organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2R,3S)-Methyl 2-hy­dr­oxy-3-(4-methyl­benzene­sulfonamido)-3-phenyl­propano­ate

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa, and bResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524 Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: boowaga@uj.ac.za

(Received 17 October 2010; accepted 17 November 2010; online 24 November 2010)

In the title mol­ecule, C17H19NO5S, the p-tolyl ring is oriented approximately parallel to the phenyl ring [dihedral angle = 17.2 (1)°], resulting in an intra­molecular ππ inter­ation [centroid–centroid distance = 3.184 (10) Å]. In the crystal, mol­ecules are linked through O—H⋯O and C—H⋯O hydrogen bonds, forming hydrogen-bonded sheets lying diagonally across the ac face.

Related literature

For related structures of β-amino alcohols, see: Bergmeier (2000[Bergmeier, S. (2000). Tetrahedron, 56, 2561-2576.]); Krzeminski & Wojtczak (2005[Krzeminski, M. P. & Wojtczak, A. (2005). Tetrahedron Lett. 46, 8299-8302.]). For related structures of tosyl­amino compounds, see: Coote et al. (2008[Coote, S. C., O'Brien, P. & Whitwood, A. C. (2008). Org. Biomol. Chem. 6, 4299-4314.]); Liu et al. (2005[Liu, Z., Fan, Y., Li, R., Zhou, B. & Wu, L. (2005). Tetrahedron Lett. 46, 1023-1025.]); Chinnakali et al. (2007[Chinnakali, K., Poornachandran, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, o1030-o1031.]); Nan & Xing (2006[Nan, Z.-H. & Xing, J.-D. (2006). Acta Cryst. E62, o1978-o1979.]); Fadlalla et al. (2010[Fadlalla, M. I., Friedrich, H. B., Maguire, G. E. M. & Bala, M. D. (2010). Acta Cryst. E66, o463.]); Zhao et al. (2005[Zhao, Y., Jiang, N., Chen, S., Peng, C., Zhang, X., Zou, Y., Zhang, S. & Wang, J. (2005). Tetrahedron, 61, 6546-6552.]). For the synthesis of the title compound, see: Naicker et al. (2008[Naicker, T., Datye, A. & Friedrich, H. B. (2008). Appl. Catal. A, 350, 96-102.]); Govender et al. (2003[Govender, M., Friedrich, H. B., Makhoba, X., Ngcobo, T. D. & Onani, M. O. (2003). Chem. Commun. p. 2922.]). For the use of β-amino alcohols in the synthesis of chiral ligands for asymmetric catalysis, see: Bodkin & McLeod (2002[Bodkin, J. A. & McLeod, M. D. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 2733-2746.]); Lohray et al. (2002[Lohray, B. B., Thombare, P. S. & Bhushan, V. (2002). PINSA, 68A, 391-1073.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19NO5S

  • Mr = 349.39

  • Monoclinic, P 21 /c

  • a = 10.4053 (8) Å

  • b = 5.4655 (4) Å

  • c = 29.3768 (19) Å

  • β = 105.386 (3)°

  • V = 1610.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.13 × 0.11 × 0.09 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.980

  • 17784 measured reflections

  • 4016 independent reflections

  • 3212 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.04

  • wR(F2) = 0.100

  • S = 1.00

  • 4016 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2i 0.84 2.50 3.270 (2) 152
C1—H1C⋯O1ii 0.98 2.52 3.392 (2) 149
C4—H4⋯O3iii 1.00 2.50 3.484 (2) 166
C1—H1C⋯O1ii 0.98 2.52 3.392 (2) 149
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+2; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), ORTEP-3 (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Vicinal amino alcohols (beta-amino alcohol) are a common structural component in many naturally occuring and biologically active compounds. Furthermore, beta-amino alcohols are used in the synthesis of chiral ligands for asymmetric catalysis (Lohray et al., 2002, Bodkin & McLeod, 2002). As part of investigating a new synthetic route to these molecules, we report the crystal structure of the title compound (I) (Fig. 1) whose synthesis produces diastereomers which are separable using chromatography with the stable one being the one with the chirality as R at C3 and S at C4.

The molecular structure of the title compound, C17H19NO5S (I), is similar to that of trans-methyl 2-hydroxy-3-(p-fluoro)phenyl-3'- (N-tosyl amino)propanoate (Zhao et al., 2005). The crystal structure is characterized by a number of intra- and inter- molecular interactions. An O-H···O and three C-H···O hydrogen bonds (Table 1) stabilize the crystal structure forming hydrogen bonded sheets that run along the b axis. In addition the p-tolyl and phenyl rings are in close proximity leading to a ππ interaction (Cg1···Cg2 = 3.8149 (10) Å) (Fig. 2). The hydrogen bonded sheets of molecules are alligned along the crystallographic ac face (Fig 3). It is worth mentioning that the H on the N atom does not contribute to a hydrogen bond as their is no acceptor in close proximity.

Related literature top

For related structures of β-amino alcohols, see: Bergmeier (2000); Krzeminski & Wojtczak (2005). For related structures of tosylamino compounds, see: Coote et al. (2008); Liu et al. (2005); Chinnakali et al. (2007); Nan & Xing (2006); Fadlalla et al. (2010); Zhao et al. (2005). For the synthesis of the title compound, see: Naicker et al. (2008); Govender et al. (2003). For the use of β-amino alcohols in the synthesis of chiral ligands for asymmetric catalysis, see: Bodkin & McLeod (2002); Lohray et al. (2002).

Experimental top

The title compound was obtained through a modified literature method (Naicker et al., 2008, Govender et al., 2003). To a nitrogen saturated Schlenk tube 6 ml of a mixture of acetonitrile and water (1:1 v/v), methyl cinnamate (0.0775 g, 0.478 mmol), chloramine-T (0.2173 g, 0.956 mmol), hydrotalcite-like catalyst (0.03 g) were added in that order. The catalyst was gravity filtered off after 24 h. The reaction mixture was then washed with sodium sulfite (1 g in 20 ml of de-ionized water) followed by 15 ml of ethyl acetate. The aqueous layer was separated from the organic layer and further washed by 3x 15 ml of ethyl acetate. The solvent of the combined organic mixture was removed in vacuo. The resulting crude product was purified by preparative high preasure liquid chromatography to yield the title compound, (I), as a white solid. Crystals of I were obtained by slow evaporation of a solution of acetonitrile and water (1:1 v/v) at room temperature (m.p. 413–418 K). Spectroscopic data: 1H NMR (400 MHz, CDCl3, δ. p.p.m.): = 2.3 (s, 3H), 3.3 (d, 1H), 3.7 (s, 3H), 4.3 (d, 1H), 4.8 (dd, 1H), 5.6 (d, 1H), 7.0–7.1 (m, Ar), 7.5 (m, Ar). 13C NMR (400 MHz, CDCl3, δ. p.p.m.): =21.4 (s, 1 C), 53.2 (s, 1 C), 58.9 (s, 1 C), 74.2 (s, 1 C), 126.8 (s, 2 C), 126.9 (s, 2 C), 127.8 (s, 2 C), 128.4 (s, 2 C), 129.2 (s, 1 C), 137.4 (s, 1 C), 137.5 (s, 1 C), 143.1 (s, 1 C), 172.4 (s, 1 C). MS m/z-[fragment]-(%): 372.1 (M + Na+) calculated = 372.1 for C17H19NO5SNa+. FT—IR (cm1): = 3477(m), (OH), 3139(m), (NH), 2967(w), 2882(w), 1598(w), (ar), 1738(m), (C=O), 1056(m), (S=O).

Refinement top

The methyl, methine and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for CH3, C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C) for CH. N—H = 0.88 Å and Uiso(H) = 1.2Ueq(N) for N—H and O—H = 0.84 Å and Uiso(H) = 1.5Ueq(O).

Structure description top

Vicinal amino alcohols (beta-amino alcohol) are a common structural component in many naturally occuring and biologically active compounds. Furthermore, beta-amino alcohols are used in the synthesis of chiral ligands for asymmetric catalysis (Lohray et al., 2002, Bodkin & McLeod, 2002). As part of investigating a new synthetic route to these molecules, we report the crystal structure of the title compound (I) (Fig. 1) whose synthesis produces diastereomers which are separable using chromatography with the stable one being the one with the chirality as R at C3 and S at C4.

The molecular structure of the title compound, C17H19NO5S (I), is similar to that of trans-methyl 2-hydroxy-3-(p-fluoro)phenyl-3'- (N-tosyl amino)propanoate (Zhao et al., 2005). The crystal structure is characterized by a number of intra- and inter- molecular interactions. An O-H···O and three C-H···O hydrogen bonds (Table 1) stabilize the crystal structure forming hydrogen bonded sheets that run along the b axis. In addition the p-tolyl and phenyl rings are in close proximity leading to a ππ interaction (Cg1···Cg2 = 3.8149 (10) Å) (Fig. 2). The hydrogen bonded sheets of molecules are alligned along the crystallographic ac face (Fig 3). It is worth mentioning that the H on the N atom does not contribute to a hydrogen bond as their is no acceptor in close proximity.

For related structures of β-amino alcohols, see: Bergmeier (2000); Krzeminski & Wojtczak (2005). For related structures of tosylamino compounds, see: Coote et al. (2008); Liu et al. (2005); Chinnakali et al. (2007); Nan & Xing (2006); Fadlalla et al. (2010); Zhao et al. (2005). For the synthesis of the title compound, see: Naicker et al. (2008); Govender et al. (2003). For the use of β-amino alcohols in the synthesis of chiral ligands for asymmetric catalysis, see: Bodkin & McLeod (2002); Lohray et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005), ORTEP-3 (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids) with H atoms presented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. O—H···O and C—H···O hydrogen bond interactions in the crystal structure of (I). [Symmetry operators: (i) = x, 1 + y, z; (ii) = 1 - x, 1 - y, 2 - z]
[Figure 3] Fig. 3. Sheets of O—H···O and C—H···O hydrogen bonded molecules alligned diagonally across the ac face.
(2R,3S)-Methyl 2-hydroxy-3-(4-methylbenzenesulfonamido)-3-phenylpropanoate top
Crystal data top
C17H19NO5SF(000) = 736
Mr = 349.39Dx = 1.441 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 18868 reflections
a = 10.4053 (8) Åθ = 2.0–28.4°
b = 5.4655 (4) ŵ = 0.23 mm1
c = 29.3768 (19) ÅT = 100 K
β = 105.386 (3)°Block, colourless
V = 1610.8 (2) Å30.13 × 0.11 × 0.09 mm
Z = 4
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
3212 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1313
Tmin = 0.971, Tmax = 0.980k = 47
17784 measured reflectionsl = 3939
4016 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.04Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0409P)2 + 1.5018P]
where P = (Fo2 + 2Fc2)/3
4016 reflections(Δ/σ)max = 0.034
219 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
C17H19NO5SV = 1610.8 (2) Å3
Mr = 349.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4053 (8) ŵ = 0.23 mm1
b = 5.4655 (4) ÅT = 100 K
c = 29.3768 (19) Å0.13 × 0.11 × 0.09 mm
β = 105.386 (3)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
4016 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3212 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.980Rint = 0.038
17784 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.00Δρmax = 0.67 e Å3
4016 reflectionsΔρmin = 0.65 e Å3
219 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 Apex 4 K CCD diffractometer using an exposure time of 15 sec/per frame. A total of 1480 frames were collected with a frame width of 0.5° covering upto θ = 28.41° with 99.8% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. >>> The Following Model and Quality ALERTS were generated - (Acta-Mode) <<< Format: alert-number_ALERT_alert-type_alert-level text 960_ALERT_3_G Number of Intensities with I. LT. - 2*sig(I).. 1 793_ALERT_4_G The Model has Chirality at C3 (Verify) ···. R 793_ALERT_4_G The Model has Chirality at C4 (Verify) ···. S The chirality is verified and correct.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.60326 (17)0.1396 (3)1.05597 (6)0.0179 (3)
H1A0.62890.24041.08450.027*
H1B0.60830.03371.06480.027*
H1C0.51180.17981.03830.027*
C20.70299 (16)0.4237 (3)1.01583 (6)0.0151 (3)
C30.80464 (16)0.4702 (3)0.98772 (6)0.0154 (3)
H30.89470.41821.00710.018*
C40.77208 (15)0.3308 (3)0.94058 (6)0.0140 (3)
H40.76720.15260.94760.017*
C50.88195 (16)0.3659 (3)0.91578 (6)0.0144 (3)
C60.88826 (16)0.5749 (3)0.88948 (6)0.0166 (3)
H60.82290.69930.88680.02*
C70.98912 (17)0.6037 (3)0.86702 (6)0.0203 (4)
H70.9920.74620.84880.024*
C81.08600 (17)0.4233 (3)0.87122 (6)0.0216 (4)
H81.15550.44290.85610.026*
C91.08063 (17)0.2154 (3)0.89751 (6)0.0212 (4)
H91.14670.09210.90040.025*
C100.97868 (16)0.1857 (3)0.91979 (6)0.0175 (3)
H100.97540.04230.93770.021*
C110.62837 (16)0.3006 (3)0.82070 (6)0.0149 (3)
C120.59763 (16)0.5127 (3)0.79368 (6)0.0160 (3)
H120.5360.6280.79980.019*
C130.65878 (16)0.5527 (3)0.75750 (6)0.0175 (3)
H130.63810.69650.73880.021*
C140.74982 (17)0.3851 (3)0.74828 (6)0.0188 (4)
C150.8146 (2)0.4311 (4)0.70873 (7)0.0325 (5)
H15A0.89620.33360.7140.049*
H15B0.83670.60520.7080.049*
H15C0.75290.38460.67860.049*
C160.77809 (17)0.1746 (3)0.77556 (6)0.0201 (4)
H160.83930.05850.76940.024*
C170.71818 (17)0.1312 (3)0.81180 (6)0.0178 (3)
H170.73850.01310.83030.021*
N10.63870 (13)0.4102 (3)0.91306 (5)0.0153 (3)
H10.60360.54460.92110.018*
O10.64240 (12)0.5874 (2)1.02804 (4)0.0191 (3)
O20.69409 (12)0.1881 (2)1.02642 (4)0.0170 (3)
O30.80780 (12)0.7244 (2)0.97843 (4)0.0196 (3)
H3A0.77040.80130.99610.029*
O40.57588 (13)0.0023 (2)0.88103 (4)0.0214 (3)
O50.42425 (12)0.3532 (3)0.85460 (4)0.0235 (3)
S10.55584 (4)0.25129 (8)0.867939 (14)0.01596 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0213 (8)0.0183 (8)0.0179 (8)0.0000 (6)0.0115 (7)0.0030 (7)
C20.0173 (7)0.0162 (8)0.0101 (7)0.0019 (6)0.0009 (6)0.0002 (6)
C30.0193 (8)0.0137 (8)0.0133 (7)0.0030 (6)0.0043 (6)0.0013 (6)
C40.0158 (7)0.0133 (8)0.0130 (7)0.0006 (6)0.0040 (6)0.0016 (6)
C50.0155 (7)0.0151 (8)0.0124 (7)0.0020 (6)0.0032 (6)0.0023 (6)
C60.0189 (8)0.0153 (8)0.0164 (8)0.0017 (6)0.0062 (6)0.0005 (7)
C70.0243 (9)0.0187 (9)0.0203 (9)0.0039 (7)0.0104 (7)0.0005 (7)
C80.0176 (8)0.0262 (10)0.0230 (9)0.0031 (7)0.0086 (7)0.0063 (8)
C90.0165 (8)0.0225 (9)0.0231 (9)0.0034 (7)0.0030 (7)0.0044 (7)
C100.0188 (8)0.0153 (8)0.0168 (8)0.0005 (6)0.0020 (6)0.0000 (7)
C110.0161 (7)0.0180 (8)0.0114 (7)0.0035 (6)0.0048 (6)0.0021 (6)
C120.0161 (7)0.0159 (8)0.0158 (8)0.0016 (6)0.0041 (6)0.0017 (7)
C130.0196 (8)0.0166 (8)0.0148 (8)0.0006 (6)0.0019 (6)0.0031 (7)
C140.0215 (8)0.0216 (9)0.0147 (8)0.0012 (7)0.0073 (6)0.0000 (7)
C150.0410 (11)0.0362 (12)0.0271 (10)0.0073 (9)0.0212 (9)0.0076 (9)
C160.0223 (8)0.0191 (9)0.0210 (9)0.0046 (7)0.0096 (7)0.0007 (7)
C170.0226 (8)0.0144 (8)0.0166 (8)0.0014 (6)0.0055 (7)0.0013 (7)
N10.0153 (6)0.0183 (7)0.0128 (6)0.0006 (5)0.0048 (5)0.0032 (6)
O10.0237 (6)0.0152 (6)0.0191 (6)0.0006 (5)0.0066 (5)0.0009 (5)
O20.0226 (6)0.0144 (6)0.0171 (6)0.0010 (5)0.0108 (5)0.0032 (5)
O30.0314 (7)0.0125 (6)0.0168 (6)0.0041 (5)0.0097 (5)0.0001 (5)
O40.0298 (7)0.0189 (6)0.0175 (6)0.0092 (5)0.0101 (5)0.0015 (5)
O50.0158 (6)0.0371 (8)0.0180 (6)0.0018 (5)0.0052 (5)0.0040 (6)
S10.01589 (19)0.0203 (2)0.01270 (19)0.00410 (15)0.00551 (14)0.00200 (16)
Geometric parameters (Å, º) top
C1—O21.4671 (19)C9—H90.95
C1—H1A0.98C10—H100.95
C1—H1B0.98C11—C171.389 (2)
C1—H1C0.98C11—C121.393 (2)
C2—O11.203 (2)C11—S11.7675 (16)
C2—O21.334 (2)C12—C131.393 (2)
C2—C31.526 (2)C12—H120.95
C3—O31.418 (2)C13—C141.395 (2)
C3—C41.537 (2)C13—H130.95
C3—H31C14—C161.388 (3)
C4—N11.474 (2)C14—C151.511 (2)
C4—C51.522 (2)C15—H15A0.98
C4—H41C15—H15B0.98
C5—C61.390 (2)C15—H15C0.98
C5—C101.390 (2)C16—C171.390 (2)
C6—C71.389 (2)C16—H160.95
C6—H60.95C17—H170.95
C7—C81.392 (3)N1—S11.6274 (14)
C7—H70.95N1—H10.88
C8—C91.383 (3)O3—H3A0.8401
C8—H80.95O4—S11.4387 (14)
C9—C101.396 (2)O5—S11.4333 (13)
O2—C1—H1A109.5C9—C10—H10120
O2—C1—H1B109.5C5—C10—H10120
H1A—C1—H1B109.5C17—C11—C12120.78 (15)
O2—C1—H1C109.5C17—C11—S1119.66 (13)
H1A—C1—H1C109.5C12—C11—S1119.54 (13)
H1B—C1—H1C109.5C13—C12—C11118.88 (15)
O1—C2—O2125.07 (15)C13—C12—H12120.6
O1—C2—C3122.04 (15)C11—C12—H12120.6
O2—C2—C3112.85 (14)C12—C13—C14121.06 (16)
O3—C3—C2108.80 (13)C12—C13—H13119.5
O3—C3—C4108.86 (13)C14—C13—H13119.5
C2—C3—C4112.70 (13)C16—C14—C13118.88 (16)
O3—C3—H3108.8C16—C14—C15120.84 (16)
C2—C3—H3108.8C13—C14—C15120.28 (17)
C4—C3—H3108.8C14—C15—H15A109.5
N1—C4—C5114.69 (13)C14—C15—H15B109.5
N1—C4—C3107.37 (13)H15A—C15—H15B109.5
C5—C4—C3110.77 (13)C14—C15—H15C109.5
N1—C4—H4107.9H15A—C15—H15C109.5
C5—C4—H4107.9H15B—C15—H15C109.5
C3—C4—H4107.9C17—C16—C14120.95 (16)
C6—C5—C10119.27 (15)C17—C16—H16119.5
C6—C5—C4121.45 (14)C14—C16—H16119.5
C10—C5—C4119.28 (15)C16—C17—C11119.45 (16)
C7—C6—C5120.67 (16)C16—C17—H17120.3
C7—C6—H6119.7C11—C17—H17120.3
C5—C6—H6119.7C4—N1—S1120.52 (11)
C6—C7—C8119.90 (17)C4—N1—H1119.8
C6—C7—H7120.1S1—N1—H1119.7
C8—C7—H7120.1C2—O2—C1114.07 (13)
C9—C8—C7119.72 (16)C3—O3—H3A109.5
C9—C8—H8120.1O5—S1—O4120.52 (8)
C7—C8—H8120.1O5—S1—N1106.05 (8)
C8—C9—C10120.35 (16)O4—S1—N1106.78 (8)
C8—C9—H9119.8O5—S1—C11107.57 (8)
C10—C9—H9119.8O4—S1—C11107.16 (8)
C9—C10—C5120.09 (16)N1—S1—C11108.29 (8)
O1—C2—C3—O32.1 (2)C11—C12—C13—C140.3 (3)
O2—C2—C3—O3179.60 (13)C12—C13—C14—C160.6 (3)
O1—C2—C3—C4122.90 (17)C12—C13—C14—C15179.70 (17)
O2—C2—C3—C459.56 (18)C13—C14—C16—C170.6 (3)
O3—C3—C4—N161.99 (16)C15—C14—C16—C17179.69 (18)
C2—C3—C4—N158.81 (17)C14—C16—C17—C110.3 (3)
O3—C3—C4—C563.93 (17)C12—C11—C17—C160.1 (3)
C2—C3—C4—C5175.27 (13)S1—C11—C17—C16178.00 (13)
N1—C4—C5—C640.6 (2)C5—C4—N1—S172.77 (17)
C3—C4—C5—C681.10 (19)C3—C4—N1—S1163.68 (11)
N1—C4—C5—C10139.84 (16)O1—C2—O2—C11.1 (2)
C3—C4—C5—C1098.44 (18)C3—C2—O2—C1176.38 (13)
C10—C5—C6—C70.6 (3)C4—N1—S1—O5170.37 (12)
C4—C5—C6—C7179.90 (15)C4—N1—S1—O440.68 (14)
C5—C6—C7—C80.8 (3)C4—N1—S1—C1174.42 (14)
C6—C7—C8—C90.5 (3)C17—C11—S1—O5147.69 (14)
C7—C8—C9—C100.0 (3)C12—C11—S1—O534.16 (16)
C8—C9—C10—C50.2 (3)C17—C11—S1—O416.75 (16)
C6—C5—C10—C90.1 (2)C12—C11—S1—O4165.10 (13)
C4—C5—C10—C9179.64 (15)C17—C11—S1—N198.09 (15)
C17—C11—C12—C130.1 (2)C12—C11—S1—N180.05 (14)
S1—C11—C12—C13178.01 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.842.503.270 (2)152
C1—H1C···O1ii0.982.523.392 (2)149
C4—H4···O3iii1.002.503.484 (2)166
C1—H1C···O1ii0.982.523.392 (2)149
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC17H19NO5S
Mr349.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.4053 (8), 5.4655 (4), 29.3768 (19)
β (°) 105.386 (3)
V3)1610.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.13 × 0.11 × 0.09
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.971, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
17784, 4016, 3212
Rint0.038
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.04, 0.100, 1.00
No. of reflections4016
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.65

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SAINT-Plus and XPREP (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), ORTEP-3 (Farrugia, 1999), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.842.503.270 (2)152
C1—H1C···O1ii0.982.523.392 (2)149
C4—H4···O3iii1.002.503.484 (2)166
C1—H1C···O1ii0.982.523.392 (2)149
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+2; (iii) x, y1, z.
 

Acknowledgements

Financial assistance from the South African National Research Foundation and the University of KwaZulu-Natal is gratefully acknowledged.

References

First citationBergmeier, S. (2000). Tetrahedron, 56, 2561–2576.  Web of Science CrossRef CAS Google Scholar
First citationBodkin, J. A. & McLeod, M. D. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 2733–2746.  Web of Science CrossRef Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChinnakali, K., Poornachandran, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, o1030–o1031.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCoote, S. C., O'Brien, P. & Whitwood, A. C. (2008). Org. Biomol. Chem. 6, 4299–4314.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFadlalla, M. I., Friedrich, H. B., Maguire, G. E. M. & Bala, M. D. (2010). Acta Cryst. E66, o463.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGovender, M., Friedrich, H. B., Makhoba, X., Ngcobo, T. D. & Onani, M. O. (2003). Chem. Commun. p. 2922.  Google Scholar
First citationKrzeminski, M. P. & Wojtczak, A. (2005). Tetrahedron Lett. 46, 8299–8302.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Z., Fan, Y., Li, R., Zhou, B. & Wu, L. (2005). Tetrahedron Lett. 46, 1023–1025.  Web of Science CSD CrossRef CAS Google Scholar
First citationLohray, B. B., Thombare, P. S. & Bhushan, V. (2002). PINSA, 68A, 391–1073.  Google Scholar
First citationNaicker, T., Datye, A. & Friedrich, H. B. (2008). Appl. Catal. A, 350, 96–102.  CrossRef CAS Google Scholar
First citationNan, Z.-H. & Xing, J.-D. (2006). Acta Cryst. E62, o1978–o1979.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, Y., Jiang, N., Chen, S., Peng, C., Zhang, X., Zou, Y., Zhang, S. & Wang, J. (2005). Tetrahedron, 61, 6546–6552.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds