organic compounds
(E)-4-Hydroxy-N′-(4-hydroxy-3-methoxybenzylidene)benzohydrazide
aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title compound, C15H14N2O4, the N=C double bond has an E configuration. The two benzene rings make a dihedral angle of 28.59 (6)°. In the crystal, molecules are linked into a three-dimensional network by intermolecular N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds and stabilized by weak C—H⋯π interactions.
Related literature
For the pharmacological activity of et al. (2009); Parashar et al. (1988); Hadjoudis et al. (1987). For the biological activity of hydrazide derivatives, see: Waisser et al. (1990); Hall et al. (1993); Salhin et al. (2007, 2009); Tameem et al. (2006, 2007, 2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
derivatives, see: Zia-ur-RehmanExperimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810045162/fj2361sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810045162/fj2361Isup2.hkl
A mixture of 4-hydroxybenzhydrazide (0.2 g, 1.31 mmol) and 4-hydroxy-3-methoxybenzaldehyde (0.2 g, 1.31 mmol) in 30 ml of methanol containing few drops of acetic acid was refluxed for about 5 h. On cooling to room temperature, a solid precipitate was formed. The solid was filtered and then recrystallized from ethanol. Yellow crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of solution.
The O– and N-bound hydrogen atoms were located from difference Fourier map and refined freely. The rest of hydrogen atoms were positioned geometrically [C–H = 0.93 & 0.96 Å] and refined using a riding model [Uiso(H) = 1.2 & 1.5Ueq(C)]. A rotating-group model were applied for methyl groups. 1538 Friedel pairs were merged before final
The is unknown.Syntheses based on
have become a major attraction in Chemistry because these products are well known for their pharmacological properties such as anti-tumor, anti-bacterial, anti-oxidant (Zia-ur-Rehman et al., 2009; Parashar et al., 1988) and photochromic activities (Hadjoudis et al., 1987). Many hydrazide derivatives known to have significant biological activities such as monoamine oxidase inhibitory activity, antifungal and tuberculostatic activity (Waisser et al., 1990; Hall et al., 1993). Continuing our interest on the synthesis and application of hydrazone and hydrazide derivatives (Salhin et al., 2007, 2009; Tameem et al., 2006, 2007, 2008), compound (I) (Fig. 1) was hereby synthesized based on by the condensation reaction of 4-hydroxybenzhydrazide and 4-hydroxy-3-methoxybenzaldehyde. The is presented here.The N═C double bond of (I) exist in an E-configuration. The two benzene rings make dihedral angle of 28.59 (6)°. The methoxy group is almost planar with its attached benzene ring [torsion angle 6.3 (2)°]. In the crystal packing, the molecules are linked into a three-dimensional network by intermolecular N—H···O, O—H···O and C—H···O hydrogen bonds and stabilized by weak C—H···π interactions (Fig. 2, Table 1).
For the pharmacological activity of
derivatives, see: Zia-ur-Rehman et al. (2009); Parashar et al. (1988); Hadjoudis et al. (1987). For the biological activity of hydrazide derivatives, see: Waisser et al. (1990); Hall et al. (1993); Salhin et al. (2007, 2009); Tameem et al. (2006, 2007, 2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 and PLATON (Spek, 2009).Fig. 1. The molecular structure of title compound with atom labels and 50% probability ellipsoids for non-H atoms. | |
Fig. 2. The crystal packing of title compound viewed down b axis, showing the molecules are linked into a three-dimensional network. |
C15H14N2O4 | F(000) = 600 |
Mr = 286.28 | Dx = 1.383 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 5243 reflections |
a = 10.9034 (3) Å | θ = 2.8–30.1° |
b = 8.5533 (2) Å | µ = 0.10 mm−1 |
c = 14.7437 (4) Å | T = 100 K |
V = 1375.00 (6) Å3 | Plate, yellow |
Z = 4 | 0.43 × 0.34 × 0.16 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 2098 independent reflections |
Radiation source: fine-focus sealed tube | 2033 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
φ and ω scans | θmax = 30.1°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −12→15 |
Tmin = 0.958, Tmax = 0.984 | k = −12→8 |
8269 measured reflections | l = −18→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.087 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0687P)2 + 0.0626P] where P = (Fo2 + 2Fc2)/3 |
2098 reflections | (Δ/σ)max < 0.001 |
203 parameters | Δρmax = 0.35 e Å−3 |
1 restraint | Δρmin = −0.33 e Å−3 |
C15H14N2O4 | V = 1375.00 (6) Å3 |
Mr = 286.28 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 10.9034 (3) Å | µ = 0.10 mm−1 |
b = 8.5533 (2) Å | T = 100 K |
c = 14.7437 (4) Å | 0.43 × 0.34 × 0.16 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 2098 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2033 reflections with I > 2σ(I) |
Tmin = 0.958, Tmax = 0.984 | Rint = 0.021 |
8269 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 1 restraint |
wR(F2) = 0.087 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.35 e Å−3 |
2098 reflections | Δρmin = −0.33 e Å−3 |
203 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.50848 (11) | −0.29559 (13) | −0.39327 (7) | 0.0176 (2) | |
O2 | 0.47208 (11) | 0.16057 (13) | −0.05335 (7) | 0.0185 (2) | |
O3 | 0.72455 (10) | 0.71644 (12) | 0.21457 (7) | 0.0135 (2) | |
O4 | 0.84067 (11) | 0.96468 (12) | 0.16052 (7) | 0.0172 (2) | |
N1 | 0.59306 (12) | 0.30690 (14) | −0.14694 (8) | 0.0134 (2) | |
N2 | 0.61084 (12) | 0.41786 (14) | −0.07972 (8) | 0.0130 (2) | |
C1 | 0.51462 (13) | 0.09777 (17) | −0.29247 (9) | 0.0122 (3) | |
H1A | 0.5163 | 0.2022 | −0.3099 | 0.015* | |
C2 | 0.51039 (13) | −0.01823 (17) | −0.35842 (9) | 0.0131 (3) | |
H2A | 0.5080 | 0.0083 | −0.4196 | 0.016* | |
C3 | 0.50984 (13) | −0.17538 (18) | −0.33189 (10) | 0.0133 (3) | |
C4 | 0.51091 (14) | −0.21469 (17) | −0.23966 (9) | 0.0149 (3) | |
H4A | 0.5106 | −0.3191 | −0.2221 | 0.018* | |
C5 | 0.51242 (13) | −0.09687 (17) | −0.17432 (9) | 0.0138 (3) | |
H5A | 0.5107 | −0.1230 | −0.1131 | 0.017* | |
C6 | 0.51643 (13) | 0.05963 (16) | −0.20017 (9) | 0.0115 (3) | |
C7 | 0.52375 (13) | 0.17934 (17) | −0.12730 (9) | 0.0127 (3) | |
C8 | 0.68511 (14) | 0.52860 (17) | −0.10081 (9) | 0.0133 (3) | |
H8A | 0.7178 | 0.5333 | −0.1590 | 0.016* | |
C9 | 0.71871 (13) | 0.64765 (17) | −0.03369 (9) | 0.0127 (3) | |
C10 | 0.78103 (14) | 0.78203 (17) | −0.06151 (10) | 0.0148 (3) | |
H10A | 0.7962 | 0.7984 | −0.1228 | 0.018* | |
C11 | 0.82067 (14) | 0.89195 (17) | 0.00196 (10) | 0.0153 (3) | |
H11A | 0.8615 | 0.9815 | −0.0172 | 0.018* | |
C12 | 0.79915 (14) | 0.86768 (16) | 0.09385 (9) | 0.0130 (3) | |
C13 | 0.73610 (12) | 0.73180 (16) | 0.12227 (9) | 0.0114 (3) | |
C14 | 0.69530 (14) | 0.62378 (17) | 0.05952 (10) | 0.0127 (3) | |
H14A | 0.6526 | 0.5356 | 0.0786 | 0.015* | |
C15 | 0.67731 (14) | 0.57037 (17) | 0.24666 (10) | 0.0159 (3) | |
H15A | 0.6747 | 0.5713 | 0.3117 | 0.024* | |
H15B | 0.7295 | 0.4869 | 0.2265 | 0.024* | |
H15C | 0.5961 | 0.5549 | 0.2232 | 0.024* | |
H1N1 | 0.638 (2) | 0.311 (2) | −0.1935 (17) | 0.018 (5)* | |
H1O1 | 0.501 (2) | −0.252 (3) | −0.442 (2) | 0.043 (8)* | |
H1O4 | 0.890 (2) | 1.034 (3) | 0.138 (2) | 0.033 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0328 (6) | 0.0102 (5) | 0.0099 (4) | 0.0016 (4) | −0.0035 (4) | −0.0002 (4) |
O2 | 0.0279 (6) | 0.0167 (5) | 0.0109 (4) | −0.0050 (4) | 0.0046 (4) | −0.0017 (4) |
O3 | 0.0187 (5) | 0.0131 (5) | 0.0088 (4) | −0.0029 (4) | 0.0002 (4) | 0.0007 (3) |
O4 | 0.0272 (6) | 0.0118 (5) | 0.0125 (4) | −0.0068 (4) | −0.0022 (4) | −0.0013 (4) |
N1 | 0.0181 (5) | 0.0127 (5) | 0.0093 (5) | −0.0021 (4) | 0.0027 (4) | −0.0035 (4) |
N2 | 0.0181 (6) | 0.0111 (5) | 0.0099 (5) | −0.0010 (4) | −0.0003 (4) | −0.0031 (4) |
C1 | 0.0153 (6) | 0.0109 (6) | 0.0104 (5) | −0.0005 (5) | −0.0001 (5) | 0.0011 (5) |
C2 | 0.0182 (7) | 0.0101 (6) | 0.0109 (6) | −0.0001 (5) | −0.0016 (5) | 0.0000 (4) |
C3 | 0.0178 (6) | 0.0114 (6) | 0.0109 (6) | 0.0002 (5) | −0.0012 (5) | −0.0009 (5) |
C4 | 0.0228 (7) | 0.0106 (6) | 0.0111 (6) | −0.0009 (5) | −0.0013 (5) | 0.0014 (5) |
C5 | 0.0190 (7) | 0.0127 (7) | 0.0096 (5) | −0.0011 (5) | −0.0010 (5) | 0.0005 (5) |
C6 | 0.0142 (6) | 0.0109 (6) | 0.0095 (5) | −0.0012 (5) | 0.0001 (5) | −0.0019 (5) |
C7 | 0.0159 (6) | 0.0120 (6) | 0.0104 (6) | 0.0003 (5) | −0.0003 (5) | −0.0014 (5) |
C8 | 0.0165 (7) | 0.0137 (6) | 0.0099 (5) | 0.0002 (5) | 0.0003 (5) | −0.0017 (4) |
C9 | 0.0152 (6) | 0.0127 (6) | 0.0101 (5) | −0.0003 (5) | −0.0007 (4) | −0.0015 (4) |
C10 | 0.0192 (7) | 0.0141 (6) | 0.0112 (5) | −0.0019 (5) | 0.0010 (5) | −0.0003 (5) |
C11 | 0.0212 (7) | 0.0122 (6) | 0.0125 (6) | −0.0026 (5) | 0.0003 (5) | 0.0006 (5) |
C12 | 0.0174 (6) | 0.0104 (6) | 0.0111 (5) | −0.0001 (5) | −0.0008 (5) | −0.0008 (5) |
C13 | 0.0135 (6) | 0.0110 (6) | 0.0099 (6) | 0.0003 (5) | −0.0003 (5) | 0.0008 (4) |
C14 | 0.0142 (6) | 0.0117 (6) | 0.0122 (5) | −0.0015 (5) | 0.0000 (5) | 0.0004 (5) |
C15 | 0.0211 (7) | 0.0145 (6) | 0.0119 (6) | −0.0026 (5) | 0.0010 (5) | 0.0030 (5) |
O1—C3 | 1.3698 (17) | C4—H4A | 0.9300 |
O1—H1O1 | 0.82 (3) | C5—C6 | 1.393 (2) |
O2—C7 | 1.2377 (18) | C5—H5A | 0.9300 |
O3—C13 | 1.3729 (16) | C6—C7 | 1.4862 (18) |
O3—C15 | 1.4318 (17) | C8—C9 | 1.4664 (18) |
O4—C12 | 1.3637 (17) | C8—H8A | 0.9300 |
O4—H1O4 | 0.86 (3) | C9—C10 | 1.397 (2) |
N1—C7 | 1.3584 (19) | C9—C14 | 1.4127 (18) |
N1—N2 | 1.3859 (15) | C10—C11 | 1.395 (2) |
N1—H1N1 | 0.84 (2) | C10—H10A | 0.9300 |
N2—C8 | 1.2844 (19) | C11—C12 | 1.3905 (19) |
C1—C2 | 1.3900 (19) | C11—H11A | 0.9300 |
C1—C6 | 1.3995 (19) | C12—C13 | 1.4139 (19) |
C1—H1A | 0.9300 | C13—C14 | 1.3811 (19) |
C2—C3 | 1.400 (2) | C14—H14A | 0.9300 |
C2—H2A | 0.9300 | C15—H15A | 0.9600 |
C3—C4 | 1.4008 (19) | C15—H15B | 0.9600 |
C4—C5 | 1.3943 (19) | C15—H15C | 0.9600 |
C3—O1—H1O1 | 104 (2) | N2—C8—C9 | 120.42 (12) |
C13—O3—C15 | 116.36 (11) | N2—C8—H8A | 119.8 |
C12—O4—H1O4 | 110.3 (18) | C9—C8—H8A | 119.8 |
C7—N1—N2 | 118.39 (11) | C10—C9—C14 | 119.50 (12) |
C7—N1—H1N1 | 122.1 (14) | C10—C9—C8 | 119.66 (12) |
N2—N1—H1N1 | 118.1 (14) | C14—C9—C8 | 120.73 (12) |
C8—N2—N1 | 114.84 (11) | C11—C10—C9 | 120.55 (13) |
C2—C1—C6 | 120.95 (13) | C11—C10—H10A | 119.7 |
C2—C1—H1A | 119.5 | C9—C10—H10A | 119.7 |
C6—C1—H1A | 119.5 | C12—C11—C10 | 120.04 (14) |
C1—C2—C3 | 119.35 (13) | C12—C11—H11A | 120.0 |
C1—C2—H2A | 120.3 | C10—C11—H11A | 120.0 |
C3—C2—H2A | 120.3 | O4—C12—C11 | 123.74 (13) |
O1—C3—C2 | 122.42 (13) | O4—C12—C13 | 116.61 (12) |
O1—C3—C4 | 117.47 (13) | C11—C12—C13 | 119.57 (13) |
C2—C3—C4 | 120.11 (13) | O3—C13—C14 | 124.78 (12) |
C5—C4—C3 | 119.82 (14) | O3—C13—C12 | 114.65 (12) |
C5—C4—H4A | 120.1 | C14—C13—C12 | 120.53 (12) |
C3—C4—H4A | 120.1 | C13—C14—C9 | 119.79 (13) |
C6—C5—C4 | 120.40 (13) | C13—C14—H14A | 120.1 |
C6—C5—H5A | 119.8 | C9—C14—H14A | 120.1 |
C4—C5—H5A | 119.8 | O3—C15—H15A | 109.5 |
C5—C6—C1 | 119.33 (13) | O3—C15—H15B | 109.5 |
C5—C6—C7 | 117.78 (12) | H15A—C15—H15B | 109.5 |
C1—C6—C7 | 122.89 (13) | O3—C15—H15C | 109.5 |
O2—C7—N1 | 123.04 (13) | H15A—C15—H15C | 109.5 |
O2—C7—C6 | 121.53 (13) | H15B—C15—H15C | 109.5 |
N1—C7—C6 | 115.41 (12) | ||
C7—N1—N2—C8 | 174.70 (13) | N2—C8—C9—C10 | −168.42 (14) |
C6—C1—C2—C3 | −1.0 (2) | N2—C8—C9—C14 | 15.4 (2) |
C1—C2—C3—O1 | −178.53 (13) | C14—C9—C10—C11 | 0.3 (2) |
C1—C2—C3—C4 | 1.3 (2) | C8—C9—C10—C11 | −175.92 (14) |
O1—C3—C4—C5 | 179.95 (13) | C9—C10—C11—C12 | 0.5 (2) |
C2—C3—C4—C5 | 0.1 (2) | C10—C11—C12—O4 | 176.23 (14) |
C3—C4—C5—C6 | −1.9 (2) | C10—C11—C12—C13 | −0.5 (2) |
C4—C5—C6—C1 | 2.2 (2) | C15—O3—C13—C14 | 6.3 (2) |
C4—C5—C6—C7 | −177.19 (13) | C15—O3—C13—C12 | −171.28 (12) |
C2—C1—C6—C5 | −0.8 (2) | O4—C12—C13—O3 | 0.37 (18) |
C2—C1—C6—C7 | 178.59 (13) | C11—C12—C13—O3 | 177.34 (14) |
N2—N1—C7—O2 | 2.8 (2) | O4—C12—C13—C14 | −177.32 (13) |
N2—N1—C7—C6 | −175.54 (12) | C11—C12—C13—C14 | −0.3 (2) |
C5—C6—C7—O2 | −34.2 (2) | O3—C13—C14—C9 | −176.25 (13) |
C1—C6—C7—O2 | 146.44 (15) | C12—C13—C14—C9 | 1.2 (2) |
C5—C6—C7—N1 | 144.17 (13) | C10—C9—C14—C13 | −1.2 (2) |
C1—C6—C7—N1 | −35.2 (2) | C8—C9—C14—C13 | 175.02 (13) |
N1—N2—C8—C9 | −175.73 (12) |
Cg1 is the centroid of the C1–C6 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O3i | 0.84 (2) | 2.18 (2) | 2.9534 (16) | 153.0 (17) |
N1—H1N1···O4i | 0.84 (2) | 2.53 (2) | 3.2252 (16) | 140.0 (17) |
O1—H1O1···O2ii | 0.81 (3) | 1.84 (3) | 2.6361 (15) | 165 (2) |
O4—H1O4···O1iii | 0.87 (2) | 1.89 (2) | 2.7457 (16) | 170 (3) |
C2—H2A···O2ii | 0.93 | 2.45 | 3.1271 (17) | 129 |
C15—H15B···Cg1iv | 0.96 | 2.81 | 3.5620 (14) | 132 |
Symmetry codes: (i) −x+3/2, y−1/2, z−1/2; (ii) −x+1, −y, z−1/2; (iii) −x+3/2, y+3/2, z+1/2; (iv) x+3/2, −y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C15H14N2O4 |
Mr | 286.28 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 100 |
a, b, c (Å) | 10.9034 (3), 8.5533 (2), 14.7437 (4) |
V (Å3) | 1375.00 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.43 × 0.34 × 0.16 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.958, 0.984 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8269, 2098, 2033 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.706 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.087, 1.03 |
No. of reflections | 2098 |
No. of parameters | 203 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.35, −0.33 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008 and PLATON (Spek, 2009).
Cg1 is the centroid of the C1–C6 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O3i | 0.84 (2) | 2.18 (2) | 2.9534 (16) | 153.0 (17) |
N1—H1N1···O4i | 0.84 (2) | 2.53 (2) | 3.2252 (16) | 140.0 (17) |
O1—H1O1···O2ii | 0.81 (3) | 1.84 (3) | 2.6361 (15) | 165 (2) |
O4—H1O4···O1iii | 0.87 (2) | 1.89 (2) | 2.7457 (16) | 170 (3) |
C2—H2A···O2ii | 0.9300 | 2.4500 | 3.1271 (17) | 129.00 |
C15—H15B···Cg1iv | 0.9600 | 2.8100 | 3.5620 (14) | 132.00 |
Symmetry codes: (i) −x+3/2, y−1/2, z−1/2; (ii) −x+1, −y, z−1/2; (iii) −x+3/2, y+3/2, z+1/2; (iv) x+3/2, −y+1/2, z. |
Acknowledgements
MS, AS and RA acknowledge financial support by the Universiti Sains Malaysia (USM) under Science Fund Grant No. 1001/PKIMIA/811055. HKF and CSY thank USM for the Research University Grant No. 1001/PFIZIK/811160.
References
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360. CrossRef CAS Web of Science Google Scholar
Hall, L. H., Mohney, B. K. & Kier, L. B. (1993). Quant. Struct. Act. Relat. 12, 44–48. CrossRef CAS Web of Science Google Scholar
Parashar, R. K., Sharma, R. C., Kumar, A. & Mohan, G. (1988). Inorg. Chim. Acta, 151, 201–208. CrossRef CAS Web of Science Google Scholar
Salhin, A., Abdul Razak, N. & Rahman, I. A. (2009). Acta Cryst. E65, o1221–o1222. Web of Science CSD CrossRef IUCr Journals Google Scholar
Salhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tameem, A. A., Saad, B., Salhin, A. M., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o679–o680. Web of Science CrossRef IUCr Journals Google Scholar
Tameem, A. A., Salhin, A., Saad, B., Rahman, I. A., Saleh, M. I., Ng, S.-L. & Fun, H.-K. (2006). Acta Cryst. E62, o5686–o5688. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tameem, A. A., Salhin, A., Saad, B., Rahman, I. A., Saleh, M. I., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o57–o58. Web of Science CSD CrossRef IUCr Journals Google Scholar
Waisser, K., Houngbedji, N., Odlerova, Z., Thiel, W. & Mayer, R. (1990). Pharmazie, 45, 141–142. CAS PubMed Web of Science Google Scholar
Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316. Web of Science PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Syntheses based on Schiff bases have become a major attraction in Chemistry because these products are well known for their pharmacological properties such as anti-tumor, anti-bacterial, anti-oxidant (Zia-ur-Rehman et al., 2009; Parashar et al., 1988) and photochromic activities (Hadjoudis et al., 1987). Many hydrazide derivatives known to have significant biological activities such as monoamine oxidase inhibitory activity, antifungal and tuberculostatic activity (Waisser et al., 1990; Hall et al., 1993). Continuing our interest on the synthesis and application of hydrazone and hydrazide derivatives (Salhin et al., 2007, 2009; Tameem et al., 2006, 2007, 2008), compound (I) (Fig. 1) was hereby synthesized based on Schiff bases by the condensation reaction of 4-hydroxybenzhydrazide and 4-hydroxy-3-methoxybenzaldehyde. The crystal structure is presented here.
The N═C double bond of (I) exist in an E-configuration. The two benzene rings make dihedral angle of 28.59 (6)°. The methoxy group is almost planar with its attached benzene ring [torsion angle 6.3 (2)°]. In the crystal packing, the molecules are linked into a three-dimensional network by intermolecular N—H···O, O—H···O and C—H···O hydrogen bonds and stabilized by weak C—H···π interactions (Fig. 2, Table 1).