metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bromidotricarbon­yl[4-chloro-N-(2-pyridyl­methyl­­idene)aniline-κ2N,N′]rhenium(I)

aDepartment of Chemistry, Islamic Azad University, Buinzahra Branch, Buinzahra, Qazvin, Iran, bDepartment of Chemistry, Alzahra University, Vanak, Tehran, Iran, and cDepartment of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran
*Correspondence e-mail: dehganpour_farasha@yahoo.com

(Received 16 September 2010; accepted 28 October 2010; online 24 November 2010)

In the title compound, [ReBr(C12H9ClN2)(CO)3], the ReI atom has a distorted octa­hedral configuration with the three carbonyl ligands showing a facial arrangement. The main distortion of the octa­hedron is due to a small bite angle of the chelating bidentate diimine ligand [N—Re—N = 75.3 (3)°].

Related literature

For the synthesis of (4-chloro­phen­yl)pyridin-2-yl­methyl­ene­amine, see: Dehghanpour & Mahmoudi (2007[Dehghanpour, M. & Mahmoudi, A. (2007). Main Group Chem. 6, 121-130.]). For related structures, see: Dehghanpour et al. (2009[Dehghanpour, S., Khalaj, M. & Mahmoudi, A. (2009). Inorg. Chem. Commun. 12, 231-233.], 2010[Dehghanpour, S., Lipkowski, J., Mahmoudi, A. & Khalaj, M. (2010). J. Coord. Chem. 63, 1473-1479.]); Dehghanpour & Mahmoudi (2010[Dehghanpour, S. & Mahmoudi, A. (2010). Acta Cryst. E66, m1335.])

[Scheme 1]

Experimental

Crystal data
  • [ReBr(C12H9ClN2)(CO)3]

  • Mr = 566.80

  • Triclinic, [P \overline 1]

  • a = 8.6559 (8) Å

  • b = 8.9037 (8) Å

  • c = 10.9442 (9) Å

  • α = 75.691 (5)°

  • β = 83.001 (5)°

  • γ = 81.808 (5)°

  • V = 805.65 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 10.20 mm−1

  • T = 150 K

  • 0.10 × 0.09 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.425, Tmax = 0.734

  • 8206 measured reflections

  • 3651 independent reflections

  • 2722 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.126

  • S = 1.03

  • 3651 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 3.45 e Å−3

  • Δρmin = −2.54 e Å−3

Table 1
Selected bond lengths (Å)

Re1—C2 1.919 (11)
Re1—C3 1.937 (10)
Re1—C1 1.969 (13)
Re1—N1 2.170 (8)
Re1—N2 2.182 (8)
Re1—Br1 2.6165 (11)

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZOSMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZOSMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title complex, (I), (Fig. 1) was prepared by the reaction of Re(CO)5Br with the bidentate ligand (4-chlorophenyl)pyridin-2-ylmethyleneamine.

The Re center in (I) has a distorted octahedral geometry, with the three carbonyls arranged in a facial configuration as expected for d6 ReCO3+ compounds. The diimine ligand binds to the metal in a bidentate fashion through the nitrogen atoms. The last site in the coordination sphere is occupied by bromide. The C–O bonds of the carbonyls are typical for ReCO3+ complexes with the bond lengths in the range of 1.058 (12)–1.135 (11) Å (Dehghanpour et al., 2009; Dehghanpour et al., 2010). The Re–C bonds have standard lengths, with ranges of 1.919 (11)–1.969 (13) Å, and the Re–X bond is as expected for these complexes. The metal–nitrogen bonds of the diimine have bond lengths of 2.170 (8) and 2.182 (8) Å. The steric requirements of the bidentate ligands cause distortion of the octahedral coordination which is most clearly seen for the ligand bite angle (N1–Re1–N2, 75.3 (3)°). The coordinated bromide is slightly titled toward the diimine ligand, causing a narrowing of the N–Re–Br angles (e.g. 84.6 (2)° for N1–Re1–Br1, 82.3 (2)° for N2–Re1–Br1).

Related literature top

For the synthesis of (4-chlorophenyl)pyridin-2-ylmethyleneamine, see: Dehghanpour & Mahmoudi (2007). For related structures, see: Dehghanpour et al. (2009, 2010); Dehghanpour & Mahmoudi (2010)

Experimental top

A mixture of [Re(CO)5Br] (406 mg, 1 mmol) and (4-chlorophenyl)pyridin-2-ylmethyleneamine (216 mg, 1 mmol) in dry, degassed toluene (30 ml) was heated to reflux for 4 h under N2 to give a bright red solution. The solvent was removed under vacuum and the crude material recrystallized from CH2Cl2/hexane to give [Re(CO)3Br(C12H9ClN2)] as pure red crystals. Yield: 91%. Calc. for C15H9ClBrN2O3Re: C 31.79, H 1.59, N 4.94%; found: C 31.89, H 1.50, N 4.99%.

Refinement top

All H atoms were positioned geometrically and their parameters refined in a riding model approximatiom with Uiso(H)=1.2 Ueq(C) . The highest density peak in the final differnce Fourier map is 3.45eÅ-3 and is located 1.86Å from C2 while the deepest hole is -2.45eÅ-3 and is located 0.88Å from Re1. These effects may be caused by the fairly low redundancy of the reflections used for the absorption correction. There is also a possibility that there is some whole molecule disorder present but this could not be identified as it was in a related crystal structure (Dehghanpour & Mahmoudi, 2010).

Structure description top

The title complex, (I), (Fig. 1) was prepared by the reaction of Re(CO)5Br with the bidentate ligand (4-chlorophenyl)pyridin-2-ylmethyleneamine.

The Re center in (I) has a distorted octahedral geometry, with the three carbonyls arranged in a facial configuration as expected for d6 ReCO3+ compounds. The diimine ligand binds to the metal in a bidentate fashion through the nitrogen atoms. The last site in the coordination sphere is occupied by bromide. The C–O bonds of the carbonyls are typical for ReCO3+ complexes with the bond lengths in the range of 1.058 (12)–1.135 (11) Å (Dehghanpour et al., 2009; Dehghanpour et al., 2010). The Re–C bonds have standard lengths, with ranges of 1.919 (11)–1.969 (13) Å, and the Re–X bond is as expected for these complexes. The metal–nitrogen bonds of the diimine have bond lengths of 2.170 (8) and 2.182 (8) Å. The steric requirements of the bidentate ligands cause distortion of the octahedral coordination which is most clearly seen for the ligand bite angle (N1–Re1–N2, 75.3 (3)°). The coordinated bromide is slightly titled toward the diimine ligand, causing a narrowing of the N–Re–Br angles (e.g. 84.6 (2)° for N1–Re1–Br1, 82.3 (2)° for N2–Re1–Br1).

For the synthesis of (4-chlorophenyl)pyridin-2-ylmethyleneamine, see: Dehghanpour & Mahmoudi (2007). For related structures, see: Dehghanpour et al. (2009, 2010); Dehghanpour & Mahmoudi (2010)

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of the title complex, with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as spheres of arbitrary radius.
Bromidotricarbonyl[4-chloro-N-(2-pyridylmethylidene)aniline- κ2N,N']rhenium(I) top
Crystal data top
[ReBr(C12H9ClN2)(CO)3]Z = 2
Mr = 566.80F(000) = 528
Triclinic, P1Dx = 2.336 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6559 (8) ÅCell parameters from 8206 reflections
b = 8.9037 (8) Åθ = 2.7–27.6°
c = 10.9442 (9) ŵ = 10.20 mm1
α = 75.691 (5)°T = 150 K
β = 83.001 (5)°Plate, orange
γ = 81.808 (5)°0.10 × 0.09 × 0.03 mm
V = 805.65 (12) Å3
Data collection top
Nonius KappaCCD
diffractometer
3651 independent reflections
Radiation source: fine-focus sealed tube2722 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
Detector resolution: 9 pixels mm-1θmax = 27.6°, θmin = 2.7°
φ scans and ω scans with κ offsetsh = 1111
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1111
Tmin = 0.425, Tmax = 0.734l = 1214
8206 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0437P)2 + 4.4525P]
where P = (Fo2 + 2Fc2)/3
3651 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 3.45 e Å3
0 restraintsΔρmin = 2.54 e Å3
Crystal data top
[ReBr(C12H9ClN2)(CO)3]γ = 81.808 (5)°
Mr = 566.80V = 805.65 (12) Å3
Triclinic, P1Z = 2
a = 8.6559 (8) ÅMo Kα radiation
b = 8.9037 (8) ŵ = 10.20 mm1
c = 10.9442 (9) ÅT = 150 K
α = 75.691 (5)°0.10 × 0.09 × 0.03 mm
β = 83.001 (5)°
Data collection top
Nonius KappaCCD
diffractometer
3651 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2722 reflections with I > 2σ(I)
Tmin = 0.425, Tmax = 0.734Rint = 0.077
8206 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.03Δρmax = 3.45 e Å3
3651 reflectionsΔρmin = 2.54 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.72202 (5)0.92191 (4)0.74692 (4)0.03208 (15)
Br10.79387 (12)0.78337 (11)0.97638 (9)0.0352 (2)
Cl11.3685 (3)0.3425 (4)0.5681 (3)0.0536 (7)
O10.6432 (7)1.0842 (8)0.4811 (7)0.0348 (16)
O20.6196 (9)1.2317 (8)0.8222 (7)0.0454 (19)
O31.0512 (9)1.0234 (8)0.6675 (7)0.0440 (18)
N10.5004 (9)0.8272 (9)0.8084 (7)0.0324 (19)
N20.7661 (10)0.6836 (9)0.7214 (7)0.0299 (18)
C10.6666 (12)1.0207 (11)0.5736 (11)0.034 (2)
C20.6572 (11)1.1172 (12)0.7930 (9)0.034 (2)
C30.9309 (13)0.9829 (11)0.6976 (9)0.034 (2)
C40.3679 (12)0.8976 (13)0.8541 (9)0.038 (2)
H4A0.36541.00360.85740.045*
C50.2312 (12)0.8245 (12)0.8979 (9)0.035 (2)
H5A0.14010.87790.93270.042*
C60.2341 (12)0.6726 (12)0.8883 (9)0.035 (2)
H6A0.14330.61990.91410.042*
C70.3699 (12)0.5983 (12)0.8409 (10)0.039 (2)
H7A0.37300.49310.83540.046*
C80.5019 (12)0.6742 (10)0.8011 (9)0.032 (2)
C90.6501 (11)0.6024 (11)0.7544 (9)0.034 (2)
H9A0.66160.49680.74810.041*
C100.9115 (12)0.6014 (10)0.6875 (9)0.031 (2)
C111.0098 (12)0.6759 (11)0.5850 (9)0.034 (2)
H11A0.97970.77990.54050.041*
C121.1509 (13)0.5960 (12)0.5499 (10)0.041 (3)
H12A1.21830.64540.48110.050*
C131.1937 (12)0.4441 (12)0.6150 (9)0.038 (2)
C141.1010 (13)0.3726 (13)0.7181 (10)0.041 (3)
H14A1.13410.27010.76410.049*
C150.9604 (12)0.4498 (11)0.7544 (9)0.035 (2)
H15A0.89610.40000.82520.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.0359 (3)0.0276 (2)0.0315 (2)0.00496 (16)0.00217 (17)0.00434 (16)
Br10.0400 (6)0.0342 (5)0.0299 (5)0.0039 (4)0.0040 (4)0.0047 (4)
Cl10.0439 (16)0.0624 (18)0.0549 (17)0.0102 (14)0.0067 (14)0.0230 (15)
O10.022 (4)0.037 (4)0.047 (4)0.007 (3)0.003 (3)0.010 (4)
O20.056 (5)0.031 (4)0.050 (5)0.006 (4)0.000 (4)0.014 (3)
O30.038 (4)0.046 (4)0.045 (4)0.010 (4)0.004 (4)0.002 (3)
N10.031 (4)0.027 (4)0.035 (4)0.003 (3)0.001 (4)0.005 (3)
N20.041 (5)0.026 (4)0.023 (4)0.003 (4)0.005 (4)0.006 (3)
C10.028 (5)0.026 (5)0.053 (7)0.008 (4)0.011 (5)0.022 (5)
C20.022 (5)0.039 (6)0.038 (6)0.000 (4)0.002 (4)0.007 (5)
C30.042 (6)0.030 (5)0.027 (5)0.001 (5)0.000 (5)0.007 (4)
C40.030 (6)0.046 (6)0.038 (6)0.000 (5)0.007 (5)0.014 (5)
C50.032 (6)0.039 (6)0.034 (5)0.004 (4)0.008 (4)0.010 (4)
C60.032 (6)0.044 (6)0.028 (5)0.006 (5)0.003 (4)0.005 (4)
C70.037 (6)0.035 (5)0.045 (6)0.011 (5)0.014 (5)0.004 (5)
C80.043 (6)0.022 (4)0.033 (5)0.004 (4)0.000 (5)0.008 (4)
C90.030 (5)0.029 (5)0.042 (6)0.004 (4)0.009 (4)0.007 (4)
C100.041 (6)0.023 (5)0.035 (5)0.006 (4)0.004 (5)0.016 (4)
C110.044 (6)0.026 (5)0.032 (5)0.003 (4)0.003 (5)0.007 (4)
C120.046 (7)0.038 (6)0.039 (6)0.003 (5)0.001 (5)0.009 (5)
C130.039 (6)0.045 (6)0.033 (5)0.004 (5)0.010 (5)0.017 (5)
C140.043 (6)0.039 (6)0.044 (6)0.000 (5)0.009 (5)0.014 (5)
C150.043 (6)0.031 (5)0.034 (5)0.007 (5)0.002 (5)0.008 (4)
Geometric parameters (Å, º) top
Re1—C21.919 (11)C5—H5A0.9500
Re1—C31.937 (10)C6—C71.374 (14)
Re1—C11.969 (13)C6—H6A0.9500
Re1—N12.170 (8)C7—C81.380 (13)
Re1—N22.182 (8)C7—H7A0.9500
Re1—Br12.6165 (11)C8—C91.443 (13)
Cl1—C131.738 (11)C9—H9A0.9500
O1—C11.058 (12)C10—C151.400 (13)
O2—C21.135 (12)C10—C111.409 (13)
O3—C31.135 (11)C11—C121.385 (14)
N1—C41.330 (12)C11—H11A0.9500
N1—C81.382 (11)C12—C131.386 (14)
N2—C91.285 (12)C12—H12A0.9500
N2—C101.419 (12)C13—C141.375 (14)
C4—C51.408 (13)C14—C151.375 (14)
C4—H4A0.9500C14—H14A0.9500
C5—C61.379 (14)C15—H15A0.9500
C2—Re1—C389.3 (4)C7—C6—C5119.2 (9)
C2—Re1—C189.3 (4)C7—C6—H6A120.4
C3—Re1—C189.0 (4)C5—C6—H6A120.4
C2—Re1—N196.0 (3)C6—C7—C8121.0 (9)
C3—Re1—N1173.6 (3)C6—C7—H7A119.5
C1—Re1—N194.5 (3)C8—C7—H7A119.5
C2—Re1—N2170.0 (3)C7—C8—N1120.6 (9)
C3—Re1—N299.1 (4)C7—C8—C9124.2 (9)
C1—Re1—N296.2 (3)N1—C8—C9115.2 (8)
N1—Re1—N275.3 (3)N2—C9—C8119.0 (9)
C2—Re1—Br192.1 (3)N2—C9—H9A120.5
C3—Re1—Br191.8 (3)C8—C9—H9A120.5
C1—Re1—Br1178.4 (3)C15—C10—C11119.4 (9)
N1—Re1—Br184.6 (2)C15—C10—N2121.8 (8)
N2—Re1—Br182.3 (2)C11—C10—N2118.8 (8)
C4—N1—C8117.7 (8)C12—C11—C10119.3 (9)
C4—N1—Re1127.6 (7)C12—C11—H11A120.3
C8—N1—Re1114.6 (6)C10—C11—H11A120.3
C9—N2—C10115.7 (8)C11—C12—C13120.0 (9)
C9—N2—Re1115.9 (7)C11—C12—H12A120.0
C10—N2—Re1127.9 (6)C13—C12—H12A120.0
O1—C1—Re1173.7 (9)C14—C13—C12121.0 (10)
O2—C2—Re1178.9 (9)C14—C13—Cl1119.2 (8)
O3—C3—Re1177.8 (9)C12—C13—Cl1119.9 (8)
N1—C4—C5123.9 (10)C15—C14—C13119.9 (10)
N1—C4—H4A118.1C15—C14—H14A120.0
C5—C4—H4A118.1C13—C14—H14A120.0
C6—C5—C4117.6 (10)C14—C15—C10120.4 (9)
C6—C5—H5A121.2C14—C15—H15A119.8
C4—C5—H5A121.2C10—C15—H15A119.8

Experimental details

Crystal data
Chemical formula[ReBr(C12H9ClN2)(CO)3]
Mr566.80
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.6559 (8), 8.9037 (8), 10.9442 (9)
α, β, γ (°)75.691 (5), 83.001 (5), 81.808 (5)
V3)805.65 (12)
Z2
Radiation typeMo Kα
µ (mm1)10.20
Crystal size (mm)0.10 × 0.09 × 0.03
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.425, 0.734
No. of measured, independent and
observed [I > 2σ(I)] reflections
8206, 3651, 2722
Rint0.077
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.126, 1.03
No. of reflections3651
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.45, 2.54

Computer programs: COLLECT (Nonius, 2002), DENZO–SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Re1—C21.919 (11)Re1—N12.170 (8)
Re1—C31.937 (10)Re1—N22.182 (8)
Re1—C11.969 (13)Re1—Br12.6165 (11)
 

Acknowledgements

MK would like to acknowledge the Islamic Azad University Research Council for partial support of this work.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDehghanpour, S., Khalaj, M. & Mahmoudi, A. (2009). Inorg. Chem. Commun. 12, 231–233.  Web of Science CSD CrossRef CAS Google Scholar
First citationDehghanpour, S., Lipkowski, J., Mahmoudi, A. & Khalaj, M. (2010). J. Coord. Chem. 63, 1473–1479.  Web of Science CSD CrossRef CAS Google Scholar
First citationDehghanpour, M. & Mahmoudi, A. (2007). Main Group Chem. 6, 121–130.  Web of Science CrossRef CAS Google Scholar
First citationDehghanpour, S. & Mahmoudi, A. (2010). Acta Cryst. E66, m1335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds