metal-organic compounds
μ-Oxido-bis{[2,2-bis(3,5-dimethyl-1H-pyrazol-1-yl)acetato-κ3N2,O,N2′]chloridooxidomolybdenum(V)} monohydrate
aFaculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia
*Correspondence e-mail: BORIS.CEH@FKKT.UNI-LJ.SI
In the binuclear title compound, [Mo2(C12H15N4O2)2Cl2O3]·H2O, the complex molecules have approximate C2 symmetry. Both MoV atoms have a distorted octahedral coordination environment with cis-positioned terminal chloride and oxide groups. The heteroscorpionate organic ligand binds to the MoV atom via an N2O donor set. The water molecule bridges two complex molecules, forming O—H⋯O and O—H⋯Cl hydrogen bonds to the acetate group and to the chloride ligands.
Related literature
The prepraration of the first `scorpionate' complex was described by Trofimenko (1967). For the importance of the structures of Mo(VI/V/IV) complexes related to the Mo-enzymes, see: Hille (1996); Heinze & Fischer (2010). For complexes with κ3N,N′,O-bound heteroscorpionate ligands, see: Otero et al. (2004); Burzlaff (2008); Kitanovski et al. (2006). For Mo complexes with bis(3,5 dimethyl-1H-pyrazol-1-yl)acetate ligands, see: Kitanovski et al. (2006); Hammes et al. (2004). For the weighting scheme used in the see: Wang et al. (1985)
Experimental
Crystal data
|
Refinement
|
|
Data collection: COLLECT (Nonius, 2000); cell DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: Xtal3.6 (Hall et al., 1999); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: Xtal3.6.
Supporting information
https://doi.org/10.1107/S1600536810045393/gk2307sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810045393/gk2307Isup2.hkl
A mixture of MoCl4(CH3CN)2 (0.450 mg, 1.40 mmol), Hdmpza (0.347 g, 1.40 mmol) and acetonitrile (20 ml) was stirred at room temperature. At first the mixture became clear and after an hour the orange precipitate started to separate. After the filtration of the precipitate, a small amount of water (0.13 g) was added to the portion of filtrate (0.65 g) and the solution left on air at room temperature. After about 14 h the black crystals, suitable for X-ray diffraction started to grow and were isolated in 45% yield. Anal. Calcd. for C24H32Cl2N8O8: C,35.01; H, 3.92; N, 13.61. Found: C, 35.74; H, 4.03; N, 13.71.
Full matrix least-squares θ/λ)/ ((sinθ/λ)(max)),(sinθ/λ)(max)=.6495. The parameters were: A(0,0) = 110.7607, A(1,0) = .7072179 A(0,1) = -502.5041, A(2,0) = -.0004053 A(1,1) = -1.637116, A(0,2) = 576.1985. The location of the deepest hole is at the site of Mo2 atom.
on F values with anisotropic displacement parameters for all non-hydrogen atoms was employed. Hydrogen atoms were located from difference Fourier maps. Their parameters were not refined. A REGINA (Wang et al., 1985) weighting scheme using the normal equation of the second order was applied for individual reflections so that w= A(0,0) + A(1,0)V(F) + A(0,1)V(S) + A(2,0)V(F)2 + A(0,2)V(S)2 + A(1,1)V(F)V(S), where V(F)= Fobs/Fobs(max), Fobs(max)= 496.47 and V(S)=(sinSince the preparation of the first tris(pyrazolyl)borate-complexes by Trofimenko (1967) the coordination compounds of almost all transition elements with different "scorpionate" ligands have been prepared. The characteristics and the synthetic routes of divers tripodal heteroscorpionate N,N,O-, N,N,S- and, N,N,N- ligands based on bis(pyrazol-1-yl)acetate, -thioacetate and -ethoxide with pyrazolyl rings substituted at 3 and 5 positions, as well as their complexes with different metals have been discussed. (Otero et al., 2004). For some time afterwards, the complexes with metal atoms coordinated with tripodal κ3N,N',O-bound "scorpionate" ligands have attracted considerable interest because they can serve as structural models, mimicking the active sites like, for example, the 2-His-1-carboxylate triad, which is present in different metalloenzymes and –proteins, mostly containing Zn, Fe, Mn, Ni, Co and Mo atoms (Burzlaff, 2008). The mononuclear molybdenum-containing enzymes serve for catalyzing of a net oxygen atom transfer with the Mo atom cycling between +4 and +6 oxidation states (Hille, 1996). The elucidation of the structures of mononuclear Mo(VI/V/IV) complexes can help the understanding of interaction of the intermediate, and resting states of these enzymes (Heinze & Fischer, 2010). The complexes with di-1H-pyrazol-1-ylacetate, substituted at the 3 and 5 positions, are known with more than a half of d-elements in different oxidation states (Kitanovski et al., 2006). Some Mo(VI), and Mo(V) complexes with bdmpza as ligand have already been prepared so far (Hammes et al., 2004; Kitanovski et al., 2006).
The compound crystallizes in the orthorhombic κ3N,N',O-coordination bonds with Mo-atom (between 78.28 (11) and 81.07 (12)° for Mo1, and between 78.09 (10) and 80.90 (11)° for Mo2). The high values are also observed between Mo=O and Mo—-Cl bonds (102.86 (10)° for Mo1 and 102.51 (10)° for Mo2, respectively). The solvate water acts as a donor of two weak hydrogen bonds accepted by the uncoordinated O2c of the acetate ligand from the same (with O1w···O2c distance 2.889 (8) Å) and Cl2 from symmetry related unit (with O1w···Cl2(x,3/2 - y,1/2 + z) distance 3.335 (7) Å).
Pbca with eight binuclear complex molecules and eight water molecules per Both MoCl(O)(bdmpza) moieties are symmetry independent. The Mo1—-O1 and Mo2—-O2 bond lengths are 1.675 (3) and 1.674 (3) Å, and the Mo1—-Cl1 and Mo2—-Cl2 bond distances are 2.3594 (11) and 2.3759 (11) Å, respectively. With respect to the nonlinear Mo—-O—-Mo bridge (178.31 (16)°), the Mo=O vectors in the binuclear unit adopt an anti-orientation (torsion angle O1—Mo1—Mo2—O2 is 175.59 (14)°), and the Mo—-Cl vectors an approximate cis-orientation (torsion angle Cl1—Mo1—Mo2—Cl2 is -31.01 (4)°). The O-atom of Mo=O and the coordinated O-atom of the acetate group are in trans-position (O1—Mo1—O1a 164.75 (12) and O2—Mo2—O1c 165.25 (12)°). Both central atoms have a significantly distorted octahedral coordination, caused in first line by a typically low angles betweenThe prepraration of the first 'scorpionate' complex is described by Trofimenko (1967). For the importance of the structures of Mo(VI/V/IV) complexes related to the Mo-enzymes, see: Hille (1996); Heinze & Fischer (2010). For complexes with κ3N,N',O-bound heteroscorpionate ligands, see: Otero et al. (2004); Burzlaff (2008); Kitanovski et al. (2006). For Mo complexes with bis(3,5 dimethyl-1H-pyrazol-1-yl)acetate ligands, see: Kitanovski et al. (2006); Hammes et al. (2004). For the weighting scheme used in the see: Wang et al. (1985)
Data collection: COLLECT (Nonius, 2000); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: Xtal3.6 (Hall et al., 1999); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: Xtal3.6 (Hall et al., 1999).[Mo2(C12H15N4O2)2Cl2O3]·H2O | F(000) = 3312 |
Mr = 823.36 | Dx = 1.717 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -p 2ac 2ab | Cell parameters from 7980 reflections |
a = 14.6869 (1) Å | θ = 2.6–27.5° |
b = 20.6499 (2) Å | µ = 1.01 mm−1 |
c = 21.0082 (2) Å | T = 293 K |
V = 6371.43 (10) Å3 | Plate, black |
Z = 8 | 0.3 × 0.15 × 0.05 mm |
Nonius KappaCCD diffractometer | 5534 reflections with F2 > 2σ(F2) |
φ and ω scans | Rint = 0.064 |
Absorption correction: multi-scan DENZO-SMN (Otwinowski & Minor, 1997) | θmax = 27.5°, θmin = 2.6° |
Tmin = 0.69, Tmax = 0.95 | h = −19→19 |
91066 measured reflections | k = −26→26 |
7300 independent reflections | l = −27→27 |
Refinement on F | 0 constraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.028 | H-atom parameters not refined |
S = 1.42 | A REGINA (Wang et al., 1985) weighting scheme using the normal equation of the second order was applied for individual reflections so that w = A(0,0) + A(1,0)V(F) + A(0,1)V(S) + A(2,0)V(F)2 + A(0,2)V(S)2 + A(1,1)V(F)V(S), where V(F) = Fobs/Fobs(max), Fobs(max) = 496.47 and V(S) = (sinθ/λ)/ ((sinθ/λ)(max)), (sinθ/λ)(max) = .6495. The parameters were: A(0,0) = 110.7607, A(1,0) = .7072179 A(0,1) = -502.5041, A(2,0) = -.0004053 A(1,1) = -1.637116, A(0,2) = 576.1985 |
6640 reflections | (Δ/σ)max = 0.002 |
397 parameters | Δρmax = 0.97 e Å−3 |
0 restraints | Δρmin = −1.50 e Å−3 |
[Mo2(C12H15N4O2)2Cl2O3]·H2O | V = 6371.43 (10) Å3 |
Mr = 823.36 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 14.6869 (1) Å | µ = 1.01 mm−1 |
b = 20.6499 (2) Å | T = 293 K |
c = 21.0082 (2) Å | 0.3 × 0.15 × 0.05 mm |
Nonius KappaCCD diffractometer | 7300 independent reflections |
Absorption correction: multi-scan DENZO-SMN (Otwinowski & Minor, 1997) | 5534 reflections with F2 > 2σ(F2) |
Tmin = 0.69, Tmax = 0.95 | Rint = 0.064 |
91066 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.028 | H-atom parameters not refined |
S = 1.42 | Δρmax = 0.97 e Å−3 |
6640 reflections | Δρmin = −1.50 e Å−3 |
397 parameters |
Refinement. Independent reflections: contributing reflections are all observed (I > 2?(I)) and those "less than" reflections for which Fcal > Fobs |
x | y | z | Uiso*/Ueq | ||
Mo1 | 0.356763 (18) | 0.580454 (15) | 0.363344 (13) | 0.03224 (16) | |
Mo2 | 0.127609 (18) | 0.634123 (13) | 0.418255 (13) | 0.03082 (15) | |
Cl1 | 0.33672 (7) | 0.63258 (6) | 0.26439 (5) | 0.0575 (6) | |
Cl2 | 0.13854 (8) | 0.72985 (5) | 0.35598 (5) | 0.0518 (5) | |
O1 | 0.42851 (19) | 0.63004 (14) | 0.40162 (14) | 0.0469 (14) | |
O2 | 0.05836 (19) | 0.58758 (15) | 0.37453 (13) | 0.0459 (14) | |
O3 | 0.24283 (17) | 0.60782 (13) | 0.39192 (12) | 0.0376 (12) | |
O1a | 0.29066 (17) | 0.49772 (14) | 0.32167 (12) | 0.0403 (14) | |
O1c | 0.19247 (17) | 0.68744 (13) | 0.49357 (13) | 0.0389 (13) | |
O1w | 0.1181 (6) | 0.7030 (5) | 0.7123 (3) | 0.120 (5) | |
O2a | 0.2706 (3) | 0.3928 (2) | 0.3027 (2) | 0.072 (2) | |
O2c | 0.2051 (4) | 0.7262 (3) | 0.5911 (2) | 0.102 (3) | |
N1a | 0.4782 (2) | 0.45992 (18) | 0.32861 (16) | 0.0426 (17) | |
N1b | 0.3950 (2) | 0.44470 (16) | 0.42532 (16) | 0.0381 (15) | |
N1c | 0.0069 (2) | 0.67646 (15) | 0.53542 (15) | 0.0364 (15) | |
N1d | 0.1010 (2) | 0.58456 (17) | 0.55781 (15) | 0.0363 (15) | |
N2a | 0.4745 (2) | 0.52597 (18) | 0.32370 (15) | 0.0404 (17) | |
N2b | 0.3723 (2) | 0.50768 (15) | 0.43911 (14) | 0.0348 (14) | |
N2c | 0.0083 (2) | 0.67518 (16) | 0.47019 (15) | 0.0374 (15) | |
N2d | 0.1203 (2) | 0.56463 (15) | 0.49686 (15) | 0.0343 (14) | |
C1 | 0.4037 (2) | 0.4250 (2) | 0.35926 (19) | 0.0400 (17) | |
C2 | 0.3131 (3) | 0.4384 (2) | 0.32399 (19) | 0.042 (2) | |
C3 | 0.0850 (2) | 0.6528 (2) | 0.57055 (17) | 0.0363 (17) | |
C4 | 0.1695 (3) | 0.6934 (2) | 0.5519 (2) | 0.043 (2) | |
C1a | 0.5527 (3) | 0.5441 (3) | 0.2959 (2) | 0.050 (2) | |
C1b | 0.3692 (2) | 0.5115 (2) | 0.50244 (17) | 0.0373 (18) | |
C1c | −0.0725 (3) | 0.69854 (18) | 0.4513 (2) | 0.042 (2) | |
C1d | 0.1307 (2) | 0.50069 (18) | 0.5001 (2) | 0.0386 (18) | |
C2a | 0.6050 (3) | 0.4893 (3) | 0.2824 (2) | 0.054 (2) | |
C2b | 0.3862 (3) | 0.4508 (2) | 0.5289 (2) | 0.047 (2) | |
C2c | −0.1235 (3) | 0.7160 (2) | 0.5045 (2) | 0.046 (2) | |
C2d | 0.1215 (3) | 0.4801 (2) | 0.5624 (2) | 0.049 (2) | |
C3a | 0.5574 (3) | 0.4366 (3) | 0.30345 (19) | 0.051 (2) | |
C3b | 0.4029 (3) | 0.4091 (2) | 0.4791 (2) | 0.043 (2) | |
C3c | −0.0725 (3) | 0.70158 (18) | 0.5574 (2) | 0.041 (2) | |
C3d | 0.1028 (3) | 0.5335 (2) | 0.5988 (2) | 0.046 (2) | |
C4a | 0.5761 (3) | 0.6135 (3) | 0.2839 (3) | 0.064 (3) | |
C4b | 0.3479 (3) | 0.5733 (2) | 0.53618 (17) | 0.0436 (19) | |
C4c | −0.0982 (3) | 0.7015 (2) | 0.3832 (2) | 0.054 (2) | |
C4d | 0.1487 (3) | 0.46071 (19) | 0.4415 (2) | 0.048 (2) | |
C5a | 0.5788 (4) | 0.3660 (3) | 0.3004 (3) | 0.066 (3) | |
C5b | 0.4230 (4) | 0.3388 (2) | 0.4802 (3) | 0.059 (3) | |
C5c | −0.0935 (3) | 0.7086 (2) | 0.6267 (2) | 0.056 (2) | |
C5d | 0.0856 (4) | 0.5399 (3) | 0.6682 (2) | 0.066 (3) | |
H1 | 0.41320 | 0.37560 | 0.36130 | 0.05100* | |
H3 | 0.07365 | 0.65819 | 0.61512 | 0.04400* | |
H2a | 0.66284 | 0.48881 | 0.26212 | 0.06900* | |
H2b | 0.37560 | 0.44131 | 0.57470 | 0.06000* | |
H2c | −0.18830 | 0.72980 | 0.50800 | 0.05800* | |
H2d | 0.12743 | 0.43666 | 0.57739 | 0.04800* | |
H41a | 0.52780 | 0.63990 | 0.29460 | 0.09700* | |
H41b | 0.40378 | 0.59663 | 0.54040 | 0.03500* | |
H41c | −0.16109 | 0.69029 | 0.37845 | 0.08300* | |
H41d | 0.09551 | 0.46090 | 0.41535 | 0.07400* | |
H42a | 0.62821 | 0.62497 | 0.30871 | 0.09700* | |
H42b | 0.30666 | 0.60026 | 0.51266 | 0.03500* | |
H42c | −0.08793 | 0.74444 | 0.36759 | 0.08300* | |
H42d | 0.19870 | 0.47863 | 0.41782 | 0.07400* | |
H43a | 0.58964 | 0.61895 | 0.23938 | 0.09700* | |
H43b | 0.32447 | 0.56634 | 0.57824 | 0.03500* | |
H43c | −0.06118 | 0.67138 | 0.35975 | 0.08300* | |
H43d | 0.16272 | 0.41687 | 0.45318 | 0.07400* | |
H51a | 0.61091 | 0.35634 | 0.26196 | 0.10200* | |
H51b | 0.47000 | 0.33311 | 0.45370 | 0.09200* | |
H51c | −0.15547 | 0.72295 | 0.63045 | 0.08700* | |
H51d | 0.02901 | 0.56177 | 0.67437 | 0.08600* | |
H52a | 0.61542 | 0.35504 | 0.33685 | 0.10200* | |
H52b | 0.43847 | 0.32526 | 0.52219 | 0.09200* | |
H52c | −0.08809 | 0.66839 | 0.64895 | 0.08700* | |
H52d | 0.08187 | 0.49797 | 0.68766 | 0.08600* | |
H53a | 0.52271 | 0.34224 | 0.30207 | 0.10200* | |
H53b | 0.37110 | 0.31483 | 0.46523 | 0.09200* | |
H53c | −0.05527 | 0.74058 | 0.64650 | 0.08700* | |
H53d | 0.13301 | 0.56460 | 0.68810 | 0.08600* | |
H1w | 0.17930 | 0.69550 | 0.69110 | 0.13000* | |
H2w | 0.14750 | 0.72429 | 0.75000 | 0.13000* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.02782 (15) | 0.04180 (17) | 0.02709 (16) | 0.00192 (11) | 0.00332 (10) | 0.00246 (11) |
Mo2 | 0.02996 (15) | 0.03545 (16) | 0.02706 (15) | 0.00194 (11) | 0.00348 (11) | 0.00135 (11) |
Cl1 | 0.0550 (5) | 0.0798 (7) | 0.0378 (5) | 0.0089 (5) | 0.0059 (4) | 0.0207 (5) |
Cl2 | 0.0681 (6) | 0.0448 (5) | 0.0424 (5) | 0.0066 (4) | 0.0105 (4) | 0.0108 (4) |
O1 | 0.0440 (13) | 0.0474 (14) | 0.0492 (16) | −0.0056 (12) | −0.0014 (11) | −0.0005 (12) |
O2 | 0.0472 (13) | 0.0515 (15) | 0.0389 (14) | −0.0047 (12) | 0.0008 (11) | −0.0033 (11) |
O3 | 0.0364 (12) | 0.0438 (12) | 0.0327 (12) | 0.0079 (10) | 0.0077 (10) | 0.0078 (10) |
O1a | 0.0328 (11) | 0.0529 (17) | 0.0351 (13) | 0.0034 (10) | −0.0054 (9) | −0.0023 (11) |
O1c | 0.0348 (12) | 0.0435 (13) | 0.0384 (15) | −0.0077 (10) | 0.0049 (10) | −0.0005 (10) |
O1w | 0.139 (5) | 0.157 (6) | 0.064 (3) | −0.019 (5) | −0.007 (3) | −0.032 (3) |
O2a | 0.071 (2) | 0.0570 (19) | 0.088 (3) | −0.0032 (17) | −0.036 (2) | −0.0100 (17) |
O2c | 0.095 (3) | 0.157 (5) | 0.052 (2) | −0.078 (3) | 0.013 (2) | −0.035 (3) |
N1a | 0.0359 (15) | 0.058 (2) | 0.0343 (16) | 0.0101 (14) | 0.0017 (12) | −0.0037 (14) |
N1b | 0.0367 (14) | 0.0422 (16) | 0.0353 (16) | 0.0013 (11) | 0.0000 (12) | −0.0010 (13) |
N1c | 0.0324 (14) | 0.0445 (16) | 0.0324 (16) | 0.0012 (12) | 0.0051 (12) | −0.0025 (12) |
N1d | 0.0345 (13) | 0.0441 (17) | 0.0304 (14) | −0.0014 (12) | 0.0043 (11) | 0.0039 (13) |
N2a | 0.0309 (14) | 0.058 (2) | 0.0321 (16) | 0.0020 (13) | 0.0027 (11) | −0.0023 (13) |
N2b | 0.0314 (13) | 0.0442 (16) | 0.0288 (14) | 0.0031 (12) | 0.0003 (11) | −0.0010 (11) |
N2c | 0.0349 (15) | 0.0454 (16) | 0.0318 (15) | 0.0022 (12) | 0.0000 (12) | −0.0009 (12) |
N2d | 0.0288 (13) | 0.0392 (16) | 0.0350 (14) | −0.0010 (11) | 0.0024 (11) | 0.0024 (11) |
C1 | 0.0377 (16) | 0.0495 (19) | 0.0328 (17) | 0.0045 (15) | −0.0019 (14) | −0.0028 (16) |
C2 | 0.0385 (18) | 0.052 (2) | 0.0344 (19) | −0.0014 (16) | −0.0013 (14) | −0.0053 (16) |
C3 | 0.0345 (16) | 0.0440 (19) | 0.0304 (17) | 0.0019 (14) | 0.0025 (13) | 0.0002 (13) |
C4 | 0.0388 (18) | 0.053 (2) | 0.036 (2) | −0.0095 (16) | −0.0013 (16) | −0.0028 (16) |
C1a | 0.0338 (19) | 0.083 (3) | 0.034 (2) | 0.002 (2) | 0.0060 (15) | 0.0015 (18) |
C1b | 0.0322 (16) | 0.052 (2) | 0.0278 (16) | −0.0040 (15) | −0.0030 (13) | −0.0007 (14) |
C1c | 0.0352 (18) | 0.0388 (18) | 0.051 (2) | 0.0031 (14) | −0.0012 (16) | −0.0002 (15) |
C1d | 0.0305 (16) | 0.0362 (17) | 0.049 (2) | −0.0019 (14) | 0.0036 (15) | 0.0045 (14) |
C2a | 0.039 (2) | 0.088 (3) | 0.037 (2) | 0.010 (2) | 0.0073 (15) | −0.005 (2) |
C2b | 0.050 (2) | 0.060 (2) | 0.0324 (18) | −0.0022 (18) | −0.0069 (16) | 0.0076 (17) |
C2c | 0.038 (2) | 0.047 (2) | 0.052 (2) | 0.0073 (16) | 0.0064 (17) | 0.0044 (16) |
C2d | 0.052 (2) | 0.0403 (19) | 0.053 (2) | −0.0022 (17) | 0.0102 (18) | 0.0125 (16) |
C3a | 0.042 (2) | 0.079 (3) | 0.0312 (18) | 0.017 (2) | 0.0004 (15) | −0.0078 (19) |
C3b | 0.0430 (18) | 0.047 (2) | 0.039 (2) | −0.0044 (16) | −0.0104 (15) | 0.0078 (16) |
C3c | 0.0371 (18) | 0.0363 (17) | 0.050 (2) | 0.0014 (14) | 0.0108 (16) | −0.0035 (15) |
C3d | 0.047 (2) | 0.052 (2) | 0.038 (2) | −0.0036 (16) | 0.0045 (15) | 0.0154 (16) |
C4a | 0.041 (2) | 0.092 (4) | 0.060 (3) | −0.011 (2) | 0.0163 (19) | 0.011 (2) |
C4b | 0.0418 (18) | 0.057 (2) | 0.0317 (17) | 0.0051 (16) | −0.0026 (14) | −0.0077 (16) |
C4c | 0.046 (2) | 0.065 (3) | 0.051 (2) | 0.0140 (18) | −0.0073 (17) | 0.005 (2) |
C4d | 0.046 (2) | 0.0378 (18) | 0.060 (2) | −0.0017 (15) | 0.0043 (17) | −0.0061 (16) |
C5a | 0.063 (3) | 0.076 (3) | 0.059 (3) | 0.023 (2) | 0.004 (2) | −0.015 (2) |
C5b | 0.069 (3) | 0.049 (2) | 0.060 (3) | 0.000 (2) | −0.014 (2) | 0.007 (2) |
C5c | 0.059 (2) | 0.060 (2) | 0.050 (2) | 0.013 (2) | 0.012 (2) | −0.0029 (19) |
C5d | 0.089 (4) | 0.070 (3) | 0.038 (2) | −0.004 (2) | 0.004 (2) | 0.011 (2) |
Mo1—Cl1 | 2.3594 (11) | C1d—C2d | 1.383 (6) |
Mo1—O1 | 1.675 (3) | C1d—C4d | 1.506 (6) |
Mo1—O1a | 2.151 (3) | C2a—C3a | 1.367 (8) |
Mo1—O3 | 1.865 (3) | C2b—C3b | 1.377 (6) |
Mo1—N2a | 2.225 (3) | C2c—C3c | 1.373 (6) |
Mo1—N2b | 2.201 (3) | C2d—C3d | 1.370 (6) |
Mo2—Cl2 | 2.3759 (11) | C3—C4 | 1.548 (5) |
Mo2—O1c | 2.150 (3) | C3a—C5a | 1.493 (9) |
Mo2—O2 | 1.674 (3) | C3b—C5b | 1.482 (6) |
Mo2—O3 | 1.861 (3) | C3c—C5c | 1.495 (6) |
Mo2—N2c | 2.232 (3) | C3d—C5d | 1.486 (6) |
Mo2—N2d | 2.190 (3) | C1—H1 | 1.0305 |
O1a—C2 | 1.270 (5) | C2a—H2a | 0.9504 |
O1c—C4 | 1.277 (5) | C2b—H2b | 0.9942 |
O2a—C2 | 1.215 (6) | C2c—H2c | 0.9962 |
O2c—C4 | 1.188 (7) | C2d—H2d | 0.9547 |
O1w—H1w | 1.0150 | C3—H3 | 0.9575 |
O1w—H2w | 1.0035 | C4a—H42a | 0.9558 |
N1a—N2a | 1.369 (5) | C4a—H41a | 0.9225 |
N1a—C3a | 1.365 (6) | C4a—H43a | 0.9628 |
N1a—C1 | 1.460 (5) | C4b—H42b | 0.9597 |
N1b—C3b | 1.353 (5) | C4b—H43b | 0.9591 |
N1b—N2b | 1.374 (5) | C4b—H41b | 0.9558 |
N1b—C1 | 1.452 (5) | C4c—H43c | 0.9619 |
N1c—C3 | 1.449 (4) | C4c—H41c | 0.9574 |
N1c—N2c | 1.371 (4) | C4c—H42c | 0.9574 |
N1c—C3c | 1.357 (5) | C4d—H43d | 0.9603 |
N1d—C3 | 1.454 (5) | C4d—H42d | 0.9611 |
N1d—N2d | 1.375 (4) | C4d—H41d | 0.9550 |
N1d—C3d | 1.362 (5) | C5a—H52a | 0.9627 |
N2a—C1a | 1.342 (5) | C5a—H51a | 0.9562 |
N2b—C1b | 1.334 (5) | C5a—H53a | 0.9595 |
N2c—C1c | 1.341 (5) | C5b—H52b | 0.9529 |
N2d—C1d | 1.331 (5) | C5b—H51b | 0.8946 |
C1—C2 | 1.548 (5) | C5b—H53b | 0.9617 |
C1a—C2a | 1.397 (8) | C5c—H52c | 0.9562 |
C1a—C4a | 1.495 (9) | C5c—H53c | 0.9615 |
C1b—C2b | 1.394 (6) | C5c—H51c | 0.9604 |
C1b—C4b | 1.493 (6) | C5d—H53d | 0.9590 |
C1c—C4c | 1.481 (6) | C5d—H51d | 0.9547 |
C1c—C2c | 1.393 (6) | C5d—H52d | 0.9591 |
Cl1—Mo1—O1 | 102.86 (10) | N1c—C3—N1d | 111.2 (3) |
Cl1—Mo1—O1a | 86.99 (8) | N1c—C3—C4 | 108.9 (3) |
Cl1—Mo1—O3 | 91.92 (8) | N1d—C3—C4 | 110.4 (3) |
Cl1—Mo1—N2a | 89.88 (9) | N1a—C3a—C5a | 122.7 (5) |
Cl1—Mo1—N2b | 164.08 (9) | C2a—C3a—C5a | 131.0 (5) |
O1—Mo1—O1a | 164.75 (12) | N1a—C3a—C2a | 106.3 (5) |
O1—Mo1—O3 | 102.98 (13) | N1b—C3b—C2b | 106.2 (4) |
O1—Mo1—N2a | 89.99 (13) | C2b—C3b—C5b | 129.5 (4) |
O1—Mo1—N2b | 90.29 (13) | N1b—C3b—C5b | 124.2 (4) |
O1a—Mo1—O3 | 88.09 (11) | N1c—C3c—C2c | 106.0 (4) |
O1a—Mo1—N2a | 78.28 (11) | C2c—C3c—C5c | 130.9 (4) |
O1a—Mo1—N2b | 78.40 (11) | N1c—C3c—C5c | 123.1 (4) |
O3—Mo1—N2a | 166.14 (12) | N1d—C3d—C2d | 105.9 (4) |
O3—Mo1—N2b | 93.85 (11) | N1d—C3d—C5d | 123.3 (4) |
N2a—Mo1—N2b | 81.07 (12) | C2d—C3d—C5d | 130.8 (4) |
Cl2—Mo2—O1c | 87.09 (8) | O1c—C4—O2c | 127.2 (5) |
Cl2—Mo2—O2 | 102.51 (10) | O1c—C4—C3 | 113.7 (3) |
Cl2—Mo2—O3 | 91.01 (9) | O2c—C4—C3 | 119.1 (4) |
Cl2—Mo2—N2c | 90.35 (9) | N1b—C1—H1 | 104.45 |
Cl2—Mo2—N2d | 164.48 (9) | C2—C1—H1 | 108.26 |
O1c—Mo2—O2 | 165.25 (12) | N1a—C1—H1 | 113.94 |
O1c—Mo2—O3 | 88.02 (10) | C3a—C2a—H2a | 126.42 |
O1c—Mo2—N2c | 78.09 (10) | C1a—C2a—H2a | 126.24 |
O1c—Mo2—N2d | 78.60 (11) | C1b—C2b—H2b | 122.36 |
O2—Mo2—O3 | 102.81 (13) | C3b—C2b—H2b | 129.79 |
O2—Mo2—N2c | 90.54 (13) | C1c—C2c—H2c | 130.32 |
O2—Mo2—N2d | 90.45 (13) | C3c—C2c—H2c | 121.57 |
O3—Mo2—N2c | 165.95 (11) | C3d—C2d—H2d | 126.20 |
O3—Mo2—N2d | 94.44 (11) | C1d—C2d—H2d | 126.32 |
N2c—Mo2—N2d | 80.90 (11) | N1c—C3—H3 | 108.73 |
Mo1—O1a—C2 | 129.3 (3) | N1d—C3—H3 | 108.72 |
Mo2—O1c—C4 | 129.7 (3) | C4—C3—H3 | 108.91 |
Mo1—O3—Mo2 | 178.31 (16) | C1a—C4a—H41a | 110.40 |
H1w—O1w—H2w | 91.84 | C1a—C4a—H42a | 109.25 |
N2a—N1a—C3a | 110.9 (4) | H41a—C4a—H42a | 109.66 |
C1—N1a—C3a | 129.4 (4) | H41a—C4a—H43a | 109.05 |
N2a—N1a—C1 | 119.7 (3) | H42a—C4a—H43a | 109.60 |
N2b—N1b—C3b | 111.1 (3) | C1a—C4a—H43a | 108.86 |
C1—N1b—C3b | 129.7 (3) | C1b—C4b—H41b | 107.16 |
N2b—N1b—C1 | 119.2 (3) | C1b—C4b—H43b | 112.61 |
N2c—N1c—C3 | 119.4 (3) | H41b—C4b—H42b | 107.30 |
C3—N1c—C3c | 129.5 (3) | C1b—C4b—H42b | 112.56 |
N2c—N1c—C3c | 111.1 (3) | H42b—C4b—H43b | 109.56 |
N2d—N1d—C3 | 119.7 (3) | H41b—C4b—H43b | 107.35 |
C3—N1d—C3d | 129.6 (3) | C1c—C4c—H41c | 109.67 |
N2d—N1d—C3d | 110.7 (3) | C1c—C4c—H42c | 109.21 |
Mo1—N2a—N1a | 120.4 (2) | H41c—C4c—H42c | 109.89 |
Mo1—N2a—C1a | 133.4 (3) | H41c—C4c—H43c | 109.61 |
N1a—N2a—C1a | 106.1 (4) | C1c—C4c—H43c | 108.91 |
Mo1—N2b—N1b | 121.3 (2) | H42c—C4c—H43c | 109.54 |
Mo1—N2b—C1b | 132.7 (3) | C1d—C4d—H42d | 110.26 |
N1b—N2b—C1b | 106.0 (3) | C1d—C4d—H43d | 110.22 |
Mo2—N2c—C1c | 133.4 (3) | H41d—C4d—H42d | 109.01 |
N1c—N2c—C1c | 106.0 (3) | H41d—C4d—H43d | 109.04 |
Mo2—N2c—N1c | 120.5 (2) | H42d—C4d—H43d | 109.35 |
Mo2—N2d—N1d | 121.1 (2) | C1d—C4d—H41d | 108.93 |
N1d—N2d—C1d | 105.9 (3) | C3a—C5a—H51a | 110.11 |
Mo2—N2d—C1d | 133.1 (3) | C3a—C5a—H52a | 108.24 |
N1a—C1—N1b | 110.4 (3) | H51a—C5a—H52a | 110.31 |
N1b—C1—C2 | 109.4 (3) | H51a—C5a—H53a | 110.34 |
N1a—C1—C2 | 110.2 (3) | H52a—C5a—H53a | 109.29 |
N2a—C1a—C2a | 109.5 (5) | C3a—C5a—H53a | 108.49 |
N2a—C1a—C4a | 122.5 (5) | C3b—C5b—H52b | 110.45 |
C2a—C1a—C4a | 128.0 (4) | C3b—C5b—H53b | 109.95 |
N2b—C1b—C2b | 109.8 (3) | C3b—C5b—H51b | 105.83 |
N2b—C1b—C4b | 122.1 (3) | H51b—C5b—H53b | 109.91 |
C2b—C1b—C4b | 128.1 (3) | H52b—C5b—H53b | 109.92 |
N2c—C1c—C4c | 121.8 (4) | H51b—C5b—H52b | 110.71 |
C2c—C1c—C4c | 128.9 (4) | C3c—C5c—H51c | 107.77 |
N2c—C1c—C2c | 109.4 (4) | C3c—C5c—H52c | 112.00 |
N2d—C1d—C2d | 110.0 (4) | H51c—C5c—H52c | 107.85 |
N2d—C1d—C4d | 121.5 (4) | H51c—C5c—H53c | 107.82 |
C2d—C1d—C4d | 128.5 (4) | C3c—C5c—H53c | 111.55 |
O1a—C2—O2a | 126.9 (4) | H52c—C5c—H53c | 109.66 |
O1a—C2—C1 | 114.5 (3) | C3d—C5d—H52d | 110.35 |
O2a—C2—C1 | 118.6 (4) | C3d—C5d—H53d | 110.59 |
C1a—C2a—C3a | 107.3 (4) | C3d—C5d—H51d | 108.87 |
C1b—C2b—C3b | 106.9 (4) | H51d—C5d—H53d | 108.74 |
C1c—C2c—C3c | 107.5 (4) | H52d—C5d—H53d | 109.62 |
C1d—C2d—C3d | 107.5 (4) | H51d—C5d—H52d | 108.63 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1w—H1w···O2c | 1.02 | 2.23 | 2.889 (8) | 121 |
O1w—H2w···Cl2i | 1.00 | 2.42 | 3.335 (7) | 151 |
Symmetry code: (i) x, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Mo2(C12H15N4O2)2Cl2O3]·H2O |
Mr | 823.36 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 293 |
a, b, c (Å) | 14.6869 (1), 20.6499 (2), 21.0082 (2) |
V (Å3) | 6371.43 (10) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 1.01 |
Crystal size (mm) | 0.3 × 0.15 × 0.05 |
Data collection | |
Diffractometer | Nonius KappaCCD |
Absorption correction | Multi-scan DENZO-SMN (Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.69, 0.95 |
No. of measured, independent and observed [F2 > 2σ(F2)] reflections | 91066, 7300, 5534 |
Rint | 0.064 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.028, 1.42 |
No. of reflections | 6640 |
No. of parameters | 397 |
H-atom treatment | H-atom parameters not refined |
Δρmax, Δρmin (e Å−3) | 0.97, −1.50 |
Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), Xtal3.6 (Hall et al., 1999), ORTEP-3 (Farrugia, 1997).
Mo1—Cl1 | 2.3594 (11) | Mo2—Cl2 | 2.3759 (11) |
Mo1—O1 | 1.675 (3) | Mo2—O1c | 2.150 (3) |
Mo1—O1a | 2.151 (3) | Mo2—O2 | 1.674 (3) |
Mo1—O3 | 1.865 (3) | Mo2—O3 | 1.861 (3) |
Mo1—N2a | 2.225 (3) | Mo2—N2c | 2.232 (3) |
Mo1—N2b | 2.201 (3) | Mo2—N2d | 2.190 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1w—H1w···O2c | 1.02 | 2.23 | 2.889 (8) | 121 |
O1w—H2w···Cl2i | 1.00 | 2.42 | 3.335 (7) | 151 |
Symmetry code: (i) x, −y+3/2, z+1/2. |
Acknowledgements
We are grateful for the financial contribution of the Ministry of Higher Education, Science and Technology of the Republic of Slovenia through grants X-2000 and PO-511–103.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burzlaff, N. (2008). Adv. Inorg. Chem. 60, 101–165. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hall, S. R., du Boulay, D. J. & Olthof-Hazekamp, R. (1999). Editors. Xtal3.6 System. University of Western Australia, Australia. Google Scholar
Hammes, B. S., Chohan, B. S., Hoffman, J. T., Einwächter, S. & Carrano, C. J. (2004). Inorg. Chem. 43, 7800–7806. Web of Science CSD CrossRef PubMed CAS Google Scholar
Heinze, K. & Fischer, A. (2010). Eur. J. Inorg. Chem. pp. 1939–1947. CrossRef Google Scholar
Hille, R. (1996). Chem. Rev. 96, 2757–2816. CrossRef PubMed CAS Web of Science Google Scholar
Kitanovski, N., Golobič, A. & Čeh, B. (2006). Inorg. Chem. Commun. 9, 296–299. Web of Science CSD CrossRef CAS Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otero, A., Fernández-Baeza, J., Antiñolo, A., Tejeda, J. & Lara-Sánchez, A. (2004). Dalton Trans. pp. 1499–1510. Web of Science CrossRef Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Trofimenko, S. (1967). J. Am. Chem. Soc. 89, 3170–3177. CrossRef CAS Web of Science Google Scholar
Wang, H. & Robertson, B. E. (1985). Structure and Statistics in Crystallography, edited by A. J. C. Wilson, pp. 125–136. New York: Adenine Press. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Since the preparation of the first tris(pyrazolyl)borate-complexes by Trofimenko (1967) the coordination compounds of almost all transition elements with different "scorpionate" ligands have been prepared. The characteristics and the synthetic routes of divers tripodal heteroscorpionate N,N,O-, N,N,S- and, N,N,N- ligands based on bis(pyrazol-1-yl)acetate, -thioacetate and -ethoxide with pyrazolyl rings substituted at 3 and 5 positions, as well as their complexes with different metals have been discussed. (Otero et al., 2004). For some time afterwards, the complexes with metal atoms coordinated with tripodal κ3N,N',O-bound "scorpionate" ligands have attracted considerable interest because they can serve as structural models, mimicking the active sites like, for example, the 2-His-1-carboxylate triad, which is present in different metalloenzymes and –proteins, mostly containing Zn, Fe, Mn, Ni, Co and Mo atoms (Burzlaff, 2008). The mononuclear molybdenum-containing enzymes serve for catalyzing of a net oxygen atom transfer with the Mo atom cycling between +4 and +6 oxidation states (Hille, 1996). The elucidation of the structures of mononuclear Mo(VI/V/IV) complexes can help the understanding of interaction of the intermediate, and resting states of these enzymes (Heinze & Fischer, 2010). The complexes with di-1H-pyrazol-1-ylacetate, substituted at the 3 and 5 positions, are known with more than a half of d-elements in different oxidation states (Kitanovski et al., 2006). Some Mo(VI), and Mo(V) complexes with bdmpza as ligand have already been prepared so far (Hammes et al., 2004; Kitanovski et al., 2006).
The compound crystallizes in the orthorhombic space group Pbca with eight binuclear complex molecules and eight water molecules per unit cell. Both MoCl(O)(bdmpza) moieties are symmetry independent. The Mo1—-O1 and Mo2—-O2 bond lengths are 1.675 (3) and 1.674 (3) Å, and the Mo1—-Cl1 and Mo2—-Cl2 bond distances are 2.3594 (11) and 2.3759 (11) Å, respectively. With respect to the nonlinear Mo—-O—-Mo bridge (178.31 (16)°), the Mo=O vectors in the binuclear unit adopt an anti-orientation (torsion angle O1—Mo1—Mo2—O2 is 175.59 (14)°), and the Mo—-Cl vectors an approximate cis-orientation (torsion angle Cl1—Mo1—Mo2—Cl2 is -31.01 (4)°). The O-atom of Mo=O and the coordinated O-atom of the acetate group are in trans-position (O1—Mo1—O1a 164.75 (12) and O2—Mo2—O1c 165.25 (12)°). Both central atoms have a significantly distorted octahedral coordination, caused in first line by a typically low angles between κ3N,N',O-coordination bonds with Mo-atom (between 78.28 (11) and 81.07 (12)° for Mo1, and between 78.09 (10) and 80.90 (11)° for Mo2). The high values are also observed between Mo=O and Mo—-Cl bonds (102.86 (10)° for Mo1 and 102.51 (10)° for Mo2, respectively). The solvate water acts as a donor of two weak hydrogen bonds accepted by the uncoordinated O2c of the acetate ligand from the same asymmetric unit (with O1w···O2c distance 2.889 (8) Å) and Cl2 from symmetry related unit (with O1w···Cl2(x,3/2 - y,1/2 + z) distance 3.335 (7) Å).