organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Hy­dr­oxy-N′-(4-hy­dr­oxy-3-meth­­oxy­benzyl­­idene)benzohydrazide

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 2 November 2010; accepted 4 November 2010; online 13 November 2010)

In the title compound, C15H14N2O4, the N=C double bond has an E configuration. The two benzene rings make a dihedral angle of 28.59 (6)°. In the crystal, mol­ecules are linked into a three-dimensional network by inter­molecular N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds and stabilized by weak C—H⋯π inter­actions.

Related literature

For the pharmacological activity of Schiff bases derivatives, see: Zia-ur-Rehman et al. (2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]); Parashar et al. (1988[Parashar, R. K., Sharma, R. C., Kumar, A. & Mohan, G. (1988). Inorg. Chim. Acta, 151, 201-208.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345-1360.]). For the biological activity of hydrazide derivatives, see: Waisser et al. (1990[Waisser, K., Houngbedji, N., Odlerova, Z., Thiel, W. & Mayer, R. (1990). Pharmazie, 45, 141-142.]); Hall et al. (1993[Hall, L. H., Mohney, B. K. & Kier, L. B. (1993). Quant. Struct. Act. Relat. 12, 44-48.]); Salhin et al. (2007[Salhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.], 2009[Salhin, A., Abdul Razak, N. & Rahman, I. A. (2009). Acta Cryst. E65, o1221-o1222.]); Tameem et al. (2006[Tameem, A. A., Salhin, A., Saad, B., Rahman, I. A., Saleh, M. I., Ng, S.-L. & Fun, H.-K. (2006). Acta Cryst. E62, o5686-o5688.], 2007[Tameem, A. A., Salhin, A., Saad, B., Rahman, I. A., Saleh, M. I., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o57-o58.], 2008[Tameem, A. A., Saad, B., Salhin, A. M., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o679-o680.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O4

  • Mr = 286.28

  • Orthorhombic, P n a 21

  • a = 10.9034 (3) Å

  • b = 8.5533 (2) Å

  • c = 14.7437 (4) Å

  • V = 1375.00 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.43 × 0.34 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.958, Tmax = 0.984

  • 8269 measured reflections

  • 2098 independent reflections

  • 2033 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.087

  • S = 1.03

  • 2098 reflections

  • 203 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O3i 0.84 (2) 2.18 (2) 2.9534 (16) 153.0 (17)
N1—H1N1⋯O4i 0.84 (2) 2.53 (2) 3.2252 (16) 140.0 (17)
O1—H1O1⋯O2ii 0.81 (3) 1.84 (3) 2.6361 (15) 165 (2)
O4—H1O4⋯O1iii 0.87 (2) 1.89 (2) 2.7457 (16) 170 (3)
C2—H2A⋯O2ii 0.93 2.45 3.1271 (17) 129
C15—H15BCg1iv 0.96 2.81 3.5620 (14) 132
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, -y, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Syntheses based on Schiff bases have become a major attraction in Chemistry because these products are well known for their pharmacological properties such as anti-tumor, anti-bacterial, anti-oxidant (Zia-ur-Rehman et al., 2009; Parashar et al., 1988) and photochromic activities (Hadjoudis et al., 1987). Many hydrazide derivatives known to have significant biological activities such as monoamine oxidase inhibitory activity, antifungal and tuberculostatic activity (Waisser et al., 1990; Hall et al., 1993). Continuing our interest on the synthesis and application of hydrazone and hydrazide derivatives (Salhin et al., 2007, 2009; Tameem et al., 2006, 2007, 2008), compound (I) (Fig. 1) was hereby synthesized based on Schiff bases by the condensation reaction of 4-hydroxybenzhydrazide and 4-hydroxy-3-methoxybenzaldehyde. The crystal structure is presented here.

The NC double bond of (I) exist in an E-configuration. The two benzene rings make dihedral angle of 28.59 (6)°. The methoxy group is almost planar with its attached benzene ring [torsion angle 6.3 (2)°]. In the crystal packing, the molecules are linked into a three-dimensional network by intermolecular N—H···O, O—H···O and C—H···O hydrogen bonds and stabilized by weak C—H···π interactions (Fig. 2, Table 1).

Related literature top

For the pharmacological activity of Schiff bases derivatives, see: Zia-ur-Rehman et al. (2009); Parashar et al. (1988); Hadjoudis et al. (1987). For the biological activity of hydrazide derivatives, see: Waisser et al. (1990); Hall et al. (1993); Salhin et al. (2007, 2009); Tameem et al. (2006, 2007, 2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 4-hydroxybenzhydrazide (0.2 g, 1.31 mmol) and 4-hydroxy-3-methoxybenzaldehyde (0.2 g, 1.31 mmol) in 30 ml of methanol containing few drops of acetic acid was refluxed for about 5 h. On cooling to room temperature, a solid precipitate was formed. The solid was filtered and then recrystallized from ethanol. Yellow crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of solution.

Refinement top

The O– and N-bound hydrogen atoms were located from difference Fourier map and refined freely. The rest of hydrogen atoms were positioned geometrically [C–H = 0.93 & 0.96 Å] and refined using a riding model [Uiso(H) = 1.2 & 1.5Ueq(C)]. A rotating-group model were applied for methyl groups. 1538 Friedel pairs were merged before final refinement. The absolute configuration is unknown.

Structure description top

Syntheses based on Schiff bases have become a major attraction in Chemistry because these products are well known for their pharmacological properties such as anti-tumor, anti-bacterial, anti-oxidant (Zia-ur-Rehman et al., 2009; Parashar et al., 1988) and photochromic activities (Hadjoudis et al., 1987). Many hydrazide derivatives known to have significant biological activities such as monoamine oxidase inhibitory activity, antifungal and tuberculostatic activity (Waisser et al., 1990; Hall et al., 1993). Continuing our interest on the synthesis and application of hydrazone and hydrazide derivatives (Salhin et al., 2007, 2009; Tameem et al., 2006, 2007, 2008), compound (I) (Fig. 1) was hereby synthesized based on Schiff bases by the condensation reaction of 4-hydroxybenzhydrazide and 4-hydroxy-3-methoxybenzaldehyde. The crystal structure is presented here.

The NC double bond of (I) exist in an E-configuration. The two benzene rings make dihedral angle of 28.59 (6)°. The methoxy group is almost planar with its attached benzene ring [torsion angle 6.3 (2)°]. In the crystal packing, the molecules are linked into a three-dimensional network by intermolecular N—H···O, O—H···O and C—H···O hydrogen bonds and stabilized by weak C—H···π interactions (Fig. 2, Table 1).

For the pharmacological activity of Schiff bases derivatives, see: Zia-ur-Rehman et al. (2009); Parashar et al. (1988); Hadjoudis et al. (1987). For the biological activity of hydrazide derivatives, see: Waisser et al. (1990); Hall et al. (1993); Salhin et al. (2007, 2009); Tameem et al. (2006, 2007, 2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with atom labels and 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of title compound viewed down b axis, showing the molecules are linked into a three-dimensional network.
(E)-4-Hydroxy-N'-(4-hydroxy-3-methoxybenzylidene)benzohydrazide top
Crystal data top
C15H14N2O4F(000) = 600
Mr = 286.28Dx = 1.383 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5243 reflections
a = 10.9034 (3) Åθ = 2.8–30.1°
b = 8.5533 (2) ŵ = 0.10 mm1
c = 14.7437 (4) ÅT = 100 K
V = 1375.00 (6) Å3Plate, yellow
Z = 40.43 × 0.34 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2098 independent reflections
Radiation source: fine-focus sealed tube2033 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 30.1°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1215
Tmin = 0.958, Tmax = 0.984k = 128
8269 measured reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0687P)2 + 0.0626P]
where P = (Fo2 + 2Fc2)/3
2098 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.35 e Å3
1 restraintΔρmin = 0.33 e Å3
Crystal data top
C15H14N2O4V = 1375.00 (6) Å3
Mr = 286.28Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 10.9034 (3) ŵ = 0.10 mm1
b = 8.5533 (2) ÅT = 100 K
c = 14.7437 (4) Å0.43 × 0.34 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2098 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2033 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.984Rint = 0.021
8269 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.35 e Å3
2098 reflectionsΔρmin = 0.33 e Å3
203 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50848 (11)0.29559 (13)0.39327 (7)0.0176 (2)
O20.47208 (11)0.16057 (13)0.05335 (7)0.0185 (2)
O30.72455 (10)0.71644 (12)0.21457 (7)0.0135 (2)
O40.84067 (11)0.96468 (12)0.16052 (7)0.0172 (2)
N10.59306 (12)0.30690 (14)0.14694 (8)0.0134 (2)
N20.61084 (12)0.41786 (14)0.07972 (8)0.0130 (2)
C10.51462 (13)0.09777 (17)0.29247 (9)0.0122 (3)
H1A0.51630.20220.30990.015*
C20.51039 (13)0.01823 (17)0.35842 (9)0.0131 (3)
H2A0.50800.00830.41960.016*
C30.50984 (13)0.17538 (18)0.33189 (10)0.0133 (3)
C40.51091 (14)0.21469 (17)0.23966 (9)0.0149 (3)
H4A0.51060.31910.22210.018*
C50.51242 (13)0.09687 (17)0.17432 (9)0.0138 (3)
H5A0.51070.12300.11310.017*
C60.51643 (13)0.05963 (16)0.20017 (9)0.0115 (3)
C70.52375 (13)0.17934 (17)0.12730 (9)0.0127 (3)
C80.68511 (14)0.52860 (17)0.10081 (9)0.0133 (3)
H8A0.71780.53330.15900.016*
C90.71871 (13)0.64765 (17)0.03369 (9)0.0127 (3)
C100.78103 (14)0.78203 (17)0.06151 (10)0.0148 (3)
H10A0.79620.79840.12280.018*
C110.82067 (14)0.89195 (17)0.00196 (10)0.0153 (3)
H11A0.86150.98150.01720.018*
C120.79915 (14)0.86768 (16)0.09385 (9)0.0130 (3)
C130.73610 (12)0.73180 (16)0.12227 (9)0.0114 (3)
C140.69530 (14)0.62378 (17)0.05952 (10)0.0127 (3)
H14A0.65260.53560.07860.015*
C150.67731 (14)0.57037 (17)0.24666 (10)0.0159 (3)
H15A0.67470.57130.31170.024*
H15B0.72950.48690.22650.024*
H15C0.59610.55490.22320.024*
H1N10.638 (2)0.311 (2)0.1935 (17)0.018 (5)*
H1O10.501 (2)0.252 (3)0.442 (2)0.043 (8)*
H1O40.890 (2)1.034 (3)0.138 (2)0.033 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0328 (6)0.0102 (5)0.0099 (4)0.0016 (4)0.0035 (4)0.0002 (4)
O20.0279 (6)0.0167 (5)0.0109 (4)0.0050 (4)0.0046 (4)0.0017 (4)
O30.0187 (5)0.0131 (5)0.0088 (4)0.0029 (4)0.0002 (4)0.0007 (3)
O40.0272 (6)0.0118 (5)0.0125 (4)0.0068 (4)0.0022 (4)0.0013 (4)
N10.0181 (5)0.0127 (5)0.0093 (5)0.0021 (4)0.0027 (4)0.0035 (4)
N20.0181 (6)0.0111 (5)0.0099 (5)0.0010 (4)0.0003 (4)0.0031 (4)
C10.0153 (6)0.0109 (6)0.0104 (5)0.0005 (5)0.0001 (5)0.0011 (5)
C20.0182 (7)0.0101 (6)0.0109 (6)0.0001 (5)0.0016 (5)0.0000 (4)
C30.0178 (6)0.0114 (6)0.0109 (6)0.0002 (5)0.0012 (5)0.0009 (5)
C40.0228 (7)0.0106 (6)0.0111 (6)0.0009 (5)0.0013 (5)0.0014 (5)
C50.0190 (7)0.0127 (7)0.0096 (5)0.0011 (5)0.0010 (5)0.0005 (5)
C60.0142 (6)0.0109 (6)0.0095 (5)0.0012 (5)0.0001 (5)0.0019 (5)
C70.0159 (6)0.0120 (6)0.0104 (6)0.0003 (5)0.0003 (5)0.0014 (5)
C80.0165 (7)0.0137 (6)0.0099 (5)0.0002 (5)0.0003 (5)0.0017 (4)
C90.0152 (6)0.0127 (6)0.0101 (5)0.0003 (5)0.0007 (4)0.0015 (4)
C100.0192 (7)0.0141 (6)0.0112 (5)0.0019 (5)0.0010 (5)0.0003 (5)
C110.0212 (7)0.0122 (6)0.0125 (6)0.0026 (5)0.0003 (5)0.0006 (5)
C120.0174 (6)0.0104 (6)0.0111 (5)0.0001 (5)0.0008 (5)0.0008 (5)
C130.0135 (6)0.0110 (6)0.0099 (6)0.0003 (5)0.0003 (5)0.0008 (4)
C140.0142 (6)0.0117 (6)0.0122 (5)0.0015 (5)0.0000 (5)0.0004 (5)
C150.0211 (7)0.0145 (6)0.0119 (6)0.0026 (5)0.0010 (5)0.0030 (5)
Geometric parameters (Å, º) top
O1—C31.3698 (17)C4—H4A0.9300
O1—H1O10.82 (3)C5—C61.393 (2)
O2—C71.2377 (18)C5—H5A0.9300
O3—C131.3729 (16)C6—C71.4862 (18)
O3—C151.4318 (17)C8—C91.4664 (18)
O4—C121.3637 (17)C8—H8A0.9300
O4—H1O40.86 (3)C9—C101.397 (2)
N1—C71.3584 (19)C9—C141.4127 (18)
N1—N21.3859 (15)C10—C111.395 (2)
N1—H1N10.84 (2)C10—H10A0.9300
N2—C81.2844 (19)C11—C121.3905 (19)
C1—C21.3900 (19)C11—H11A0.9300
C1—C61.3995 (19)C12—C131.4139 (19)
C1—H1A0.9300C13—C141.3811 (19)
C2—C31.400 (2)C14—H14A0.9300
C2—H2A0.9300C15—H15A0.9600
C3—C41.4008 (19)C15—H15B0.9600
C4—C51.3943 (19)C15—H15C0.9600
C3—O1—H1O1104 (2)N2—C8—C9120.42 (12)
C13—O3—C15116.36 (11)N2—C8—H8A119.8
C12—O4—H1O4110.3 (18)C9—C8—H8A119.8
C7—N1—N2118.39 (11)C10—C9—C14119.50 (12)
C7—N1—H1N1122.1 (14)C10—C9—C8119.66 (12)
N2—N1—H1N1118.1 (14)C14—C9—C8120.73 (12)
C8—N2—N1114.84 (11)C11—C10—C9120.55 (13)
C2—C1—C6120.95 (13)C11—C10—H10A119.7
C2—C1—H1A119.5C9—C10—H10A119.7
C6—C1—H1A119.5C12—C11—C10120.04 (14)
C1—C2—C3119.35 (13)C12—C11—H11A120.0
C1—C2—H2A120.3C10—C11—H11A120.0
C3—C2—H2A120.3O4—C12—C11123.74 (13)
O1—C3—C2122.42 (13)O4—C12—C13116.61 (12)
O1—C3—C4117.47 (13)C11—C12—C13119.57 (13)
C2—C3—C4120.11 (13)O3—C13—C14124.78 (12)
C5—C4—C3119.82 (14)O3—C13—C12114.65 (12)
C5—C4—H4A120.1C14—C13—C12120.53 (12)
C3—C4—H4A120.1C13—C14—C9119.79 (13)
C6—C5—C4120.40 (13)C13—C14—H14A120.1
C6—C5—H5A119.8C9—C14—H14A120.1
C4—C5—H5A119.8O3—C15—H15A109.5
C5—C6—C1119.33 (13)O3—C15—H15B109.5
C5—C6—C7117.78 (12)H15A—C15—H15B109.5
C1—C6—C7122.89 (13)O3—C15—H15C109.5
O2—C7—N1123.04 (13)H15A—C15—H15C109.5
O2—C7—C6121.53 (13)H15B—C15—H15C109.5
N1—C7—C6115.41 (12)
C7—N1—N2—C8174.70 (13)N2—C8—C9—C10168.42 (14)
C6—C1—C2—C31.0 (2)N2—C8—C9—C1415.4 (2)
C1—C2—C3—O1178.53 (13)C14—C9—C10—C110.3 (2)
C1—C2—C3—C41.3 (2)C8—C9—C10—C11175.92 (14)
O1—C3—C4—C5179.95 (13)C9—C10—C11—C120.5 (2)
C2—C3—C4—C50.1 (2)C10—C11—C12—O4176.23 (14)
C3—C4—C5—C61.9 (2)C10—C11—C12—C130.5 (2)
C4—C5—C6—C12.2 (2)C15—O3—C13—C146.3 (2)
C4—C5—C6—C7177.19 (13)C15—O3—C13—C12171.28 (12)
C2—C1—C6—C50.8 (2)O4—C12—C13—O30.37 (18)
C2—C1—C6—C7178.59 (13)C11—C12—C13—O3177.34 (14)
N2—N1—C7—O22.8 (2)O4—C12—C13—C14177.32 (13)
N2—N1—C7—C6175.54 (12)C11—C12—C13—C140.3 (2)
C5—C6—C7—O234.2 (2)O3—C13—C14—C9176.25 (13)
C1—C6—C7—O2146.44 (15)C12—C13—C14—C91.2 (2)
C5—C6—C7—N1144.17 (13)C10—C9—C14—C131.2 (2)
C1—C6—C7—N135.2 (2)C8—C9—C14—C13175.02 (13)
N1—N2—C8—C9175.73 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O3i0.84 (2)2.18 (2)2.9534 (16)153.0 (17)
N1—H1N1···O4i0.84 (2)2.53 (2)3.2252 (16)140.0 (17)
O1—H1O1···O2ii0.81 (3)1.84 (3)2.6361 (15)165 (2)
O4—H1O4···O1iii0.87 (2)1.89 (2)2.7457 (16)170 (3)
C2—H2A···O2ii0.932.453.1271 (17)129
C15—H15B···Cg1iv0.962.813.5620 (14)132
Symmetry codes: (i) x+3/2, y1/2, z1/2; (ii) x+1, y, z1/2; (iii) x+3/2, y+3/2, z+1/2; (iv) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC15H14N2O4
Mr286.28
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)10.9034 (3), 8.5533 (2), 14.7437 (4)
V3)1375.00 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.43 × 0.34 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.958, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
8269, 2098, 2033
Rint0.021
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.087, 1.03
No. of reflections2098
No. of parameters203
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.33

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008 and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O3i0.84 (2)2.18 (2)2.9534 (16)153.0 (17)
N1—H1N1···O4i0.84 (2)2.53 (2)3.2252 (16)140.0 (17)
O1—H1O1···O2ii0.81 (3)1.84 (3)2.6361 (15)165 (2)
O4—H1O4···O1iii0.87 (2)1.89 (2)2.7457 (16)170 (3)
C2—H2A···O2ii0.93002.45003.1271 (17)129.00
C15—H15B···Cg1iv0.96002.81003.5620 (14)132.00
Symmetry codes: (i) x+3/2, y1/2, z1/2; (ii) x+1, y, z1/2; (iii) x+3/2, y+3/2, z+1/2; (iv) x+3/2, y+1/2, z.
 

Footnotes

Additional correspondence author, e-mail: abdussalam@usm.my.

§Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MS, AS and RA acknowledge financial support by the Universiti Sains Malaysia (USM) under Science Fund Grant No. 1001/PKIMIA/811055. HKF and CSY thank USM for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationHall, L. H., Mohney, B. K. & Kier, L. B. (1993). Quant. Struct. Act. Relat. 12, 44–48.  CrossRef CAS Web of Science Google Scholar
First citationParashar, R. K., Sharma, R. C., Kumar, A. & Mohan, G. (1988). Inorg. Chim. Acta, 151, 201–208.  CrossRef CAS Web of Science Google Scholar
First citationSalhin, A., Abdul Razak, N. & Rahman, I. A. (2009). Acta Cryst. E65, o1221–o1222.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSalhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTameem, A. A., Saad, B., Salhin, A. M., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o679–o680.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTameem, A. A., Salhin, A., Saad, B., Rahman, I. A., Saleh, M. I., Ng, S.-L. & Fun, H.-K. (2006). Acta Cryst. E62, o5686–o5688.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTameem, A. A., Salhin, A., Saad, B., Rahman, I. A., Saleh, M. I., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o57–o58.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWaisser, K., Houngbedji, N., Odlerova, Z., Thiel, W. & Mayer, R. (1990). Pharmazie, 45, 141–142.  CAS PubMed Web of Science Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds