organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­cyclo­hexyl­ammonium 3-[(hy­dr­oxy­meth­yl)carbamo­yl]propano­ate

aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: venkates@nitt.edu,helen.stoeckli-evans@unine.ch

(Received 2 November 2010; accepted 2 November 2010; online 6 November 2010)

The title compound, C12H24N+·C5H8NO4, contains one dicyclo­hexyl­ammonium cation and one 3-[(hy­droxy­meth­yl)carbamo­yl]propano­ate anion in the asymmetric unit. In the crystal, the ions are linked by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds, forming chains propagating along [100].

Related literature

For the biological activity of succinimide derivatives, see: Argay et al. (1999[Argay, G., Fábián, L. & Kálmán, A. (1999). Croat. Chem. Acta, 72, 551-565.]). For the preparation of the Mannich base 1-[(dicyclo­hexyl­amino)­meth­yl]pyrrolidine-2,5-dione, see: Tra­montini (1973[Tramontini, M. (1973). Synthesis, 12, 703-775.]); Tramontini & Angliolini (1990[Tramontini, M. & Angliolini, L. (1990). Tetrahedron, 46, 1791-1837.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H24N+·C5H8NO4

  • Mr = 328.45

  • Monoclinic, P 21 /n

  • a = 5.6844 (5) Å

  • b = 17.7967 (12) Å

  • c = 18.4264 (16) Å

  • β = 95.495 (7)°

  • V = 1855.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.45 × 0.45 × 0.13 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.714, Tmax = 1.000

  • 11855 measured reflections

  • 3941 independent reflections

  • 2568 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.095

  • S = 0.93

  • 3941 reflections

  • 225 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.892 (17) 2.597 (17) 3.285 (2) 134.7 (14)
N1—H1A⋯O2i 0.892 (17) 1.975 (17) 2.8546 (18) 168.7 (15)
N1—H1B⋯O1ii 0.95 (2) 1.80 (2) 2.740 (2) 174.3 (17)
N2—H2N⋯O2iii 0.829 (17) 2.069 (17) 2.8914 (18) 171.1 (16)
O4—H4O⋯O3iii 0.88 (2) 1.78 (2) 2.6423 (16) 166.4 (19)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z.

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2009[Stoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The pyrrolidine skeleton occurs in many families of biologically important compounds, and several succinimide derivatives are important in biology due to their antepileptic, anticonvulsive, fungicidal and other pharmalogical properties (Argay et al. 1999). The title compound was obtained during our attempts to prepare the Mannich base 1-((dicyclohexylamino)methyl)pyrrolidine-2,5-dione according to the reported procedure (Tramontini, 1973; Tramontini & Angliolini, 1990). The anion is probably formed by the hydrolysis of succinimide to yield the amino acid, i.e. NH2COCH2CH2COOH. The formation of the the title compound can be accounted for by the reaction of this amino acid with formaldehyde and the subsequent protonation of dicyclohexylamine.

The molecular structure of the title compound is illustrated in Fig. 1. It is compossed of a dicyclohexylammonium cation and a 4-(hydroxymethylamino)-4-oxobutanoate anion. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal the cations and anions are linked via N—H···O and O—H···O hydrogen bonds involving both the cation and the anion. In this manner hydrogen bonded polymer chains are formed propagating in [100]; see Fig. 2 and Table 1 for details.

Related literature top

For the biological activity of succinimide derivatives, see: Argay et al. (1999). For the preparation of the Mannich base 1-[(dicyclohexylamino)methyl]pyrrolidine-2,5-dione, see: Tramontini (1973); Tramontini & Angliolini (1990). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Dicyclohexylamine (36.2 ml, 0.2M) was added slowly to a solution of succinimide in ethanol (19.8 g, 0.2M). A solution of formaldehyde (40%, 15 ml) was added in drops with continuous stirring of the solution. The yellowish brown compound formed was initially sticky in nature and slowly turned into a stony mass, which was then crushed to form a fine powder. This product was washed several times with acetone and was then dried in the air in an oven at 333 K and recrystallized using water.

Refinement top

The H-atoms could all be located in difference electron-density maps. The NH2, NH and OH H-atoms were freely refined. O—H = 0.88 (2) Å, N—H = 0.829 (17) - 0.95 (2) Å. The C-bound H-atoms were included in calculated positions and treated as riding: C—H = 0.99 and 1.0 Å for CH2 and CH H-atoms, respectively, with Uiso(H) = 1.2Ueq (parent C-atom).

Structure description top

The pyrrolidine skeleton occurs in many families of biologically important compounds, and several succinimide derivatives are important in biology due to their antepileptic, anticonvulsive, fungicidal and other pharmalogical properties (Argay et al. 1999). The title compound was obtained during our attempts to prepare the Mannich base 1-((dicyclohexylamino)methyl)pyrrolidine-2,5-dione according to the reported procedure (Tramontini, 1973; Tramontini & Angliolini, 1990). The anion is probably formed by the hydrolysis of succinimide to yield the amino acid, i.e. NH2COCH2CH2COOH. The formation of the the title compound can be accounted for by the reaction of this amino acid with formaldehyde and the subsequent protonation of dicyclohexylamine.

The molecular structure of the title compound is illustrated in Fig. 1. It is compossed of a dicyclohexylammonium cation and a 4-(hydroxymethylamino)-4-oxobutanoate anion. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal the cations and anions are linked via N—H···O and O—H···O hydrogen bonds involving both the cation and the anion. In this manner hydrogen bonded polymer chains are formed propagating in [100]; see Fig. 2 and Table 1 for details.

For the biological activity of succinimide derivatives, see: Argay et al. (1999). For the preparation of the Mannich base 1-[(dicyclohexylamino)methyl]pyrrolidine-2,5-dione, see: Tramontini (1973); Tramontini & Angliolini (1990). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view of the crystal packing of the title compound, showing the formation of the N—H···O and O—H···O hydrogen bonded (dashed cyan lines) polymer chain propagating in [100]; see Table 1 for details. H-atoms not involved in hydrogen bonding have been omitted for clarity.
Dicyclohexylammonium 3-[(hydroxymethyl)carbamoyl]propanoate top
Crystal data top
C12H24N+·C5H8NO4F(000) = 720
Mr = 328.45Dx = 1.176 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7150 reflections
a = 5.6844 (5) Åθ = 1.6–27.2°
b = 17.7967 (12) ŵ = 0.08 mm1
c = 18.4264 (16) ÅT = 173 K
β = 95.495 (7)°Plate, colourless
V = 1855.5 (3) Å30.45 × 0.45 × 0.13 mm
Z = 4
Data collection top
Stoe IPDS-2
diffractometer
3941 independent reflections
Radiation source: fine-focus sealed tube2568 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
φ and ω scansθmax = 26.7°, θmin = 1.6°
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
h = 67
Tmin = 0.714, Tmax = 1.000k = 2221
11855 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0463P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
3941 reflectionsΔρmax = 0.19 e Å3
225 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0046 (12)
Crystal data top
C12H24N+·C5H8NO4V = 1855.5 (3) Å3
Mr = 328.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.6844 (5) ŵ = 0.08 mm1
b = 17.7967 (12) ÅT = 173 K
c = 18.4264 (16) Å0.45 × 0.45 × 0.13 mm
β = 95.495 (7)°
Data collection top
Stoe IPDS-2
diffractometer
3941 independent reflections
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
2568 reflections with I > 2σ(I)
Tmin = 0.714, Tmax = 1.000Rint = 0.055
11855 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.19 e Å3
3941 reflectionsΔρmin = 0.16 e Å3
225 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. The H-atoms could all be located in difference electron-density maps. The NH2, NH and OH H-atoms were freely refined. O—H = 0.88 (2) Å, N—H = 0.829 (17) - 0.95 (2) Å. The C-bound H-atoms were included in calculated positions and treated as riding: C—H = 0.99 and 1.0 Å for CH2 and CH H-atoms, respectively, with Uiso(H) = 1.2Ueq (parent C-atom).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1835 (3)0.16377 (7)0.26459 (6)0.0231 (4)
C10.1626 (3)0.15553 (8)0.18284 (7)0.0240 (4)
C20.3908 (3)0.17650 (9)0.15118 (7)0.0302 (5)
C30.3685 (3)0.16325 (9)0.06882 (8)0.0337 (5)
C40.2964 (3)0.08243 (9)0.05011 (8)0.0376 (5)
C50.0679 (3)0.06210 (9)0.08250 (8)0.0360 (5)
C60.0916 (3)0.07455 (8)0.16494 (7)0.0295 (5)
C70.2441 (3)0.24038 (8)0.29523 (7)0.0268 (5)
C80.2700 (3)0.23401 (9)0.37808 (8)0.0342 (5)
C90.3228 (3)0.31025 (10)0.41315 (9)0.0418 (6)
C100.1112 (5)0.37352 (10)0.30517 (10)0.0554 (7)
C110.1319 (4)0.36647 (10)0.38784 (9)0.0461 (6)
C120.0575 (4)0.29729 (9)0.26847 (8)0.0402 (6)
O10.7522 (2)0.63034 (6)0.19198 (6)0.0350 (3)
O21.02645 (19)0.55189 (6)0.16058 (6)0.0358 (3)
O30.5058 (2)0.35217 (7)0.07565 (8)0.0589 (5)
O40.0493 (2)0.31104 (7)0.07088 (6)0.0382 (4)
N20.1841 (2)0.42193 (8)0.08447 (7)0.0317 (4)
C130.8158 (3)0.57440 (8)0.15773 (7)0.0256 (4)
C140.6297 (3)0.52971 (9)0.11060 (8)0.0292 (5)
C150.5506 (3)0.46122 (9)0.15209 (8)0.0334 (5)
C160.4109 (3)0.40679 (9)0.10178 (8)0.0324 (5)
C170.0415 (3)0.37297 (9)0.03501 (8)0.0341 (5)
H10.034100.189500.161500.0290*
H1A0.290 (3)0.1313 (10)0.2847 (8)0.027 (4)*
H1B0.038 (4)0.1508 (10)0.2824 (10)0.046 (5)*
H2A0.522300.145900.174600.0360*
H2B0.427400.230100.161500.0360*
H3A0.249100.198000.045000.0400*
H3B0.521800.174200.049700.0400*
H4A0.274300.076400.003500.0450*
H4B0.423800.047900.069400.0450*
H5A0.028900.008800.071800.0430*
H5B0.062800.093400.059600.0430*
H6A0.060900.063300.184500.0350*
H6B0.212400.040000.188400.0350*
H70.399100.256400.278800.0320*
H8A0.122100.213700.394700.0410*
H8B0.399700.198700.393500.0410*
H9A0.331900.305300.466900.0500*
H9B0.477600.328600.400000.0500*
H10A0.261000.393600.289700.0670*
H10B0.016500.409400.289400.0670*
H11A0.171000.416100.410200.0550*
H11B0.021200.349900.403800.0550*
H12A0.099900.279500.279800.0480*
H12B0.054300.302800.214900.0480*
H2N0.124 (3)0.4572 (10)0.1056 (9)0.034 (5)*
H4O0.195 (4)0.3219 (13)0.0796 (11)0.068 (7)*
H14A0.696100.513000.065500.0350*
H14B0.491600.562200.096400.0350*
H15A0.691300.435400.176200.0400*
H15B0.451900.478000.190500.0400*
H17A0.091400.402200.010500.0410*
H17B0.139000.354500.003000.0410*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0259 (7)0.0221 (7)0.0210 (6)0.0028 (6)0.0002 (5)0.0016 (5)
C10.0289 (8)0.0222 (7)0.0202 (7)0.0021 (7)0.0007 (6)0.0006 (5)
C20.0358 (9)0.0276 (8)0.0276 (7)0.0042 (7)0.0051 (6)0.0013 (6)
C30.0427 (10)0.0324 (9)0.0273 (8)0.0034 (8)0.0104 (7)0.0013 (6)
C40.0526 (11)0.0335 (9)0.0278 (8)0.0002 (8)0.0096 (7)0.0069 (7)
C50.0478 (11)0.0306 (9)0.0293 (8)0.0065 (8)0.0019 (7)0.0077 (6)
C60.0362 (9)0.0245 (8)0.0277 (7)0.0039 (7)0.0021 (6)0.0008 (6)
C70.0314 (9)0.0245 (8)0.0248 (7)0.0036 (7)0.0041 (6)0.0039 (6)
C80.0418 (10)0.0342 (9)0.0254 (7)0.0073 (8)0.0033 (7)0.0040 (6)
C90.0476 (11)0.0452 (10)0.0319 (8)0.0037 (9)0.0003 (7)0.0125 (8)
C100.0968 (18)0.0235 (9)0.0439 (10)0.0069 (10)0.0043 (10)0.0039 (7)
C110.0669 (14)0.0300 (9)0.0411 (9)0.0003 (9)0.0038 (9)0.0121 (7)
C120.0623 (12)0.0257 (9)0.0305 (8)0.0080 (9)0.0069 (8)0.0000 (6)
O10.0304 (6)0.0338 (6)0.0409 (6)0.0011 (5)0.0038 (5)0.0132 (5)
O20.0265 (6)0.0311 (6)0.0485 (6)0.0006 (5)0.0026 (5)0.0113 (5)
O30.0329 (7)0.0372 (8)0.1074 (12)0.0028 (6)0.0107 (7)0.0271 (7)
O40.0313 (7)0.0291 (6)0.0540 (7)0.0021 (6)0.0033 (6)0.0010 (5)
N20.0303 (8)0.0277 (7)0.0366 (7)0.0019 (6)0.0011 (6)0.0095 (6)
C130.0273 (8)0.0243 (8)0.0251 (7)0.0030 (7)0.0017 (6)0.0007 (6)
C140.0288 (9)0.0250 (8)0.0325 (8)0.0037 (7)0.0040 (6)0.0005 (6)
C150.0316 (9)0.0309 (9)0.0368 (8)0.0074 (8)0.0020 (7)0.0026 (7)
C160.0300 (9)0.0236 (8)0.0441 (9)0.0056 (7)0.0060 (7)0.0008 (7)
C170.0357 (9)0.0335 (9)0.0330 (8)0.0047 (8)0.0023 (7)0.0056 (7)
Geometric parameters (Å, º) top
O1—C131.2505 (18)C3—H3A0.9900
O2—C131.259 (2)C4—H4B0.9900
O3—C161.232 (2)C4—H4A0.9900
O4—C171.408 (2)C5—H5A0.9900
O4—H4O0.88 (2)C5—H5B0.9900
N1—C11.5068 (17)C6—H6B0.9900
N1—C71.5030 (19)C6—H6A0.9900
N1—H1A0.892 (17)C7—H71.0000
N1—H1B0.95 (2)C8—H8B0.9900
N2—C161.326 (2)C8—H8A0.9900
N2—C171.451 (2)C9—H9B0.9900
N2—H2N0.829 (17)C9—H9A0.9900
C1—C61.524 (2)C10—H10B0.9900
C1—C21.519 (2)C10—H10A0.9900
C2—C31.529 (2)C11—H11B0.9900
C3—C41.526 (2)C11—H11A0.9900
C4—C51.524 (2)C12—H12B0.9900
C5—C61.528 (2)C12—H12A0.9900
C7—C121.515 (2)C13—C141.526 (2)
C7—C81.524 (2)C14—C151.529 (2)
C8—C91.520 (2)C15—C161.512 (2)
C9—C111.516 (3)C14—H14A0.9900
C10—C121.533 (2)C14—H14B0.9900
C10—C111.522 (2)C15—H15A0.9900
C1—H11.0000C15—H15B0.9900
C2—H2A0.9900C17—H17A0.9900
C2—H2B0.9900C17—H17B0.9900
C3—H3B0.9900
C17—O4—H4O107.9 (15)C5—C6—H6A110.00
C1—N1—C7117.20 (11)N1—C7—H7109.00
C7—N1—H1A108.0 (11)C8—C7—H7109.00
C1—N1—H1A109.8 (10)C12—C7—H7109.00
C1—N1—H1B109.6 (11)C7—C8—H8B109.00
C7—N1—H1B105.5 (11)C9—C8—H8A109.00
H1A—N1—H1B106.2 (16)C7—C8—H8A109.00
C16—N2—C17120.06 (14)C9—C8—H8B109.00
C16—N2—H2N118.4 (12)H8A—C8—H8B108.00
C17—N2—H2N121.3 (12)C11—C9—H9B109.00
N1—C1—C2111.81 (13)H9A—C9—H9B108.00
C2—C1—C6111.55 (13)C8—C9—H9A110.00
N1—C1—C6107.59 (11)C8—C9—H9B110.00
C1—C2—C3110.53 (13)C11—C9—H9A109.00
C2—C3—C4111.38 (13)C11—C10—H10B109.00
C3—C4—C5110.84 (13)C12—C10—H10A109.00
C4—C5—C6110.95 (13)C12—C10—H10B109.00
C1—C6—C5110.40 (12)C11—C10—H10A109.00
N1—C7—C8107.79 (11)H10A—C10—H10B108.00
N1—C7—C12110.86 (13)C9—C11—H11B110.00
C8—C7—C12111.92 (13)H11A—C11—H11B108.00
C7—C8—C9110.83 (13)C10—C11—H11A110.00
C8—C9—C11110.60 (14)C9—C11—H11A110.00
C11—C10—C12111.20 (14)C10—C11—H11B110.00
C9—C11—C10110.29 (16)C10—C12—H12B110.00
C7—C12—C10110.15 (16)H12A—C12—H12B108.00
N1—C1—H1109.00C7—C12—H12B110.00
C6—C1—H1109.00C10—C12—H12A110.00
C2—C1—H1109.00C7—C12—H12A110.00
C3—C2—H2B110.00O1—C13—O2123.51 (14)
C3—C2—H2A110.00O1—C13—C14118.94 (15)
H2A—C2—H2B108.00O2—C13—C14117.55 (13)
C1—C2—H2B110.00C13—C14—C15110.60 (12)
C1—C2—H2A110.00C14—C15—C16111.49 (12)
C2—C3—H3B109.00O3—C16—N2121.23 (15)
H3A—C3—H3B108.00O3—C16—C15121.41 (15)
C4—C3—H3B109.00N2—C16—C15117.30 (14)
C2—C3—H3A109.00O4—C17—N2112.52 (12)
C4—C3—H3A109.00C13—C14—H14A110.00
C5—C4—H4B109.00C13—C14—H14B110.00
H4A—C4—H4B108.00C15—C14—H14A110.00
C5—C4—H4A109.00C15—C14—H14B110.00
C3—C4—H4A109.00H14A—C14—H14B108.00
C3—C4—H4B109.00C14—C15—H15A109.00
C4—C5—H5B109.00C14—C15—H15B109.00
H5A—C5—H5B108.00C16—C15—H15A109.00
C4—C5—H5A109.00C16—C15—H15B109.00
C6—C5—H5B109.00H15A—C15—H15B108.00
C6—C5—H5A109.00O4—C17—H17A109.00
C1—C6—H6B110.00O4—C17—H17B109.00
H6A—C6—H6B108.00N2—C17—H17A109.00
C5—C6—H6B110.00N2—C17—H17B109.00
C1—C6—H6A110.00H17A—C17—H17B108.00
C7—N1—C1—C259.28 (18)C4—C5—C6—C156.57 (17)
C7—N1—C1—C6177.90 (14)N1—C7—C8—C9177.94 (14)
C1—N1—C7—C8176.66 (14)C8—C7—C12—C1054.9 (2)
C1—N1—C7—C1260.53 (19)C12—C7—C8—C955.78 (19)
C16—N2—C17—O484.82 (17)N1—C7—C12—C10175.30 (14)
C17—N2—C16—O31.2 (2)C7—C8—C9—C1156.73 (18)
C17—N2—C16—C15178.48 (13)C8—C9—C11—C1057.9 (2)
N1—C1—C2—C3176.74 (12)C12—C10—C11—C957.7 (3)
C2—C1—C6—C556.83 (17)C11—C10—C12—C755.9 (2)
C6—C1—C2—C356.21 (16)O1—C13—C14—C1596.94 (16)
N1—C1—C6—C5179.81 (14)O2—C13—C14—C1582.16 (17)
C1—C2—C3—C455.54 (17)C13—C14—C15—C16166.86 (13)
C2—C3—C4—C555.81 (17)C14—C15—C16—O395.92 (18)
C3—C4—C5—C656.27 (17)C14—C15—C16—N281.33 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.892 (17)2.597 (17)3.285 (2)134.7 (14)
N1—H1A···O2i0.892 (17)1.975 (17)2.8546 (18)168.7 (15)
N1—H1B···O1ii0.95 (2)1.80 (2)2.740 (2)174.3 (17)
N2—H2N···O2iii0.829 (17)2.069 (17)2.8914 (18)171.1 (16)
O4—H4O···O3iii0.88 (2)1.78 (2)2.6423 (16)166.4 (19)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC12H24N+·C5H8NO4
Mr328.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)5.6844 (5), 17.7967 (12), 18.4264 (16)
β (°) 95.495 (7)
V3)1855.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.45 × 0.13
Data collection
DiffractometerStoe IPDS2
Absorption correctionMulti-scan
(MULscanABS in PLATON; Spek, 2009)
Tmin, Tmax0.714, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11855, 3941, 2568
Rint0.055
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.095, 0.93
No. of reflections3941
No. of parameters225
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.16

Computer programs: X-AREA (Stoe & Cie, 2009), X-RED32 (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.892 (17)2.597 (17)3.285 (2)134.7 (14)
N1—H1A···O2i0.892 (17)1.975 (17)2.8546 (18)168.7 (15)
N1—H1B···O1ii0.95 (2)1.80 (2)2.740 (2)174.3 (17)
N2—H2N···O2iii0.829 (17)2.069 (17)2.8914 (18)171.1 (16)
O4—H4O···O3iii0.88 (2)1.78 (2)2.6423 (16)166.4 (19)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x1, y, z.
 

Acknowledgements

The authors gratefully acknowledge Dr Panchanathee­swaran for his support and many helpful discussions. HSE thanks the X-Ray Application LAB, CSEM, Neuchâtel, for access to the X-ray diffraction equipment.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationArgay, G., Fábián, L. & Kálmán, A. (1999). Croat. Chem. Acta, 72, 551–565.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTramontini, M. (1973). Synthesis, 12, 703–775.  CrossRef Google Scholar
First citationTramontini, M. & Angliolini, L. (1990). Tetrahedron, 46, 1791–1837.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds