organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(tri­phenylphosphine)iminium bromide aceto­nitrile monosolvate

aInstitut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg i. Br., Germany
*Correspondence e-mail: carsten.knapp@ac.uni-freiburg.de

(Received 25 October 2010; accepted 9 November 2010; online 17 November 2010)

The title compound, C36H30NP2+·Br·C2H3N, crystallized from a CH3CN/OEt2 solution as an acetonitrile solvate. The central P—N—P angle [142.88 (10)°] is significantly larger than in the corresponding chloride and iodide structures.

Related literature

Several bis­(triphenyl­phosphine)iminium halide structures have been determined. For [(Ph3P)2N]Cl, see: Knapp et al. (2010[Knapp, C. & Uzun, R. (2010). Acta Cryst. E66, o3185.]); for [(Ph3P)2N]Cl·B(OH)3, see: Andrews et al. (1983[Andrews, S. J., Robb, D. A. & Welch, A. J. (1983). Acta Cryst. C39, 880-882.]); for [(Ph3P)2N]Cl·CH3C6H5, see: Weller et al. (1993[Weller, F., Nusshär, D. & Dehnicke, K. (1993). Z. Kristallogr. 208, 322-325.]); for [(Ph3P)2N]Cl·CH2Cl2, see: Carroll et al. (1996[Carroll, K. M., Rheingold, A. L. & Allen, M. B. (1996). Private communication (refcode: NAVMEM ). CCDC, Cambridge, England.]); for [(Ph3P)2N]Cl·CH2Cl2·H2O, see: de Arellano (1997[Arellano, M. C. R. de (1997). Private communication (refcode: RAVBUL). CCDC, Cambridge, England.]); for [(Ph3P)2N]I, see: Beckett et al. (2010[Beckett, M. A., Horton, P. N., Hursthouse, M. B. & Timmis, J. L. (2010). Acta Cryst. E66, o319.]). For a discussion of the [(Ph3P)2N]+ cation, see: Lewis et al. (2000[Lewis, G. R. & Dance, I. (2000). J. Chem. Soc. Dalton Trans. pp. 299-306.]). For the synthesis, see: Martinsen & Songstad (1977[Martinsen, A. & Songstad, J. (1977). Acta Chem. Scand. Ser. A, 31, 645-650.]).

[Scheme 1]

Experimental

Crystal data
  • C36H30NP2+·Br·C2H3N

  • Mr = 659.51

  • Orthorhombic, P b c a

  • a = 19.7113 (6) Å

  • b = 15.9564 (5) Å

  • c = 20.3318 (6) Å

  • V = 6394.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.42 mm−1

  • T = 100 K

  • 0.20 × 0.20 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.765, Tmax = 0.805

  • 57718 measured reflections

  • 7749 independent reflections

  • 6140 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.085

  • S = 1.02

  • 7749 reflections

  • 391 parameters

  • Only H-atom displacement parameters refined

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected geometric parameters (Å, °)

P1—N1 1.5767 (16)
P1—C1 1.7942 (19)
P1—C13 1.7988 (18)
P1—C7 1.7997 (18)
P2—N1 1.5797 (15)
P2—C31 1.7963 (18)
P2—C19 1.7978 (18)
P2—C25 1.8063 (19)
P1—N1—P2 142.88 (10)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg et al., 2010[Brandenburg, K. & Putz, H. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Crystal structures of [(Ph3P)2N]+ salts containing small counter anions are rare. Usually this cation is partnered by a bulky anion, while crystal structures containing small anions and especially halides remained unknown until recently. Only very recently the crystal structures of the halides [(Ph3P)2N]Cl (Knapp et al., 2010) and [(Ph3P)2N]I (Beckett et al., 2010) were determined. In contrast, crystal structures of [(Ph3P)2N]Cl containing solvate molecules are known for some time, e.g. [(Ph3P)2N]Cl.B(OH)3 (Andrews et al. (1983)), [(Ph3P)2N]Cl.CH3C6H5, (Weller et al. (1993)), [(Ph3P)2N]Cl.CH2Cl2 (Carroll et al. (1996)), [(Ph3P)2N]Cl.CH2Cl2.H2O (de Arellano (1997)).

[(Ph3P)2N]Br has been synthesized according to a published procedure (Martinsen et al., 1977) and single crystals suitable for X-ray diffraction were obtained by layering a CH3CN solution with diethyl ether. In contrast to the the crystal structures of [(Ph3P)2N]Cl (Knapp et al., 2010) and [(Ph3P)2N]I (Beckett et al., 2010) the title compound crystallized with an aceteontrile solvate molecule.

The central P—N—P angle [142.89 (11)°] is significantly larger than in the corresponding chloride and iodide structures but still falls into the common range for PNP angles in these cations (Lewis et al., 2000). The P-N (1.5775 (17) and 1.5790 (16) Å) and P-C distances (179.4 (2)–180.6 (2) Å) are in the expected range.

Related literature top

Several bis(triphenylphosphine)iminium halide structures have been determined. For [(Ph3P)2N]Cl, see: Knapp et al. (2010); for [(Ph3P)2N]Cl.B(OH)3, see: Andrews et al. (1983); for [(Ph3P)2N]Cl.CH3C6H5, see: Weller et al. (1993); for [(Ph3P)2N]Cl.CH2Cl2, see: Carroll et al. (1996); for [(Ph3P)2N]Cl.CH2Cl2.H2O, see: de Arellano (1997); for [(Ph3P)2N]I, see: Beckett et al. (2010). For a discussion of the [(Ph3P)2N]+ cation, see: Lewis et al. (2000). For the synthesis, see: Martinsen & Songstad (1977).

Experimental top

[(Ph3P)2N]Br has been synthesized from [(Ph3P)2N]Cl and KBr in water according to a literature method (Martinsen et al., 1977). Single crystals suitable for X-ray diffraction were obtained by layering a CH3CN solution with diethyl ether.

Refinement top

The hydrogen atoms were positioned geometrically and refined using a riding model. The same Uiso value was used for all H atoms, which refined to 0.0237 (12) Å2.

Structure description top

Crystal structures of [(Ph3P)2N]+ salts containing small counter anions are rare. Usually this cation is partnered by a bulky anion, while crystal structures containing small anions and especially halides remained unknown until recently. Only very recently the crystal structures of the halides [(Ph3P)2N]Cl (Knapp et al., 2010) and [(Ph3P)2N]I (Beckett et al., 2010) were determined. In contrast, crystal structures of [(Ph3P)2N]Cl containing solvate molecules are known for some time, e.g. [(Ph3P)2N]Cl.B(OH)3 (Andrews et al. (1983)), [(Ph3P)2N]Cl.CH3C6H5, (Weller et al. (1993)), [(Ph3P)2N]Cl.CH2Cl2 (Carroll et al. (1996)), [(Ph3P)2N]Cl.CH2Cl2.H2O (de Arellano (1997)).

[(Ph3P)2N]Br has been synthesized according to a published procedure (Martinsen et al., 1977) and single crystals suitable for X-ray diffraction were obtained by layering a CH3CN solution with diethyl ether. In contrast to the the crystal structures of [(Ph3P)2N]Cl (Knapp et al., 2010) and [(Ph3P)2N]I (Beckett et al., 2010) the title compound crystallized with an aceteontrile solvate molecule.

The central P—N—P angle [142.89 (11)°] is significantly larger than in the corresponding chloride and iodide structures but still falls into the common range for PNP angles in these cations (Lewis et al., 2000). The P-N (1.5775 (17) and 1.5790 (16) Å) and P-C distances (179.4 (2)–180.6 (2) Å) are in the expected range.

Several bis(triphenylphosphine)iminium halide structures have been determined. For [(Ph3P)2N]Cl, see: Knapp et al. (2010); for [(Ph3P)2N]Cl.B(OH)3, see: Andrews et al. (1983); for [(Ph3P)2N]Cl.CH3C6H5, see: Weller et al. (1993); for [(Ph3P)2N]Cl.CH2Cl2, see: Carroll et al. (1996); for [(Ph3P)2N]Cl.CH2Cl2.H2O, see: de Arellano (1997); for [(Ph3P)2N]I, see: Beckett et al. (2010). For a discussion of the [(Ph3P)2N]+ cation, see: Lewis et al. (2000). For the synthesis, see: Martinsen & Songstad (1977).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg et al., 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of [(Ph3P)2N]Br.CH3CN. Displacement ellipsoids are shown at the 50% probability level and hydrogen atoms are drawn with arbitrary radii.
Bis(triphenylphosphine)iminium bromide acetonitrile monosolvate top
Crystal data top
C36H30NP2+·Br·C2H3NF(000) = 2720
Mr = 659.51Dx = 1.370 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9913 reflections
a = 19.7113 (6) Åθ = 2.4–27.3°
b = 15.9564 (5) ŵ = 1.42 mm1
c = 20.3318 (6) ÅT = 100 K
V = 6394.8 (3) Å3Block, colourless
Z = 80.20 × 0.20 × 0.16 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7749 independent reflections
Radiation source: microfocus sealed tube6140 reflections with I > 2σ(I)
Multilayer mirro optics monochromatorRint = 0.045
φ and ω scansθmax = 28.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2621
Tmin = 0.765, Tmax = 0.805k = 2120
57718 measured reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085Only H-atom displacement parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0378P)2 + 4.5281P]
where P = (Fo2 + 2Fc2)/3
7749 reflections(Δ/σ)max < 0.001
391 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C36H30NP2+·Br·C2H3NV = 6394.8 (3) Å3
Mr = 659.51Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 19.7113 (6) ŵ = 1.42 mm1
b = 15.9564 (5) ÅT = 100 K
c = 20.3318 (6) Å0.20 × 0.20 × 0.16 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7749 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
6140 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 0.805Rint = 0.045
57718 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.085Only H-atom displacement parameters refined
S = 1.02Δρmax = 0.51 e Å3
7749 reflectionsΔρmin = 0.45 e Å3
391 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.25018 (2)0.06051 (3)0.17193 (2)0.01189 (10)
N10.18271 (8)0.01276 (9)0.15375 (7)0.0143 (3)
P20.12559 (2)0.00609 (3)0.09951 (2)0.01196 (10)
C10.28765 (10)0.12141 (11)0.10725 (9)0.0148 (4)
C20.25987 (10)0.19901 (12)0.09087 (9)0.0190 (4)
H20.22530.22280.11760.0236 (11)*
C30.28261 (11)0.24142 (13)0.03571 (11)0.0253 (5)
H30.26280.29350.02380.0236 (11)*
C40.33434 (12)0.20749 (14)0.00204 (10)0.0285 (5)
H40.35030.23680.03970.0236 (11)*
C50.36285 (12)0.13154 (14)0.01468 (10)0.0262 (5)
H50.39900.10950.01100.0236 (11)*
C60.33941 (10)0.08711 (12)0.06833 (9)0.0192 (4)
H60.35810.03390.07880.0236 (11)*
C70.23573 (10)0.12855 (11)0.24112 (9)0.0144 (4)
C80.28104 (10)0.19243 (12)0.25734 (10)0.0190 (4)
H80.31850.20410.22940.0236 (11)*
C90.27146 (11)0.23902 (13)0.31445 (10)0.0251 (5)
H90.30200.28300.32530.0236 (11)*
C100.21734 (12)0.22111 (13)0.35532 (10)0.0262 (5)
H100.21170.25170.39500.0236 (11)*
C110.17135 (12)0.15921 (13)0.33905 (10)0.0244 (5)
H110.13360.14860.36690.0236 (11)*
C120.18020 (10)0.11242 (12)0.28210 (9)0.0184 (4)
H120.14870.06960.27100.0236 (11)*
C130.31240 (9)0.01526 (11)0.19747 (8)0.0131 (4)
C140.37648 (10)0.01108 (12)0.21822 (9)0.0181 (4)
H140.38710.06920.21920.0236 (11)*
C150.42468 (10)0.04721 (13)0.23733 (9)0.0204 (4)
H150.46830.02910.25130.0236 (11)*
C160.40922 (11)0.13207 (12)0.23604 (9)0.0201 (4)
H160.44240.17210.24890.0236 (11)*
C170.34575 (11)0.15843 (12)0.21612 (10)0.0203 (4)
H170.33520.21650.21590.0236 (11)*
C180.29719 (10)0.10029 (12)0.19634 (9)0.0170 (4)
H180.25380.11870.18210.0236 (11)*
C190.08890 (9)0.09672 (11)0.10613 (9)0.0127 (4)
C200.09094 (10)0.13784 (11)0.16677 (9)0.0159 (4)
H200.11470.11380.20280.0236 (11)*
C210.05793 (10)0.21417 (12)0.17393 (10)0.0193 (4)
H210.05940.24270.21490.0236 (11)*
C220.02288 (10)0.24900 (12)0.12149 (10)0.0212 (4)
H220.00020.30080.12700.0236 (11)*
C230.02120 (10)0.20880 (12)0.06107 (10)0.0204 (4)
H230.00250.23330.02520.0236 (11)*
C240.05428 (10)0.13253 (12)0.05318 (9)0.0171 (4)
H240.05330.10480.01180.0236 (11)*
C250.05703 (9)0.07942 (12)0.11228 (9)0.0146 (4)
C260.07040 (10)0.16532 (12)0.11015 (10)0.0189 (4)
H260.11490.18450.10040.0236 (11)*
C270.01909 (10)0.22260 (12)0.12217 (9)0.0200 (4)
H270.02850.28100.12070.0236 (11)*
C280.04602 (10)0.19508 (12)0.13630 (9)0.0186 (4)
H280.08090.23450.14540.0236 (11)*
C290.06021 (10)0.10991 (13)0.13709 (9)0.0201 (4)
H290.10500.09110.14580.0236 (11)*
C300.00886 (10)0.05211 (12)0.12510 (9)0.0168 (4)
H300.01870.00620.12570.0236 (11)*
C310.15659 (9)0.02082 (11)0.01724 (8)0.0135 (4)
C320.21624 (10)0.02015 (12)0.00108 (9)0.0185 (4)
H320.23880.05570.02940.0236 (11)*
C330.24261 (11)0.00892 (13)0.06364 (9)0.0230 (4)
H330.28340.03650.07600.0236 (11)*
C340.20953 (11)0.04257 (13)0.10835 (10)0.0243 (5)
H340.22760.05000.15130.0236 (11)*
C350.15028 (11)0.08313 (13)0.09059 (9)0.0227 (4)
H350.12760.11810.12140.0236 (11)*
C360.12382 (10)0.07294 (12)0.02784 (9)0.0178 (4)
H360.08340.10140.01560.0236 (11)*
Br10.115207 (11)0.361552 (13)0.016157 (10)0.02274 (7)
C370.01999 (12)0.99644 (14)0.40311 (11)0.0289 (5)
H37A0.00501.03500.37440.045 (4)*
H37B0.04601.02870.43550.045 (4)*
H37C0.01210.95970.42600.045 (4)*
C380.06723 (12)0.94476 (13)0.36271 (9)0.0217 (4)
N20.10065 (10)0.90568 (13)0.33284 (9)0.0323 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0114 (2)0.0112 (2)0.0131 (2)0.00099 (19)0.00009 (17)0.00014 (16)
N10.0126 (8)0.0153 (8)0.0150 (8)0.0022 (6)0.0023 (6)0.0019 (6)
P20.0114 (2)0.0114 (2)0.0131 (2)0.00064 (18)0.00081 (17)0.00066 (16)
C10.0138 (10)0.0147 (9)0.0161 (9)0.0044 (8)0.0001 (7)0.0001 (7)
C20.0166 (10)0.0158 (10)0.0245 (10)0.0016 (8)0.0001 (8)0.0019 (7)
C30.0261 (12)0.0195 (10)0.0304 (11)0.0051 (9)0.0050 (9)0.0084 (8)
C40.0317 (13)0.0328 (12)0.0209 (10)0.0121 (11)0.0003 (9)0.0069 (9)
C50.0249 (12)0.0338 (13)0.0199 (11)0.0031 (10)0.0081 (8)0.0017 (8)
C60.0201 (11)0.0181 (10)0.0193 (10)0.0005 (8)0.0007 (8)0.0029 (7)
C70.0151 (10)0.0133 (9)0.0148 (9)0.0036 (7)0.0026 (7)0.0004 (7)
C80.0145 (10)0.0167 (10)0.0257 (10)0.0027 (8)0.0035 (7)0.0034 (8)
C90.0236 (11)0.0199 (11)0.0318 (12)0.0072 (9)0.0122 (9)0.0096 (8)
C100.0364 (13)0.0244 (11)0.0179 (10)0.0156 (10)0.0057 (9)0.0058 (8)
C110.0295 (12)0.0260 (11)0.0177 (10)0.0102 (10)0.0045 (8)0.0033 (8)
C120.0198 (11)0.0170 (9)0.0184 (10)0.0008 (8)0.0029 (7)0.0027 (7)
C130.0132 (9)0.0143 (9)0.0117 (8)0.0018 (7)0.0006 (6)0.0000 (7)
C140.0171 (10)0.0165 (10)0.0208 (10)0.0000 (8)0.0003 (7)0.0033 (7)
C150.0140 (10)0.0272 (11)0.0198 (10)0.0009 (9)0.0026 (7)0.0036 (8)
C160.0218 (11)0.0209 (10)0.0176 (10)0.0078 (9)0.0001 (8)0.0007 (7)
C170.0234 (11)0.0141 (9)0.0233 (10)0.0024 (8)0.0005 (8)0.0015 (7)
C180.0149 (10)0.0168 (9)0.0192 (9)0.0005 (8)0.0005 (7)0.0004 (7)
C190.0094 (9)0.0107 (9)0.0181 (9)0.0005 (7)0.0010 (7)0.0006 (7)
C200.0119 (9)0.0172 (9)0.0185 (9)0.0011 (8)0.0006 (7)0.0000 (7)
C210.0157 (10)0.0165 (10)0.0257 (10)0.0027 (8)0.0033 (8)0.0060 (8)
C220.0152 (10)0.0132 (9)0.0353 (11)0.0010 (8)0.0036 (8)0.0000 (8)
C230.0171 (10)0.0162 (10)0.0279 (11)0.0007 (8)0.0036 (8)0.0048 (8)
C240.0155 (10)0.0168 (9)0.0189 (10)0.0023 (8)0.0019 (7)0.0015 (7)
C250.0147 (9)0.0149 (9)0.0142 (9)0.0001 (8)0.0011 (7)0.0003 (7)
C260.0149 (10)0.0165 (9)0.0254 (10)0.0004 (8)0.0000 (8)0.0005 (7)
C270.0229 (11)0.0128 (9)0.0242 (10)0.0008 (8)0.0009 (8)0.0003 (7)
C280.0200 (11)0.0194 (10)0.0165 (9)0.0050 (8)0.0012 (7)0.0003 (7)
C290.0162 (10)0.0231 (10)0.0210 (10)0.0012 (9)0.0038 (8)0.0020 (8)
C300.0171 (10)0.0153 (9)0.0182 (9)0.0011 (8)0.0014 (7)0.0018 (7)
C310.0132 (9)0.0130 (9)0.0141 (9)0.0031 (7)0.0002 (7)0.0006 (7)
C320.0202 (11)0.0155 (10)0.0197 (9)0.0008 (8)0.0018 (7)0.0009 (7)
C330.0232 (11)0.0251 (11)0.0205 (10)0.0002 (9)0.0051 (8)0.0075 (8)
C340.0311 (12)0.0271 (11)0.0147 (10)0.0100 (10)0.0034 (8)0.0015 (8)
C350.0278 (12)0.0241 (11)0.0163 (10)0.0072 (9)0.0061 (8)0.0047 (8)
C360.0155 (10)0.0195 (10)0.0183 (9)0.0008 (8)0.0031 (7)0.0028 (7)
Br10.02371 (12)0.02182 (11)0.02270 (11)0.00315 (9)0.00138 (8)0.00234 (8)
C370.0328 (13)0.0269 (12)0.0270 (11)0.0017 (10)0.0026 (9)0.0020 (9)
C380.0340 (13)0.0179 (10)0.0133 (9)0.0094 (9)0.0076 (8)0.0045 (8)
N20.0332 (12)0.0361 (11)0.0276 (10)0.0023 (10)0.0035 (8)0.0065 (9)
Geometric parameters (Å, º) top
P1—N11.5767 (16)C18—H180.9500
P1—C11.7942 (19)C19—C241.397 (3)
P1—C131.7988 (18)C19—C201.397 (3)
P1—C71.7997 (18)C20—C211.389 (3)
N1—P21.5797 (15)C20—H200.9500
P2—C311.7963 (18)C21—C221.387 (3)
P2—C191.7978 (18)C21—H210.9500
P2—C251.8063 (19)C22—C231.386 (3)
C1—C21.394 (3)C22—H220.9500
C1—C61.402 (3)C23—C241.390 (3)
C2—C31.384 (3)C23—H230.9500
C2—H20.9500C24—H240.9500
C3—C41.386 (3)C25—C301.395 (3)
C3—H30.9500C25—C261.396 (3)
C4—C51.378 (3)C26—C271.385 (3)
C4—H40.9500C26—H260.9500
C5—C61.381 (3)C27—C281.387 (3)
C5—H50.9500C27—H270.9500
C6—H60.9500C28—C291.388 (3)
C7—C81.395 (3)C28—H280.9500
C7—C121.399 (3)C29—C301.391 (3)
C8—C91.392 (3)C29—H290.9500
C8—H80.9500C30—H300.9500
C9—C101.382 (3)C31—C321.396 (3)
C9—H90.9500C31—C361.396 (3)
C10—C111.381 (3)C32—C331.386 (3)
C10—H100.9500C32—H320.9500
C11—C121.389 (3)C33—C341.388 (3)
C11—H110.9500C33—H330.9500
C12—H120.9500C34—C351.383 (3)
C13—C181.390 (3)C34—H340.9500
C13—C141.397 (3)C35—C361.388 (3)
C14—C151.385 (3)C35—H350.9500
C14—H140.9500C36—H360.9500
C15—C161.388 (3)C37—C381.491 (3)
C15—H150.9500C37—H37A0.9800
C16—C171.381 (3)C37—H37B0.9800
C16—H160.9500C37—H37C0.9800
C17—C181.392 (3)C38—N21.092 (3)
C17—H170.9500
N1—P1—C1115.92 (8)C13—C18—C17119.83 (18)
N1—P1—C13108.54 (8)C13—C18—H18120.1
C1—P1—C13107.16 (9)C17—C18—H18120.1
N1—P1—C7109.95 (9)C24—C19—C20120.13 (17)
C1—P1—C7108.14 (9)C24—C19—P2120.81 (14)
C13—P1—C7106.72 (8)C20—C19—P2118.88 (14)
P1—N1—P2142.88 (10)C21—C20—C19119.40 (18)
N1—P2—C31113.51 (8)C21—C20—H20120.3
N1—P2—C19107.22 (8)C19—C20—H20120.3
C31—P2—C19109.03 (8)C22—C21—C20120.29 (18)
N1—P2—C25112.90 (8)C22—C21—H21119.9
C31—P2—C25107.67 (8)C20—C21—H21119.9
C19—P2—C25106.22 (9)C23—C22—C21120.52 (19)
C2—C1—C6119.84 (17)C23—C22—H22119.7
C2—C1—P1119.63 (14)C21—C22—H22119.7
C6—C1—P1120.11 (14)C22—C23—C24119.75 (18)
C3—C2—C1120.03 (19)C22—C23—H23120.1
C3—C2—H2120.0C24—C23—H23120.1
C1—C2—H2120.0C23—C24—C19119.90 (18)
C2—C3—C4119.7 (2)C23—C24—H24120.1
C2—C3—H3120.1C19—C24—H24120.1
C4—C3—H3120.1C30—C25—C26119.23 (18)
C5—C4—C3120.44 (19)C30—C25—P2121.42 (14)
C5—C4—H4119.8C26—C25—P2119.35 (14)
C3—C4—H4119.8C27—C26—C25120.30 (18)
C4—C5—C6120.7 (2)C27—C26—H26119.9
C4—C5—H5119.7C25—C26—H26119.9
C6—C5—H5119.7C26—C27—C28120.23 (18)
C5—C6—C1119.27 (19)C26—C27—H27119.9
C5—C6—H6120.4C28—C27—H27119.9
C1—C6—H6120.4C27—C28—C29119.95 (18)
C8—C7—C12119.63 (17)C27—C28—H28120.0
C8—C7—P1121.62 (15)C29—C28—H28120.0
C12—C7—P1118.57 (14)C28—C29—C30120.05 (19)
C9—C8—C7120.05 (19)C28—C29—H29120.0
C9—C8—H8120.0C30—C29—H29120.0
C7—C8—H8120.0C29—C30—C25120.22 (18)
C10—C9—C8119.7 (2)C29—C30—H30119.9
C10—C9—H9120.1C25—C30—H30119.9
C8—C9—H9120.1C32—C31—C36119.58 (17)
C11—C10—C9120.70 (19)C32—C31—P2118.27 (14)
C11—C10—H10119.6C36—C31—P2122.13 (15)
C9—C10—H10119.6C33—C32—C31120.02 (18)
C10—C11—C12120.1 (2)C33—C32—H32120.0
C10—C11—H11119.9C31—C32—H32120.0
C12—C11—H11119.9C32—C33—C34120.1 (2)
C11—C12—C7119.72 (19)C32—C33—H33120.0
C11—C12—H12120.1C34—C33—H33120.0
C7—C12—H12120.1C35—C34—C33120.18 (18)
C18—C13—C14119.61 (17)C35—C34—H34119.9
C18—C13—P1120.29 (14)C33—C34—H34119.9
C14—C13—P1120.10 (14)C34—C35—C36120.16 (19)
C15—C14—C13120.20 (18)C34—C35—H35119.9
C15—C14—H14119.9C36—C35—H35119.9
C13—C14—H14119.9C35—C36—C31119.96 (19)
C14—C15—C16119.94 (19)C35—C36—H36120.0
C14—C15—H15120.0C31—C36—H36120.0
C16—C15—H15120.0C38—C37—H37A109.5
C17—C16—C15120.11 (19)C38—C37—H37B109.5
C17—C16—H16119.9H37A—C37—H37B109.5
C15—C16—H16119.9C38—C37—H37C109.5
C16—C17—C18120.31 (18)H37A—C37—H37C109.5
C16—C17—H17119.8H37B—C37—H37C109.5
C18—C17—H17119.8N2—C38—C37178.4 (2)
C1—P1—N1—P212.2 (2)C14—C13—C18—C170.3 (3)
C13—P1—N1—P2132.79 (17)P1—C13—C18—C17179.90 (14)
C7—P1—N1—P2110.82 (18)C16—C17—C18—C130.8 (3)
P1—N1—P2—C3135.6 (2)N1—P2—C19—C24158.31 (15)
P1—N1—P2—C19156.03 (17)C31—P2—C19—C2435.04 (18)
P1—N1—P2—C2587.33 (19)C25—P2—C19—C2480.74 (16)
N1—P1—C1—C277.13 (17)N1—P2—C19—C2026.59 (17)
C13—P1—C1—C2161.53 (15)C31—P2—C19—C20149.86 (15)
C7—P1—C1—C246.83 (17)C25—P2—C19—C2094.37 (16)
N1—P1—C1—C695.43 (17)C24—C19—C20—C210.4 (3)
C13—P1—C1—C625.91 (18)P2—C19—C20—C21174.72 (14)
C7—P1—C1—C6140.62 (15)C19—C20—C21—C220.4 (3)
C6—C1—C2—C31.0 (3)C20—C21—C22—C231.0 (3)
P1—C1—C2—C3171.53 (16)C21—C22—C23—C240.7 (3)
C1—C2—C3—C41.8 (3)C22—C23—C24—C190.1 (3)
C2—C3—C4—C50.6 (3)C20—C19—C24—C230.7 (3)
C3—C4—C5—C61.5 (3)P2—C19—C24—C23174.36 (15)
C4—C5—C6—C12.2 (3)N1—P2—C25—C30116.56 (16)
C2—C1—C6—C50.9 (3)C31—P2—C25—C30117.35 (16)
P1—C1—C6—C5173.48 (16)C19—P2—C25—C300.67 (17)
N1—P1—C7—C8164.10 (15)N1—P2—C25—C2662.58 (17)
C1—P1—C7—C836.63 (18)C31—P2—C25—C2663.51 (17)
C13—P1—C7—C878.37 (17)C19—P2—C25—C26179.81 (15)
N1—P1—C7—C1220.69 (17)C30—C25—C26—C271.5 (3)
C1—P1—C7—C12148.16 (15)P2—C25—C26—C27177.65 (15)
C13—P1—C7—C1296.84 (16)C25—C26—C27—C280.1 (3)
C12—C7—C8—C90.9 (3)C26—C27—C28—C291.3 (3)
P1—C7—C8—C9174.29 (15)C27—C28—C29—C301.4 (3)
C7—C8—C9—C100.7 (3)C28—C29—C30—C250.0 (3)
C8—C9—C10—C112.1 (3)C26—C25—C30—C291.5 (3)
C9—C10—C11—C121.9 (3)P2—C25—C30—C29177.68 (14)
C10—C11—C12—C70.3 (3)N1—P2—C31—C3244.97 (17)
C8—C7—C12—C111.1 (3)C19—P2—C31—C3274.47 (16)
P1—C7—C12—C11174.25 (15)C25—P2—C31—C32170.70 (14)
N1—P1—C13—C182.28 (17)N1—P2—C31—C36133.64 (16)
C1—P1—C13—C18123.61 (15)C19—P2—C31—C36106.93 (16)
C7—P1—C13—C18120.73 (15)C25—P2—C31—C367.91 (18)
N1—P1—C13—C14178.09 (14)C36—C31—C32—C330.1 (3)
C1—P1—C13—C1456.02 (17)P2—C31—C32—C33178.58 (15)
C7—P1—C13—C1459.64 (17)C31—C32—C33—C340.5 (3)
C18—C13—C14—C150.2 (3)C32—C33—C34—C350.2 (3)
P1—C13—C14—C15179.39 (14)C33—C34—C35—C360.4 (3)
C13—C14—C15—C160.2 (3)C34—C35—C36—C310.8 (3)
C14—C15—C16—C170.4 (3)C32—C31—C36—C350.6 (3)
C15—C16—C17—C180.9 (3)P2—C31—C36—C35179.15 (15)

Experimental details

Crystal data
Chemical formulaC36H30NP2+·Br·C2H3N
Mr659.51
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)19.7113 (6), 15.9564 (5), 20.3318 (6)
V3)6394.8 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.42
Crystal size (mm)0.20 × 0.20 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.765, 0.805
No. of measured, independent and
observed [I > 2σ(I)] reflections
57718, 7749, 6140
Rint0.045
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.085, 1.02
No. of reflections7749
No. of parameters391
H-atom treatmentOnly H-atom displacement parameters refined
Δρmax, Δρmin (e Å3)0.51, 0.45

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg et al., 2010).

Selected geometric parameters (Å, º) top
P1—N11.5767 (16)N1—P21.5797 (15)
P1—C11.7942 (19)P2—C311.7963 (18)
P1—C131.7988 (18)P2—C191.7978 (18)
P1—C71.7997 (18)P2—C251.8063 (19)
P1—N1—P2142.88 (10)
 

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft (DFG) and the Universität Freiburg is gratefully acknowledged.

References

First citationAndrews, S. J., Robb, D. A. & Welch, A. J. (1983). Acta Cryst. C39, 880–882.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationArellano, M. C. R. de (1997). Private communication (refcode: RAVBUL). CCDC, Cambridge, England.  Google Scholar
First citationBeckett, M. A., Horton, P. N., Hursthouse, M. B. & Timmis, J. L. (2010). Acta Cryst. E66, o319.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarroll, K. M., Rheingold, A. L. & Allen, M. B. (1996). Private communication (refcode: NAVMEM ). CCDC, Cambridge, England.  Google Scholar
First citationKnapp, C. & Uzun, R. (2010). Acta Cryst. E66, o3185.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLewis, G. R. & Dance, I. (2000). J. Chem. Soc. Dalton Trans. pp. 299–306.  Web of Science CrossRef Google Scholar
First citationMartinsen, A. & Songstad, J. (1977). Acta Chem. Scand. Ser. A, 31, 645–650.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeller, F., Nusshär, D. & Dehnicke, K. (1993). Z. Kristallogr. 208, 322–325.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds