organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro­ethyl 2-(2-chloro­phen­yl)-2-(4,5,6,7-tetra­hydro­thieno[3,2-c]pyridin-5-yl)acetate

aMaterials Science and Engineering, Tianjin Polytechnic University, Tianjin, 300160, People's Republic of China, and bTianjin Institute of Pharmaceutical Research, Tianjin, 300193, People's Republic of China
*Correspondence e-mail: liudk@tjipr.com

(Received 4 November 2010; accepted 12 November 2010; online 17 November 2010)

The mol­ecular packing of the title compound, C17H17Cl2NO2S, is stabilized by weak C—H⋯O and C—H⋯Cl inter­actions. The ester chain is almost planar with a mean deviation of 0.0605 Å and makes dihedral angles of 71.60 (4) and 74.70 (8)° with the benzene ring and the thio­phene ring, respectively. The benzene and thio­phene rings make a dihedral angle of 84.22 (7)°.

Related literature

The title compound is a derivative of clopidogrel. For background to the bioactivity and applications of the anti­platelet agent clopidogrel, see, for example, Gurbel & Tantry (2007[Gurbel, P. A. & Tantry, U. S. (2007). Thromb. Res. 120 , 311-321.]); Muller et al. (2003[Muller, I., Besta, F., Schulz, C., Li, Z., Massberg, S. & Gawaz, M. (2003). Circulation. 108, 2195-2197.]); Savi et al. (1994[Savi, P., Combalbert, J., Gaich, C., Rouchon, M. C., Maffrand, J. P., Berger, Y. & Herbert, J. M. (1994). Thromb. Haemost. 72, 313-317.]); Sharis et al. (1998[Sharis, P. J., Cannon, C. P. & Loscalzo, J. (1998). Ann. Intern. Med. 129, 394-405.]). For the synthesis of other derivatives with thienopyridine, see: Aubert et al. (1985[Aubert, D., Ferrand, C. & Maffrand, J. P. (1985). US. Patent 4 529 596.]); Bipin et al. (2002[Bipin, P., Bhushan, L. B. & Bhushan, L. V. (2002). WO Patent 02/059128 A2.]); Bouisset & Radisson (1991[Bouisset, M. & Radisson, J. (1991). US Patent 5 036 156.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17Cl2NO2S

  • Mr = 370.28

  • Monoclinic, P 21 /n

  • a = 9.689 (1) Å

  • b = 11.2670 (12) Å

  • c = 15.5670 (16) Å

  • β = 100.509 (8)°

  • V = 1670.9 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.73 mm−1

  • T = 113 K

  • 0.26 × 0.24 × 0.20 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.373, Tmax = 0.451

  • 18109 measured reflections

  • 3203 independent reflections

  • 2974 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.107

  • S = 1.09

  • 3203 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7a⋯O1 0.99 2.53 3.140 (2) 120
C8—H8⋯Cl1 1.00 2.59 3.042 (2) 107

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]).

Supporting information


Comment top

Clopidogrel, a thienopyridine class inhibitor of P2Y12 ADP platelet receptor, has been found to be particularly useful in the treatment of coronary artery disease, peripheral vascular disease, and cerebrovascular disease (Aubert et al., 1985; Bipin et al., 2002; Bouisset & Radisson, 1991; Muller et al., 2003; Savi, et al.,1994; Gurbel & Tantry, 2007; Sharis et al., 1998). The crystal structure of the title compound, 2-Chloroethyl 2-(2-chlorophenyl)-2-(6,7-dihydro thieno[3,2-c]pyridin-5(4H)-yl)acetate (I), a derivative of clopidogrel, is reported here.

As shown in Fig. 1, the benzene ring, the ester chain and the thienopyridine group are all linked to C8 and a molecular chiral center is formed. The ester chain(C15/C16/C17/O1/O2/Cl2) is almost planar, the mean deviation from the plane is 0.0605 Å. The dihedral angles formed between the benzene ring plane (A), the ester chain plane (B) and the thiophene ring plane (C) are 71.60 (4) ° (A/B), 74.70 (8) ° (B/C) and 84.22 (7) ° (A/C), respectively. The packing is consolidated by C—H···O and C—H···Cl interactions, see Table 1.

Related literature top

The title compound is a derivative of clopidogrel. For background to the bioactivity and applications of the antiplatelet agent clopidogrel, see, for example, Gurbel & Tantry (2007); Muller et al. (2003); Savi et al. (1994); Sharis et al. (1998). For the synthesis of other derivatives with thienopyridine, see: Aubert et al. (1985); Bipin et al. (2002); Bouisset & Radisson (1991).

Experimental top

(I) was prepared from α-bromo(2-chloro)phenyl acetic acid and 4,5,6,7-tetrahydro thieno[3,2-c] pyridin by esterification and substitution reaction. Colourless crystals (m.p. 91.8–92.8°C) were obtained in a yield of 93.7%. Single crystals were grown from hexane-ethyl acetate (1:1) solution.

Refinement top

All the H atoms were positioned geometrically and refined as riding atoms, with C8—H8=1.00 Å, C—H=0.95Å (for the other CH groups), and 0.99Å (CH2), Uiso = 1.2Ueq(C).

Structure description top

Clopidogrel, a thienopyridine class inhibitor of P2Y12 ADP platelet receptor, has been found to be particularly useful in the treatment of coronary artery disease, peripheral vascular disease, and cerebrovascular disease (Aubert et al., 1985; Bipin et al., 2002; Bouisset & Radisson, 1991; Muller et al., 2003; Savi, et al.,1994; Gurbel & Tantry, 2007; Sharis et al., 1998). The crystal structure of the title compound, 2-Chloroethyl 2-(2-chlorophenyl)-2-(6,7-dihydro thieno[3,2-c]pyridin-5(4H)-yl)acetate (I), a derivative of clopidogrel, is reported here.

As shown in Fig. 1, the benzene ring, the ester chain and the thienopyridine group are all linked to C8 and a molecular chiral center is formed. The ester chain(C15/C16/C17/O1/O2/Cl2) is almost planar, the mean deviation from the plane is 0.0605 Å. The dihedral angles formed between the benzene ring plane (A), the ester chain plane (B) and the thiophene ring plane (C) are 71.60 (4) ° (A/B), 74.70 (8) ° (B/C) and 84.22 (7) ° (A/C), respectively. The packing is consolidated by C—H···O and C—H···Cl interactions, see Table 1.

The title compound is a derivative of clopidogrel. For background to the bioactivity and applications of the antiplatelet agent clopidogrel, see, for example, Gurbel & Tantry (2007); Muller et al. (2003); Savi et al. (1994); Sharis et al. (1998). For the synthesis of other derivatives with thienopyridine, see: Aubert et al. (1985); Bipin et al. (2002); Bouisset & Radisson (1991).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), displacement ellipsoids are drawn at the 50% probability level.
2-Chloroethyl 2-(2-chlorophenyl)-2-(4,5,6,7- tetrahydrothieno[3,2-c]pyridin-5-yl)acetate top
Crystal data top
C17H17Cl2NO2SF(000) = 768
Mr = 370.28Dx = 1.472 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ynCell parameters from 2162 reflections
a = 9.689 (1) Åθ = 27.6–72.0°
b = 11.2670 (12) ŵ = 4.73 mm1
c = 15.5670 (16) ÅT = 113 K
β = 100.509 (8)°Prism, colorless
V = 1670.9 (3) Å30.26 × 0.24 × 0.20 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
3203 independent reflections
Radiation source: fine-focus sealed tube2974 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.065
Detector resolution: 14.63 pixels mm-1θmax = 72.6°, θmin = 4.9°
ω scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1313
Tmin = 0.373, Tmax = 0.451l = 1915
18109 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.6161P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3203 reflectionsΔρmax = 0.55 e Å3
210 parametersΔρmin = 0.50 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0023 (4)
Crystal data top
C17H17Cl2NO2SV = 1670.9 (3) Å3
Mr = 370.28Z = 4
Monoclinic, P21/nCu Kα radiation
a = 9.689 (1) ŵ = 4.73 mm1
b = 11.2670 (12) ÅT = 113 K
c = 15.5670 (16) Å0.26 × 0.24 × 0.20 mm
β = 100.509 (8)°
Data collection top
Rigaku Saturn
diffractometer
3203 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2974 reflections with I > 2σ(I)
Tmin = 0.373, Tmax = 0.451Rint = 0.065
18109 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.09Δρmax = 0.55 e Å3
3203 reflectionsΔρmin = 0.50 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.04822 (5)0.57741 (4)0.11386 (3)0.02277 (16)
Cl20.76621 (5)0.81053 (4)0.43330 (3)0.02378 (16)
S10.27359 (5)0.25362 (4)0.37037 (3)0.02083 (16)
O10.32239 (15)0.54792 (13)0.45403 (9)0.0225 (3)
O20.39640 (14)0.66198 (12)0.35279 (9)0.0174 (3)
N10.08010 (16)0.47629 (13)0.32205 (10)0.0130 (3)
C10.1656 (2)0.13256 (17)0.36824 (13)0.0210 (4)
H10.19590.05240.36850.025*
C20.0317 (2)0.16624 (17)0.36612 (13)0.0179 (4)
H20.04320.11200.36560.022*
C30.01587 (19)0.29199 (16)0.36478 (12)0.0144 (4)
C40.13725 (19)0.35097 (16)0.36683 (12)0.0153 (4)
C50.1531 (2)0.48332 (16)0.36218 (13)0.0176 (4)
H5A0.20340.51130.40830.021*
H5B0.20850.50660.30480.021*
C60.0070 (2)0.53980 (16)0.37471 (13)0.0169 (4)
H6A0.01540.62420.35680.020*
H6B0.03760.53640.43720.020*
C70.11670 (19)0.35649 (16)0.35549 (14)0.0175 (4)
H7A0.18030.36130.41290.021*
H7B0.16570.31300.31460.021*
C80.19666 (18)0.54645 (15)0.30224 (12)0.0139 (4)
H80.15490.62210.27560.017*
C90.26203 (18)0.48536 (15)0.23238 (12)0.0132 (4)
C100.19866 (18)0.49132 (16)0.14532 (12)0.0143 (4)
C110.2530 (2)0.43267 (17)0.08043 (13)0.0175 (4)
H110.20700.43750.02120.021*
C120.3751 (2)0.36703 (16)0.10307 (13)0.0179 (4)
H120.41270.32610.05920.021*
C130.44201 (19)0.36086 (16)0.18876 (13)0.0164 (4)
H130.52680.31710.20390.020*
C140.38540 (19)0.41882 (15)0.25317 (13)0.0155 (4)
H140.43140.41310.31240.019*
C150.31009 (19)0.58238 (15)0.37984 (13)0.0160 (4)
C160.5174 (2)0.69884 (17)0.41623 (13)0.0188 (4)
H16A0.56750.62930.44580.023*
H16B0.48920.75170.46080.023*
C170.6085 (2)0.76441 (17)0.36247 (14)0.0202 (4)
H17A0.55770.83450.33420.024*
H17B0.63160.71180.31620.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0140 (2)0.0368 (3)0.0168 (3)0.00997 (17)0.00123 (19)0.00264 (18)
Cl20.0144 (3)0.0303 (3)0.0259 (3)0.00757 (16)0.0018 (2)0.00000 (18)
S10.0121 (3)0.0269 (3)0.0237 (3)0.00480 (16)0.0040 (2)0.00486 (18)
O10.0192 (7)0.0317 (7)0.0173 (8)0.0060 (6)0.0050 (6)0.0020 (6)
O20.0138 (6)0.0248 (7)0.0131 (7)0.0073 (5)0.0014 (5)0.0002 (5)
N10.0113 (7)0.0173 (7)0.0119 (8)0.0005 (6)0.0062 (6)0.0000 (6)
C10.0235 (10)0.0211 (9)0.0194 (11)0.0054 (7)0.0063 (8)0.0003 (7)
C20.0217 (10)0.0208 (9)0.0126 (10)0.0013 (7)0.0065 (8)0.0001 (7)
C30.0136 (9)0.0210 (9)0.0090 (9)0.0004 (7)0.0033 (7)0.0018 (7)
C40.0141 (9)0.0241 (9)0.0079 (9)0.0021 (7)0.0027 (7)0.0012 (7)
C50.0148 (9)0.0225 (9)0.0174 (10)0.0024 (7)0.0077 (8)0.0037 (7)
C60.0154 (9)0.0186 (8)0.0191 (10)0.0005 (7)0.0100 (8)0.0004 (7)
C70.0101 (8)0.0171 (8)0.0262 (11)0.0005 (6)0.0058 (8)0.0031 (7)
C80.0111 (8)0.0172 (8)0.0143 (9)0.0011 (6)0.0049 (7)0.0002 (7)
C90.0093 (8)0.0167 (8)0.0143 (9)0.0025 (6)0.0044 (7)0.0013 (6)
C100.0103 (8)0.0205 (8)0.0123 (10)0.0005 (6)0.0026 (7)0.0007 (7)
C110.0135 (9)0.0243 (9)0.0145 (10)0.0015 (7)0.0020 (7)0.0003 (7)
C120.0169 (9)0.0207 (9)0.0174 (10)0.0008 (7)0.0068 (8)0.0030 (7)
C130.0131 (9)0.0204 (9)0.0161 (10)0.0024 (7)0.0036 (7)0.0001 (7)
C140.0114 (9)0.0190 (9)0.0159 (10)0.0006 (6)0.0023 (7)0.0013 (7)
C150.0124 (9)0.0183 (9)0.0188 (11)0.0002 (6)0.0068 (8)0.0017 (7)
C160.0137 (9)0.0262 (10)0.0162 (10)0.0057 (7)0.0024 (8)0.0035 (7)
C170.0140 (9)0.0240 (9)0.0222 (11)0.0049 (7)0.0022 (8)0.0004 (8)
Geometric parameters (Å, º) top
Cl1—C101.7450 (18)C6—H6B0.9900
Cl2—C171.791 (2)C7—H7A0.9900
S1—C11.723 (2)C7—H7B0.9900
S1—C41.7256 (18)C8—C91.520 (2)
O1—C151.204 (2)C8—C151.532 (3)
O2—C151.345 (2)C8—H81.0000
O2—C161.449 (2)C9—C101.384 (3)
N1—C81.457 (2)C9—C141.398 (3)
N1—C61.466 (2)C10—C111.389 (3)
N1—C71.467 (2)C11—C121.385 (3)
C1—C21.358 (3)C11—H110.9500
C1—H10.9500C12—C131.374 (3)
C2—C31.426 (3)C12—H120.9500
C2—H20.9500C13—C141.390 (3)
C3—C41.356 (3)C13—H130.9500
C3—C71.506 (2)C14—H140.9500
C4—C51.499 (3)C16—C171.515 (3)
C5—C61.532 (3)C16—H16A0.9900
C5—H5A0.9900C16—H16B0.9900
C5—H5B0.9900C17—H17A0.9900
C6—H6A0.9900C17—H17B0.9900
C1—S1—C491.80 (9)C9—C8—C15110.57 (14)
C15—O2—C16116.73 (15)N1—C8—H8106.2
C8—N1—C6113.66 (14)C9—C8—H8106.2
C8—N1—C7115.33 (14)C15—C8—H8106.2
C6—N1—C7112.16 (14)C10—C9—C14117.43 (17)
C2—C1—S1111.44 (15)C10—C9—C8120.70 (16)
C2—C1—H1124.3C14—C9—C8121.85 (17)
S1—C1—H1124.3C9—C10—C11122.00 (17)
C1—C2—C3112.55 (17)C9—C10—Cl1120.04 (14)
C1—C2—H2123.7C11—C10—Cl1117.94 (15)
C3—C2—H2123.7C12—C11—C10119.25 (19)
C4—C3—C2113.01 (17)C12—C11—H11120.4
C4—C3—C7121.62 (16)C10—C11—H11120.4
C2—C3—C7125.23 (16)C13—C12—C11120.25 (18)
C3—C4—C5124.61 (16)C13—C12—H12119.9
C3—C4—S1111.19 (14)C11—C12—H12119.9
C5—C4—S1124.14 (14)C12—C13—C14119.86 (17)
C4—C5—C6108.82 (15)C12—C13—H13120.1
C4—C5—H5A109.9C14—C13—H13120.1
C6—C5—H5A109.9C13—C14—C9121.20 (18)
C4—C5—H5B109.9C13—C14—H14119.4
C6—C5—H5B109.9C9—C14—H14119.4
H5A—C5—H5B108.3O1—C15—O2123.85 (18)
N1—C6—C5109.83 (15)O1—C15—C8127.06 (17)
N1—C6—H6A109.7O2—C15—C8109.08 (15)
C5—C6—H6A109.7O2—C16—C17104.11 (16)
N1—C6—H6B109.7O2—C16—H16A110.9
C5—C6—H6B109.7C17—C16—H16A110.9
H6A—C6—H6B108.2O2—C16—H16B110.9
N1—C7—C3108.85 (15)C17—C16—H16B110.9
N1—C7—H7A109.9H16A—C16—H16B109.0
C3—C7—H7A109.9C16—C17—Cl2108.60 (15)
N1—C7—H7B109.9C16—C17—H17A110.0
C3—C7—H7B109.9Cl2—C17—H17A110.0
H7A—C7—H7B108.3C16—C17—H17B110.0
N1—C8—C9110.25 (14)Cl2—C17—H17B110.0
N1—C8—C15116.67 (15)H17A—C17—H17B108.4
C4—S1—C1—C20.79 (17)N1—C8—C9—C1078.1 (2)
S1—C1—C2—C30.9 (2)C15—C8—C9—C10151.36 (16)
C1—C2—C3—C40.6 (2)N1—C8—C9—C14100.15 (19)
C1—C2—C3—C7175.08 (19)C15—C8—C9—C1430.3 (2)
C2—C3—C4—C5177.23 (17)C14—C9—C10—C110.9 (3)
C7—C3—C4—C51.3 (3)C8—C9—C10—C11177.49 (16)
C2—C3—C4—S10.0 (2)C14—C9—C10—Cl1177.49 (13)
C7—C3—C4—S1175.86 (15)C8—C9—C10—Cl14.1 (2)
C1—S1—C4—C30.42 (16)C9—C10—C11—C120.6 (3)
C1—S1—C4—C5176.78 (17)Cl1—C10—C11—C12177.76 (14)
C3—C4—C5—C612.0 (3)C10—C11—C12—C130.5 (3)
S1—C4—C5—C6171.12 (14)C11—C12—C13—C141.3 (3)
C8—N1—C6—C5157.57 (15)C12—C13—C14—C91.0 (3)
C7—N1—C6—C569.4 (2)C10—C9—C14—C130.0 (3)
C4—C5—C6—N144.8 (2)C8—C9—C14—C13178.30 (16)
C8—N1—C7—C3174.85 (15)C16—O2—C15—O15.7 (3)
C6—N1—C7—C352.9 (2)C16—O2—C15—C8175.09 (14)
C4—C3—C7—N118.0 (3)N1—C8—C15—O19.3 (3)
C2—C3—C7—N1157.41 (17)C9—C8—C15—O1117.7 (2)
C6—N1—C8—C9167.86 (15)N1—C8—C15—O2169.92 (14)
C7—N1—C8—C960.6 (2)C9—C8—C15—O263.05 (18)
C6—N1—C8—C1565.0 (2)C15—O2—C16—C17167.79 (15)
C7—N1—C8—C1566.6 (2)O2—C16—C17—Cl2177.94 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7a···O10.992.533.140 (2)120
C8—H8···Cl11.002.593.042 (2)107

Experimental details

Crystal data
Chemical formulaC17H17Cl2NO2S
Mr370.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)9.689 (1), 11.2670 (12), 15.5670 (16)
β (°) 100.509 (8)
V3)1670.9 (3)
Z4
Radiation typeCu Kα
µ (mm1)4.73
Crystal size (mm)0.26 × 0.24 × 0.20
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.373, 0.451
No. of measured, independent and
observed [I > 2σ(I)] reflections
18109, 3203, 2974
Rint0.065
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.107, 1.09
No. of reflections3203
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.50

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7a···O10.992.533.140 (2)120.0
C8—H8···Cl11.002.593.042 (2)107.0
 

Acknowledgements

The authors thank Mr Hai-Bin Song, Nankai University, for the X-ray crystallographic determination and helpful suggestions.

References

First citationAubert, D., Ferrand, C. & Maffrand, J. P. (1985). US. Patent 4 529 596.  Google Scholar
First citationBipin, P., Bhushan, L. B. & Bhushan, L. V. (2002). WO Patent 02/059128 A2.  Google Scholar
First citationBouisset, M. & Radisson, J. (1991). US Patent 5 036 156.  Google Scholar
First citationGurbel, P. A. & Tantry, U. S. (2007). Thromb. Res. 120 , 311–321.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMuller, I., Besta, F., Schulz, C., Li, Z., Massberg, S. & Gawaz, M. (2003). Circulation. 108, 2195–2197.  Web of Science CrossRef PubMed Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSavi, P., Combalbert, J., Gaich, C., Rouchon, M. C., Maffrand, J. P., Berger, Y. & Herbert, J. M. (1994). Thromb. Haemost. 72, 313–317.  CAS PubMed Web of Science Google Scholar
First citationSharis, P. J., Cannon, C. P. & Loscalzo, J. (1998). Ann. Intern. Med. 129, 394–405.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds