organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­bromo-3-(5-nitro-2-fur­yl)-1-(4-nitro­phen­yl)propan-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 2 November 2010; accepted 2 November 2010; online 13 November 2010)

In the title compound, C13H8Br2N2O6, the 2-furyl ring is essentially planar, with a maximum deviation of 0.002 (2) Å. It is inclined at an angle of 33.94 (9)° to the benzene ring. Both nitro groups are slightly twisted away from their attached rings; the dihedral angles are 4.6 (2)° between the nitro group and the 2-furyl ring, and 13.72 (19)° between the nitro group and the benzene ring. In the crystal, mol­ecules are linked into chains along [110] and [1[\overline{1}]0] via two pairs of inter­molecular C—H⋯O hydrogen bonds, displaying R22(10) ring motifs.

Related literature

For general background to and the biological activity of nitro­furans, see: Holla et al. (1986[Holla, B. S., Kalluraya, B. & Shridhar, K. R. (1986). Curr. Sci. 55, 73-76.], 1987[Holla, B. S., Kalluraya, B. & Shridhar, K. R. (1987). Curr. Sci. 56, 236-238.], 1992[Holla, B. S., Kalluraya, B. & Shridhar, K. R. (1992). Rev. Roum. Chim. 37, 1159-1164.]). For the preparation of title compound, see: Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a related structure, see: Fun et al. (2010[Fun, H.-K., Quah, C. K., Nithinchandra, & Kalluraya, B. (2010). Acta Cryst. E66, o3031-o3032.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8Br2N2O6

  • Mr = 448.03

  • Monoclinic, P 21 /c

  • a = 12.1902 (2) Å

  • b = 12.2006 (2) Å

  • c = 9.9761 (2) Å

  • β = 96.282 (1)°

  • V = 1474.81 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.53 mm−1

  • T = 100 K

  • 0.48 × 0.36 × 0.30 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.176, Tmax = 0.291

  • 22940 measured reflections

  • 5315 independent reflections

  • 4546 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.066

  • S = 1.02

  • 5315 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O5i 0.93 2.48 3.211 (2) 136
C12—H12A⋯O3ii 0.93 2.43 3.317 (2) 160
Symmetry codes: (i) -x+3, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Nitrofurans are class of synthetic compounds characterized by the presence of 5-nitro-2-furyl group. The presence of nitro group in the position-5 of the molecule conferred antibacterial activity (Holla et al., 1986). A number of nitrofurans have attained utility as antibacterial agents in humans and in veterinary medicine because of their broad spectrum of activity (Holla et al., 1992; Holla et al., 1987). 1-Aryl-3-(5-nitro-2-furyl)-2-propyn-1-ones were prepared by the hydrobromination of 2,3-dibromo-1-aryl-3-(5-nitro-2-furyl)-2-propan-1-ones in the presence of triethylamine in benzene medium. The dibromopropanones were in turn obtained by the bromination of 1-aryl-3-(5-nitro-2-furyl)-2-propen-1-ones. Acid-catalysed condensation of acetophenones with 5-nitrofuraldiacetate in acetic acid yielded the required 1-aryl-3-(5-nitro-2-furyl)-2-propen-1-ones called chalcones (Rai et al., 2008).

In the title molecule (Fig. 1), the 2-furyl (O2/C10-C13) ring is essentially planar (maximum deviation = 0.002 (2) Å for atoms C11, C12 and C13) and is inclined at an angle of 33.94 (9) ° with the phenyl ring (C1-C6). Both nitro groups (N1/O3/O4 and N2/O5/O6) are slightly twisted away from the attached rings [the dihedral angles are 4.6 (2)° between nitro group and 2-fury ring and 13.72 (19)° between nitro group and phenyl ring]. Bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to a related structure (Fun et al., 2010).

In the crystal packing (Fig. 2), the molecules are linked into one-dimensional chains along [110] and [1-10] via pairs of intermolecular C2–H2A···O5 and C12–H12A···O3 hydrogen bonds, displaying R22(10) ring motifs (Bernstein et al., 1995).

Related literature top

For general background to and the biological activity of nitrofurans, see: Holla et al. (1986, 1987, 1992). For the preparation of title compound, see: Rai et al. (2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For a related structure, see: Fun et al. (2010).

Experimental top

1-(p-Nitrophenyl)-3-(5-nitro-2-furyl)-2-propen-1-one (0.01 mol) was dissolved in glacial acetic acid (25 ml) by gentle warming. A solution of bromine in glacial acetic acid (30% [w/v]) was added to it with constant stirring till yellow color of the bromine persisted. The reaction mixture was kept aside at room temperature for overnight. Crystals of dibromopropanones separated out were collected by filtration and washed with ethanol and dried. It was then recrystallized from glacial acetic acid. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93–0.98 Å and Uiso(H) = 1.2 Ueq(C). The highest residual electron density peak is located at 0.70 Å from Br1 and the deepest hole is located at 0.53 Å from Br2.

Structure description top

Nitrofurans are class of synthetic compounds characterized by the presence of 5-nitro-2-furyl group. The presence of nitro group in the position-5 of the molecule conferred antibacterial activity (Holla et al., 1986). A number of nitrofurans have attained utility as antibacterial agents in humans and in veterinary medicine because of their broad spectrum of activity (Holla et al., 1992; Holla et al., 1987). 1-Aryl-3-(5-nitro-2-furyl)-2-propyn-1-ones were prepared by the hydrobromination of 2,3-dibromo-1-aryl-3-(5-nitro-2-furyl)-2-propan-1-ones in the presence of triethylamine in benzene medium. The dibromopropanones were in turn obtained by the bromination of 1-aryl-3-(5-nitro-2-furyl)-2-propen-1-ones. Acid-catalysed condensation of acetophenones with 5-nitrofuraldiacetate in acetic acid yielded the required 1-aryl-3-(5-nitro-2-furyl)-2-propen-1-ones called chalcones (Rai et al., 2008).

In the title molecule (Fig. 1), the 2-furyl (O2/C10-C13) ring is essentially planar (maximum deviation = 0.002 (2) Å for atoms C11, C12 and C13) and is inclined at an angle of 33.94 (9) ° with the phenyl ring (C1-C6). Both nitro groups (N1/O3/O4 and N2/O5/O6) are slightly twisted away from the attached rings [the dihedral angles are 4.6 (2)° between nitro group and 2-fury ring and 13.72 (19)° between nitro group and phenyl ring]. Bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to a related structure (Fun et al., 2010).

In the crystal packing (Fig. 2), the molecules are linked into one-dimensional chains along [110] and [1-10] via pairs of intermolecular C2–H2A···O5 and C12–H12A···O3 hydrogen bonds, displaying R22(10) ring motifs (Bernstein et al., 1995).

For general background to and the biological activity of nitrofurans, see: Holla et al. (1986, 1987, 1992). For the preparation of title compound, see: Rai et al. (2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For a related structure, see: Fun et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
2,3-Dibromo-3-(5-nitro-2-furyl)-1-(4-nitrophenyl)propan-1-one top
Crystal data top
C13H8Br2N2O6F(000) = 872
Mr = 448.03Dx = 2.018 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9181 reflections
a = 12.1902 (2) Åθ = 2.7–35.0°
b = 12.2006 (2) ŵ = 5.53 mm1
c = 9.9761 (2) ÅT = 100 K
β = 96.282 (1)°Block, light yellow
V = 1474.81 (5) Å30.48 × 0.36 × 0.30 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5315 independent reflections
Radiation source: fine-focus sealed tube4546 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 32.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1817
Tmin = 0.176, Tmax = 0.291k = 1818
22940 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0329P)2 + 0.6835P]
where P = (Fo2 + 2Fc2)/3
5315 reflections(Δ/σ)max = 0.003
208 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C13H8Br2N2O6V = 1474.81 (5) Å3
Mr = 448.03Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1902 (2) ŵ = 5.53 mm1
b = 12.2006 (2) ÅT = 100 K
c = 9.9761 (2) Å0.48 × 0.36 × 0.30 mm
β = 96.282 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5315 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4546 reflections with I > 2σ(I)
Tmin = 0.176, Tmax = 0.291Rint = 0.027
22940 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.02Δρmax = 0.84 e Å3
5315 reflectionsΔρmin = 0.47 e Å3
208 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.041889 (15)0.421114 (15)0.681600 (19)0.03228 (5)
Br20.885347 (14)0.105613 (13)0.491276 (17)0.02690 (5)
O11.09576 (10)0.14526 (11)0.72205 (13)0.0308 (3)
O20.79177 (9)0.35369 (9)0.44313 (11)0.0231 (2)
O30.57672 (11)0.52110 (12)0.31188 (15)0.0376 (3)
O40.71217 (11)0.44726 (12)0.21746 (13)0.0343 (3)
O51.58062 (10)0.13853 (11)0.42438 (14)0.0334 (3)
O61.51706 (11)0.26900 (12)0.29087 (14)0.0335 (3)
N10.66040 (12)0.46327 (12)0.31406 (15)0.0274 (3)
N21.50858 (11)0.20428 (12)0.38341 (14)0.0251 (3)
C11.28637 (13)0.12333 (13)0.59042 (16)0.0235 (3)
H1A1.26910.06640.64640.028*
C21.38425 (14)0.12046 (13)0.53263 (17)0.0246 (3)
H2A1.43370.06280.54930.030*
C31.40608 (12)0.20650 (13)0.44904 (16)0.0219 (3)
C41.33605 (14)0.29473 (13)0.42338 (17)0.0253 (3)
H4A1.35400.35150.36760.030*
C51.23848 (14)0.29687 (13)0.48241 (16)0.0252 (3)
H5A1.19000.35550.46650.030*
C61.21302 (13)0.21085 (13)0.56577 (15)0.0218 (3)
C71.10791 (13)0.20769 (14)0.62976 (16)0.0239 (3)
C81.01418 (13)0.28532 (13)0.57771 (16)0.0227 (3)
H8A1.01580.29950.48120.027*
C90.90304 (13)0.23822 (13)0.60376 (16)0.0222 (3)
H9A0.90640.21680.69880.027*
C100.80678 (13)0.31058 (13)0.57093 (15)0.0222 (3)
C110.72425 (13)0.34199 (13)0.64346 (16)0.0245 (3)
H11A0.71660.32340.73240.029*
C120.65187 (14)0.40878 (14)0.55717 (17)0.0258 (3)
H12A0.58730.44250.57730.031*
C130.69716 (13)0.41271 (13)0.43947 (16)0.0233 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03186 (10)0.03185 (9)0.03482 (10)0.00803 (6)0.01125 (7)0.01036 (7)
Br20.02422 (8)0.02524 (8)0.03086 (9)0.00128 (5)0.00126 (6)0.00446 (6)
O10.0231 (6)0.0417 (7)0.0277 (6)0.0014 (5)0.0023 (5)0.0128 (5)
O20.0209 (5)0.0286 (5)0.0210 (5)0.0039 (4)0.0068 (4)0.0037 (4)
O30.0334 (7)0.0421 (7)0.0381 (7)0.0164 (6)0.0073 (6)0.0102 (6)
O40.0344 (7)0.0457 (7)0.0241 (6)0.0072 (6)0.0086 (5)0.0075 (5)
O50.0231 (6)0.0371 (6)0.0404 (7)0.0058 (5)0.0059 (5)0.0039 (5)
O60.0285 (6)0.0407 (7)0.0329 (6)0.0017 (5)0.0104 (5)0.0080 (5)
N10.0259 (7)0.0302 (7)0.0265 (7)0.0032 (5)0.0049 (5)0.0045 (5)
N20.0208 (6)0.0291 (6)0.0255 (6)0.0010 (5)0.0034 (5)0.0026 (5)
C10.0233 (7)0.0232 (6)0.0238 (7)0.0010 (5)0.0013 (6)0.0015 (5)
C20.0238 (7)0.0234 (7)0.0265 (7)0.0020 (5)0.0026 (6)0.0003 (6)
C30.0193 (6)0.0252 (7)0.0215 (7)0.0010 (5)0.0027 (5)0.0026 (5)
C40.0254 (7)0.0276 (7)0.0237 (7)0.0019 (6)0.0057 (6)0.0033 (6)
C50.0254 (7)0.0277 (7)0.0228 (7)0.0044 (6)0.0045 (6)0.0045 (6)
C60.0196 (7)0.0271 (7)0.0187 (6)0.0002 (5)0.0019 (5)0.0009 (5)
C70.0204 (7)0.0302 (7)0.0207 (7)0.0005 (5)0.0009 (5)0.0017 (5)
C80.0212 (7)0.0270 (7)0.0205 (6)0.0004 (5)0.0051 (5)0.0008 (5)
C90.0202 (7)0.0256 (7)0.0212 (7)0.0007 (5)0.0037 (5)0.0003 (5)
C100.0212 (7)0.0263 (7)0.0198 (7)0.0017 (5)0.0054 (5)0.0016 (5)
C110.0233 (7)0.0294 (7)0.0218 (7)0.0016 (6)0.0073 (6)0.0006 (6)
C120.0243 (7)0.0282 (7)0.0262 (7)0.0049 (6)0.0080 (6)0.0013 (6)
C130.0217 (7)0.0251 (7)0.0238 (7)0.0038 (5)0.0054 (5)0.0015 (5)
Geometric parameters (Å, º) top
Br1—C81.9639 (16)C3—C41.380 (2)
Br2—C91.9674 (16)C4—C51.384 (2)
O1—C71.216 (2)C4—H4A0.9300
O2—C131.3567 (19)C5—C61.395 (2)
O2—C101.3728 (18)C5—H5A0.9300
O3—N11.2385 (19)C6—C71.493 (2)
O4—N11.2240 (19)C7—C81.531 (2)
O5—N21.2260 (19)C8—C91.520 (2)
O6—N21.2277 (19)C8—H8A0.9800
N1—C131.423 (2)C9—C101.476 (2)
N2—C31.473 (2)C9—H9A0.9800
C1—C21.381 (2)C10—C111.357 (2)
C1—C61.397 (2)C11—C121.420 (2)
C1—H1A0.9300C11—H11A0.9300
C2—C31.384 (2)C12—C131.352 (2)
C2—H2A0.9300C12—H12A0.9300
C13—O2—C10104.77 (12)O1—C7—C8119.74 (15)
O4—N1—O3124.87 (15)C6—C7—C8118.86 (13)
O4—N1—C13118.89 (14)C9—C8—C7110.75 (13)
O3—N1—C13116.23 (14)C9—C8—Br1109.50 (10)
O5—N2—O6123.74 (15)C7—C8—Br1105.31 (10)
O5—N2—C3118.38 (14)C9—C8—H8A110.4
O6—N2—C3117.88 (14)C7—C8—H8A110.4
C2—C1—C6120.76 (15)Br1—C8—H8A110.4
C2—C1—H1A119.6C10—C9—C8115.96 (13)
C6—C1—H1A119.6C10—C9—Br2109.29 (11)
C1—C2—C3117.64 (15)C8—C9—Br2104.92 (10)
C1—C2—H2A121.2C10—C9—H9A108.8
C3—C2—H2A121.2C8—C9—H9A108.8
C4—C3—C2123.18 (15)Br2—C9—H9A108.8
C4—C3—N2118.00 (14)C11—C10—O2110.84 (13)
C2—C3—N2118.82 (14)C11—C10—C9131.93 (15)
C3—C4—C5118.60 (15)O2—C10—C9117.20 (13)
C3—C4—H4A120.7C10—C11—C12106.65 (14)
C5—C4—H4A120.7C10—C11—H11A126.7
C4—C5—C6119.81 (15)C12—C11—H11A126.7
C4—C5—H5A120.1C13—C12—C11105.13 (14)
C6—C5—H5A120.1C13—C12—H12A127.4
C5—C6—C1120.00 (15)C11—C12—H12A127.4
C5—C6—C7122.11 (14)C12—C13—O2112.62 (14)
C1—C6—C7117.88 (14)C12—C13—N1131.29 (15)
O1—C7—C6121.40 (15)O2—C13—N1116.03 (14)
C6—C1—C2—C30.6 (2)C7—C8—C9—C10173.89 (13)
C1—C2—C3—C41.2 (2)Br1—C8—C9—C1058.18 (16)
C1—C2—C3—N2178.53 (14)C7—C8—C9—Br265.45 (14)
O5—N2—C3—C4166.33 (15)Br1—C8—C9—Br2178.84 (7)
O6—N2—C3—C413.4 (2)C13—O2—C10—C110.01 (18)
O5—N2—C3—C213.9 (2)C13—O2—C10—C9178.03 (14)
O6—N2—C3—C2166.39 (15)C8—C9—C10—C11128.74 (19)
C2—C3—C4—C50.9 (2)Br2—C9—C10—C11112.98 (18)
N2—C3—C4—C5178.81 (14)C8—C9—C10—O253.73 (19)
C3—C4—C5—C60.0 (2)Br2—C9—C10—O264.55 (16)
C4—C5—C6—C10.6 (2)O2—C10—C11—C120.22 (19)
C4—C5—C6—C7178.69 (15)C9—C10—C11—C12177.43 (17)
C2—C1—C6—C50.3 (2)C10—C11—C12—C130.34 (19)
C2—C1—C6—C7179.02 (15)C11—C12—C13—O20.35 (19)
C5—C6—C7—O1165.16 (17)C11—C12—C13—N1177.30 (17)
C1—C6—C7—O115.6 (2)C10—O2—C13—C120.22 (18)
C5—C6—C7—C814.6 (2)C10—O2—C13—N1177.67 (14)
C1—C6—C7—C8164.68 (14)O4—N1—C13—C12173.83 (18)
O1—C7—C8—C926.5 (2)O3—N1—C13—C126.2 (3)
C6—C7—C8—C9153.73 (14)O4—N1—C13—O23.0 (2)
O1—C7—C8—Br191.78 (16)O3—N1—C13—O2176.98 (15)
C6—C7—C8—Br187.98 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O5i0.932.483.211 (2)136
C12—H12A···O3ii0.932.433.317 (2)160
Symmetry codes: (i) x+3, y, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H8Br2N2O6
Mr448.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.1902 (2), 12.2006 (2), 9.9761 (2)
β (°) 96.282 (1)
V3)1474.81 (5)
Z4
Radiation typeMo Kα
µ (mm1)5.53
Crystal size (mm)0.48 × 0.36 × 0.30
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.176, 0.291
No. of measured, independent and
observed [I > 2σ(I)] reflections
22940, 5315, 4546
Rint0.027
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.066, 1.02
No. of reflections5315
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.47

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O5i0.932.483.211 (2)136
C12—H12A···O3ii0.932.433.317 (2)160
Symmetry codes: (i) x+3, y, z+1; (ii) x+1, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors wish to express their thanks to the Universiti Sains Malysia (USM) for providing research facilities. HKF and CKQ also thank USM for the Research University Grant (No. 1001/PFIZIK/811160). CKQ also thanks USM for the award of a USM fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nithinchandra, & Kalluraya, B. (2010). Acta Cryst. E66, o3031–o3032.  Google Scholar
First citationHolla, B. S., Kalluraya, B. & Shridhar, K. R. (1986). Curr. Sci. 55, 73–76.  CAS Google Scholar
First citationHolla, B. S., Kalluraya, B. & Shridhar, K. R. (1987). Curr. Sci. 56, 236–238.  CAS Google Scholar
First citationHolla, B. S., Kalluraya, B. & Shridhar, K. R. (1992). Rev. Roum. Chim. 37, 1159–1164.  CAS Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds