)0.0540 (17)0.081 (2)0.0062 (19)0.015 (2)0.0014 (18)
C40.066 (2)0.0627 (19)0.100 (3)0.010 (2)0.004 (2)0.011 (2)
C50.068 (2)0.069 (2)0.081 (2)0.005 (2)0.008 (2)0.0089 (19)
C60.064 (2)0.0609 (18)0.066 (2)0.0031 (19)0.0016 (18)0.0002 (17)
C70.0539 (19)0.0446 (14)0.0566 (16)0.0047 (15)0.0070 (16)0.0022 (13)
S10.0826 (6)0.0508 (4)0.0623 (4)0.0036 (5)0.0010 (5)0.0044 (4)
S20.0827 (7)0.0613 (5)0.0950 (6)0.0010 (5)0.0162 (6)0.0161 (5)
O10.0917 (17)0.0742 (15)0.115 (2)0.0104 (17)0.0352 (14)0.0259 (16)
N10.0536 (15)0.0448 (12)0.0598 (14)0.0007 (13)0.0075 (14)0.0015 (11)
C10.0573 (19)0.0456 (15)0.0659 (18)0.0085 (16)0.0055 (18)0.0084 (14)
C80.058 (2)0.0501 (15)0.0710 (19)0.0005 (16)0.0130 (17)0.0067 (15)
C90.055 (2)0.0501 (16)0.076 (2)0.0044 (17)0.0083 (19)0.0091 (15)
C100.0791 (17)0.0570 (12)0.0671 (14)0.0039 (15)0.0077 (12)0.0097 (12)
C110.0791 (17)0.0570 (12)0.0671 (14)0.0039 (15)0.0077 (12)0.0097 (12)
Geometric parameters (Å, º) top
C2—C31.3900O1—C101.206 (4)
C2—C71.3900N1—C11.364 (4)
C2—S11.724 (2)N1—C81.460 (4)
C3—C41.3900C8—C91.511 (4)
C3—H30.9300C8—H8A0.9700
C4—C51.3900C8—H8B0.9700
C4—H40.9300C9—C101.491 (4)
C5—C61.3900C9—H9A0.9700
C5—H50.9300C9—H9B0.9700
C6—C71.3900C10—C111.494 (4)
C6—H60.9300C11—H11A0.9600
C7—N11.382 (3)C11—H11B0.9600
S1—C11.728 (3)C11—H11C0.9600
S2—C11.654 (4)
C3—C2—C7120.0N1—C1—S1110.0 (2)
C3—C2—S1129.62 (11)S2—C1—S1122.7 (2)
C7—C2—S1110.38 (11)N1—C8—C9112.4 (3)
C4—C3—C2120.0N1—C8—H8A109.1
C4—C3—H3120.0C9—C8—H8A109.1
C2—C3—H3120.0N1—C8—H8B109.1
C3—C4—C5120.0C9—C8—H8B109.1
C3—C4—H4120.0H8A—C8—H8B107.9
C5—C4—H4120.0C10—C9—C8113.4 (3)
C4—C5—C6120.0C10—C9—H9A108.9
C4—C5—H5120.0C8—C9—H9A108.9
C6—C5—H5120.0C10—C9—H9B108.9
C7—C6—C5120.0C8—C9—H9B108.9
C7—C6—H6120.0H9A—C9—H9B107.7
C5—C6—H6120.0O1—C10—C9121.6 (2)
N1—C7—C6127.51 (16)O1—C10—C11122.1 (3)
N1—C7—C2112.49 (16)C9—C10—C11116.3 (3)
C6—C7—C2120.0C10—C11—H11A109.5
C2—S1—C192.25 (14)C10—C11—H11B109.5
C1—N1—C7114.8 (2)H11A—C11—H11B109.5
C1—N1—C8121.3 (3)C10—C11—H11C109.5
C7—N1—C8123.8 (3)H11A—C11—H11C109.5
N1—C1—S2127.3 (3)H11B—C11—H11C109.5
C7—C2—C3—C40.0C2—C7—N1—C11.5 (3)
S1—C2—C3—C4178.85 (17)C6—C7—N1—C80.9 (4)
C2—C3—C4—C50.0C2—C7—N1—C8179.6 (2)
C3—C4—C5—C60.0C7—N1—C1—S2179.4 (2)
C4—C5—C6—C70.0C8—N1—C1—S21.7 (5)
C5—C6—C7—N1179.5 (2)C7—N1—C1—S11.8 (3)
C5—C6—C7—C20.0C8—N1—C1—S1179.3 (2)
C3—C2—C7—N1179.6 (2)C2—S1—C1—N11.2 (2)
S1—C2—C7—N10.53 (18)C2—S1—C1—S2178.9 (2)
C3—C2—C7—C60.0C1—N1—C8—C985.9 (4)
S1—C2—C7—C6179.05 (14)C7—N1—C8—C993.0 (3)
C3—C2—S1—C1178.56 (17)N1—C8—C9—C10175.5 (3)
C7—C2—S1—C10.38 (15)C8—C9—C10—O13.4 (5)
C6—C7—N1—C1178.0 (2)C8—C9—C10—C11177.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O1i0.962.603.541 (5)167
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC11H11NOS2
Mr237.33
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)4.9457 (19), 11.586 (4), 19.830 (7)
V3)1136.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.23 × 0.19 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.905, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
12565, 1476, 1176
Rint0.036
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.117, 1.07
No. of reflections1476
No. of parameters120
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.31

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O1i0.962.603.541 (5)167
Symmetry code: (i) x+1, y, z.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, J., Munakata, M., Wu, L.-P., Kuroda-Sowa, T. & Suenaga, Y. (1997). Inorg. Chim. Acta, 258, 65–69.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, J.-Q., Fang, H.-C., Chen, B.-Y., Feng, M.-S. & Li, J.-N. (2009). Acta Cryst. E65, o1640.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds