organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Eth­­oxy­phenyl 4-[(meth­­oxy­carbon­yl)­­oxy]benzoate

aRaman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, Karnataka, India, bDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, and cDepartment of Physics, Y. Y. D. Govt. First Grade College, Belur 573 115 Hassan, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 13 August 2010; accepted 1 November 2010; online 6 November 2010)

In the title compound, C17H16O6, the two benzene rings form a dihedral angle of 54.95 (10)°. Only weak inter­molecular inter­actions are present in the crystal structure, viz. C—H⋯O hydrogen bonds and C—H⋯π inter­actions involving one of the benzene rings.

Related literature

For general background to meth­oxy­carbon­yl(­oxy)benzoates, see Petrov (2002[Petrov, V. F. (2002). Liq. Cryst. 29, 805-835.]); Goodby et al. (1998[Goodby, J. W., Gray, G. W. & Spiess, H. (1998). Handbook of Liquid Crystals: Fundamentals, Vol. 1, pp. 133-187. Weinheim: Wiley-VCH.]); Castellano et al. (1971[Castellano, J. A., McCaffrey, M. T. & Goldmacher, J. E. (1971). Mol. Cryst. Liq. Cryst. 2, 345-366.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16O6

  • Mr = 316.30

  • Monoclinic, C c

  • a = 11.7397 (5) Å

  • b = 16.9703 (6) Å

  • c = 7.9324 (3) Å

  • β = 96.949 (4)°

  • V = 1568.73 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.22 × 0.15 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.982, Tmax = 0.988

  • 8839 measured reflections

  • 1797 independent reflections

  • 1092 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.085

  • S = 0.98

  • 1797 reflections

  • 211 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the benzene ring C2,C4–C8.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16B⋯O2i 0.97 2.56 3.399 (4) 145
C1—H1BCg1ii 0.96 2.99 3.853 (4) 151
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{3\over 2}}]; (ii) x, y, z-1.

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Liquid crystals play important role in technology. Among others, uniaxial calamitic (rod-like) nematic liquid crystals are active switching ingredients for the current LCD technology. A comparative study of physico-chemical and electro-optical properties of achiral calamitic liquid crystals which terminal, bridging and lateral alkoxy groups, with the corresponding alkyl group substituents has been carried out by Petrov (2002). It is well known that the terminal alkoxy substituent does not substantially affect the mesophase behaviour (Goodby et al., 1998). Methyl and propyl group derivatives with respect to the title compound, i. e. 4-methoxyphenyl 4-[(methoxycarbonyl)oxy]benzoate and 4-propoxyphenyl 4-[(methoxycarbonyl)oxy]benzoate, respectively, do not form liquid-crystal phase. On the other hand, the title compound with the ethyl group forms a stable nematic phase (Castellano et al., 1971). With this background, we have synthesized the title compound, 4-ethoxyphenyl 4-[(methoxycarbonyl)oxy]benzoate, and herein we report its crystal structure.

The asymmetric unit of the 4-ethoxyphenyl 4-[(methoxycarbonyl)oxy] benzoate, C17H16O6, contains just one molecule (Fig. 1). The two aromatic rings are non-coplanar; the interplanar angle between the two benzene rings (C3\C4\···\C8) and (C10\C11\···C15) equals to 54.95 (10)°. There are only weak intermolecular interactions in the structure: C—H···O hydrogen bonds (Tab. 1) as well as one C—H···π-ring electron ring interaction (Tab. 1). The packing of the molecules in the title structure is depicted in Fig. 2.

Related literature top

For general background to methoxycarbonyl(oxy)benzoates, see Petrov (2002); Goodby et al. (1998); Castellano et al. (1971).

Experimental top

The 4-ethoxyphenyl 4-[(methoxycarbonyl)oxy]benzoate was synthesized according to the procedure described by Castellano et al. (1971). The crude white material was subjected to column chromatography using 60–120 mesh silica gel with ethyl acetate (1 ml) and hexane (99 ml) as an eluent. The retention factor equalled to 0.84. Single crystals, suitable for X-ray diffraction analysis, were obtained by recrystallization from pure hexane at room temperature. The yield was about 85%. M.p. 356 K.

Spectral data IR (KBr) cm-1: 2924 and 2852(CH2 aliphatic), 1759(OCO ester), 1732(CO ester), 1604 (aryl CC), 1462(CH aryl). Elemental analysis: Theor.: C 64.55%, H 5.10%; Found: C 65.01%, H 4.72%.

Refinement top

All the H atoms were observable in the difference electron density maps except for just one H from each triplet of the methyl H atoms. Nevertheless, the H atoms were situated into the idealized positions and constrained by the riding atom approximation. The constraints: Caryl—Haryl = 0.93, Cmethylene—Hmethylene = 0.97 and Cmethyl—Hmethyl = 0.96 Å. Uiso(Hmethyl) = 1.5Ueq(Cmethyl) or Uiso(Hmethylene/aryl) = 1.2Ueq(Cmethylene/aryl). In the absence of significant anomalous scattering effects, 1654 Friedel pairs were merged.

Structure description top

Liquid crystals play important role in technology. Among others, uniaxial calamitic (rod-like) nematic liquid crystals are active switching ingredients for the current LCD technology. A comparative study of physico-chemical and electro-optical properties of achiral calamitic liquid crystals which terminal, bridging and lateral alkoxy groups, with the corresponding alkyl group substituents has been carried out by Petrov (2002). It is well known that the terminal alkoxy substituent does not substantially affect the mesophase behaviour (Goodby et al., 1998). Methyl and propyl group derivatives with respect to the title compound, i. e. 4-methoxyphenyl 4-[(methoxycarbonyl)oxy]benzoate and 4-propoxyphenyl 4-[(methoxycarbonyl)oxy]benzoate, respectively, do not form liquid-crystal phase. On the other hand, the title compound with the ethyl group forms a stable nematic phase (Castellano et al., 1971). With this background, we have synthesized the title compound, 4-ethoxyphenyl 4-[(methoxycarbonyl)oxy]benzoate, and herein we report its crystal structure.

The asymmetric unit of the 4-ethoxyphenyl 4-[(methoxycarbonyl)oxy] benzoate, C17H16O6, contains just one molecule (Fig. 1). The two aromatic rings are non-coplanar; the interplanar angle between the two benzene rings (C3\C4\···\C8) and (C10\C11\···C15) equals to 54.95 (10)°. There are only weak intermolecular interactions in the structure: C—H···O hydrogen bonds (Tab. 1) as well as one C—H···π-ring electron ring interaction (Tab. 1). The packing of the molecules in the title structure is depicted in Fig. 2.

For general background to methoxycarbonyl(oxy)benzoates, see Petrov (2002); Goodby et al. (1998); Castellano et al. (1971).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecule with the displacement ellipsoids drawn at the 50% probability level. The H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the structure along the axis a.
4-Ethoxyphenyl 4-[(methoxycarbonyl)oxy]benzoate top
Crystal data top
C17H16O6F(000) = 664
Mr = 316.30Dx = 1.339 Mg m3
Monoclinic, CcMelting point: 356 K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 11.7397 (5) ÅCell parameters from 1797 reflections
b = 16.9703 (6) Åθ = 2.4–27.5°
c = 7.9324 (3) ŵ = 0.10 mm1
β = 96.949 (4)°T = 293 K
V = 1568.73 (11) Å3Plate, colourless
Z = 40.22 × 0.15 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1797 independent reflections
Radiation source: Enhance (Mo) X-ray Source1092 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 16.0839 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scansh = 1415
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
k = 2121
Tmin = 0.982, Tmax = 0.988l = 1010
8839 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0418P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
1797 reflectionsΔρmax = 0.13 e Å3
211 parametersΔρmin = 0.11 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
62 constraintsExtinction coefficient: 0.0052 (7)
Primary atom site location: structure-invariant direct methods
Crystal data top
C17H16O6V = 1568.73 (11) Å3
Mr = 316.30Z = 4
Monoclinic, CcMo Kα radiation
a = 11.7397 (5) ŵ = 0.10 mm1
b = 16.9703 (6) ÅT = 293 K
c = 7.9324 (3) Å0.22 × 0.15 × 0.12 mm
β = 96.949 (4)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1797 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
1092 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.988Rint = 0.038
8839 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0352 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 0.98Δρmax = 0.13 e Å3
1797 reflectionsΔρmin = 0.11 e Å3
211 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction (2010), Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R- factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.75904 (19)0.40401 (15)0.0153 (3)0.0827 (7)
O20.5908 (2)0.34329 (14)0.0242 (3)0.0794 (7)
O30.68466 (18)0.40619 (14)0.2481 (3)0.0749 (6)
O40.3150 (2)0.27835 (12)0.7091 (3)0.0812 (7)
O50.3405 (2)0.40346 (11)0.7901 (3)0.0681 (6)
O60.03480 (19)0.39014 (13)1.2645 (3)0.0725 (6)
C10.7605 (3)0.3799 (3)0.1598 (5)0.0961 (12)
H1A0.80870.41490.21450.144*
H1B0.68390.38150.21800.144*
H1C0.78980.32710.16290.144*
C20.6705 (3)0.37896 (19)0.0872 (4)0.0630 (8)
C30.5995 (3)0.3876 (2)0.3513 (3)0.0604 (8)
C40.5405 (3)0.44911 (18)0.4107 (4)0.0610 (8)
H40.55220.50020.37430.073*
C50.4636 (2)0.43453 (17)0.5251 (4)0.0587 (8)
H50.42530.47630.56930.070*
C60.4428 (2)0.35787 (17)0.5747 (3)0.0523 (7)
C70.5019 (3)0.29643 (17)0.5101 (4)0.0610 (8)
H70.48770.24490.54150.073*
C80.5816 (3)0.31082 (18)0.3996 (4)0.0653 (8)
H80.62240.26960.35830.078*
C90.3606 (2)0.34004 (17)0.6952 (4)0.0549 (7)
C100.2640 (3)0.39527 (16)0.9136 (4)0.0577 (8)
C110.1571 (3)0.42874 (17)0.8805 (4)0.0639 (8)
H110.13540.45340.77690.077*
C120.0830 (3)0.42581 (17)0.9999 (4)0.0620 (8)
H120.01050.44820.97740.074*
C130.1157 (3)0.38941 (16)1.1553 (4)0.0530 (7)
C140.2230 (3)0.35663 (17)1.1868 (4)0.0635 (8)
H140.24550.33231.29050.076*
C150.2983 (3)0.35972 (17)1.0643 (4)0.0628 (8)
H150.37120.33771.08550.075*
C160.0587 (3)0.3503 (2)1.4190 (5)0.0816 (10)
H16A0.12380.37441.48680.098*
H16B0.07730.29571.39890.098*
C170.0464 (3)0.3550 (2)1.5115 (5)0.0886 (12)
H17A0.03100.32941.61980.133*
H17B0.10970.32941.44540.133*
H17C0.06540.40931.52810.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0645 (15)0.1165 (18)0.0703 (16)0.0045 (12)0.0212 (12)0.0007 (14)
O20.0704 (15)0.1012 (17)0.0680 (14)0.0119 (13)0.0132 (12)0.0162 (13)
O30.0674 (15)0.0997 (16)0.0590 (14)0.0168 (11)0.0135 (11)0.0106 (12)
O40.1030 (17)0.0546 (13)0.0918 (16)0.0184 (11)0.0355 (13)0.0090 (11)
O50.0850 (15)0.0569 (12)0.0676 (14)0.0092 (11)0.0297 (12)0.0046 (11)
O60.0739 (15)0.0778 (14)0.0674 (15)0.0020 (11)0.0156 (12)0.0002 (12)
C10.085 (3)0.138 (3)0.071 (2)0.009 (2)0.033 (2)0.009 (2)
C20.053 (2)0.075 (2)0.062 (2)0.0094 (17)0.0106 (17)0.0008 (18)
C30.058 (2)0.075 (2)0.0478 (19)0.0021 (15)0.0066 (15)0.0024 (16)
C40.079 (2)0.0527 (17)0.0517 (17)0.0014 (15)0.0077 (16)0.0049 (14)
C50.0702 (19)0.0516 (18)0.0547 (19)0.0049 (14)0.0093 (16)0.0020 (14)
C60.0586 (18)0.0494 (18)0.0479 (18)0.0016 (13)0.0025 (15)0.0032 (13)
C70.0687 (19)0.0477 (17)0.067 (2)0.0072 (14)0.0084 (16)0.0037 (14)
C80.073 (2)0.064 (2)0.0593 (18)0.0156 (15)0.0096 (16)0.0022 (15)
C90.0625 (18)0.0454 (17)0.0558 (18)0.0004 (14)0.0033 (15)0.0005 (14)
C100.066 (2)0.0492 (17)0.061 (2)0.0088 (14)0.0169 (16)0.0036 (14)
C110.079 (2)0.0572 (17)0.0544 (19)0.0038 (16)0.0036 (17)0.0043 (13)
C120.0573 (18)0.0614 (17)0.067 (2)0.0067 (14)0.0057 (16)0.0013 (15)
C130.0556 (18)0.0513 (17)0.0528 (19)0.0075 (13)0.0094 (15)0.0069 (14)
C140.071 (2)0.068 (2)0.0498 (18)0.0017 (16)0.0004 (16)0.0023 (15)
C150.0602 (18)0.0637 (18)0.064 (2)0.0005 (14)0.0072 (16)0.0007 (16)
C160.093 (3)0.087 (2)0.066 (2)0.003 (2)0.016 (2)0.000 (2)
C170.090 (3)0.110 (3)0.071 (2)0.017 (2)0.031 (2)0.003 (2)
Geometric parameters (Å, º) top
O1—C21.315 (4)C6—C91.470 (4)
O1—C11.450 (4)C7—C81.378 (4)
O2—C21.174 (4)C7—H70.9300
O3—C21.349 (4)C8—H80.9300
O3—C31.403 (3)C10—C151.356 (4)
O4—C91.187 (3)C10—C111.373 (4)
O5—C91.350 (3)C11—C121.362 (4)
O5—C101.414 (3)C11—H110.9300
O6—C131.361 (3)C12—C131.390 (4)
O6—C161.398 (4)C12—H120.9300
C1—H1A0.9600C13—C141.373 (4)
C1—H1B0.9600C14—C151.391 (4)
C1—H1C0.9600C14—H140.9300
C3—C41.368 (4)C15—H150.9300
C3—C81.381 (4)C16—C171.512 (5)
C4—C51.378 (4)C16—H16A0.9700
C4—H40.9300C16—H16B0.9700
C5—C61.389 (4)C17—H17A0.9600
C5—H50.9300C17—H17B0.9600
C6—C71.385 (4)C17—H17C0.9600
C2—O1—C1115.2 (3)O4—C9—C6125.5 (3)
C2—O3—C3117.4 (2)O5—C9—C6111.8 (2)
C9—O5—C10118.4 (2)C15—C10—C11121.3 (3)
C13—O6—C16118.2 (3)C15—C10—O5120.6 (3)
O1—C1—H1A109.5C11—C10—O5118.0 (3)
O1—C1—H1B109.5C12—C11—C10119.8 (3)
H1A—C1—H1B109.5C12—C11—H11120.1
O1—C1—H1C109.5C10—C11—H11120.1
H1A—C1—H1C109.5C11—C12—C13120.1 (3)
H1B—C1—H1C109.5C11—C12—H12119.9
O2—C2—O1127.8 (3)C13—C12—H12119.9
O2—C2—O3125.4 (3)O6—C13—C14125.7 (3)
O1—C2—O3106.7 (3)O6—C13—C12114.9 (3)
C4—C3—C8121.6 (3)C14—C13—C12119.4 (3)
C4—C3—O3117.1 (3)C13—C14—C15120.3 (3)
C8—C3—O3121.2 (3)C13—C14—H14119.9
C3—C4—C5119.3 (3)C15—C14—H14119.9
C3—C4—H4120.4C10—C15—C14119.1 (3)
C5—C4—H4120.4C10—C15—H15120.5
C4—C5—C6120.4 (3)C14—C15—H15120.5
C4—C5—H5119.8O6—C16—C17108.1 (3)
C6—C5—H5119.8O6—C16—H16A110.1
C7—C6—C5119.2 (3)C17—C16—H16A110.1
C7—C6—C9118.9 (3)O6—C16—H16B110.1
C5—C6—C9121.9 (2)C17—C16—H16B110.1
C8—C7—C6120.7 (3)H16A—C16—H16B108.4
C8—C7—H7119.6C16—C17—H17A109.5
C6—C7—H7119.6C16—C17—H17B109.5
C7—C8—C3118.8 (3)H17A—C17—H17B109.5
C7—C8—H8120.6C16—C17—H17C109.5
C3—C8—H8120.6H17A—C17—H17C109.5
O4—C9—O5122.7 (3)H17B—C17—H17C109.5
C1—O1—C2—O24.3 (5)C5—C6—C9—O4158.2 (3)
C1—O1—C2—O3179.3 (3)C7—C6—C9—O5158.5 (3)
C3—O3—C2—O22.9 (5)C5—C6—C9—O520.9 (3)
C3—O3—C2—O1179.4 (3)C9—O5—C10—C1577.9 (3)
C2—O3—C3—C4117.8 (3)C9—O5—C10—C11106.2 (3)
C2—O3—C3—C866.3 (4)C15—C10—C11—C120.7 (4)
C8—C3—C4—C51.8 (4)O5—C10—C11—C12176.5 (2)
O3—C3—C4—C5174.0 (3)C10—C11—C12—C130.4 (4)
C3—C4—C5—C62.4 (4)C16—O6—C13—C144.1 (4)
C4—C5—C6—C71.1 (4)C16—O6—C13—C12176.0 (3)
C4—C5—C6—C9179.5 (3)C11—C12—C13—O6179.9 (2)
C5—C6—C7—C80.8 (4)C11—C12—C13—C140.0 (4)
C9—C6—C7—C8178.6 (3)O6—C13—C14—C15180.0 (2)
C6—C7—C8—C31.5 (5)C12—C13—C14—C150.1 (4)
C4—C3—C8—C70.1 (4)C11—C10—C15—C140.6 (4)
O3—C3—C8—C7175.8 (3)O5—C10—C15—C14176.3 (2)
C10—O5—C9—O41.5 (4)C13—C14—C15—C100.2 (4)
C10—O5—C9—C6179.3 (2)C13—O6—C16—C17176.2 (3)
C7—C6—C9—O422.4 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the benzene ring C2,C4–C8.
D—H···AD—HH···AD···AD—H···A
C16—H16B···O2i0.972.563.399 (4)145
C1—H1B···Cg1ii0.962.993.853 (4)151
Symmetry codes: (i) x1/2, y+1/2, z+3/2; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC17H16O6
Mr316.30
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)11.7397 (5), 16.9703 (6), 7.9324 (3)
β (°) 96.949 (4)
V3)1568.73 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.15 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
Tmin, Tmax0.982, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
8839, 1797, 1092
Rint0.038
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.085, 0.98
No. of reflections1797
No. of parameters211
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.11

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the benzene ring C2,C4–C8.
D—H···AD—HH···AD···AD—H···A
C16—H16B···O2i0.972.563.399 (4)145
C1—H1B···Cg1ii0.962.993.853 (4)151
Symmetry codes: (i) x1/2, y+1/2, z+3/2; (ii) x, y, z1.
 

Acknowledgements

The authors thank Professor T. N. Guru Row and Mr Venkatesha R. Hathwar, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for their help with the data collection.

References

First citationCastellano, J. A., McCaffrey, M. T. & Goldmacher, J. E. (1971). Mol. Cryst. Liq. Cryst. 2, 345–366.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGoodby, J. W., Gray, G. W. & Spiess, H. (1998). Handbook of Liquid Crystals: Fundamentals, Vol. 1, pp. 133–187. Weinheim: Wiley-VCH.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPetrov, V. F. (2002). Liq. Cryst. 29, 805–835.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds