metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-Oxido-bis­{[2,2-bis­­(3,5-di­methyl-1H-pyrazol-1-yl)acetato-κ3N2,O,N2′]chloridooxidomolybdenum(V)} mono­hydrate

aFaculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia
*Correspondence e-mail: BORIS.CEH@FKKT.UNI-LJ.SI

(Received 7 October 2010; accepted 5 November 2010; online 24 November 2010)

In the binuclear title compound, [Mo2(C12H15N4O2)2Cl2O3]·H2O, the complex mol­ecules have approximate C2 symmetry. Both MoV atoms have a distorted octa­hedral coordination environment with cis-positioned terminal chloride and oxide groups. The heteroscorpionate organic ligand binds to the MoV atom via an N2O donor set. The water mol­ecule bridges two complex mol­ecules, forming O—H⋯O and O—H⋯Cl hydrogen bonds to the acetate group and to the chloride ligands.

Related literature

The prepraration of the first `scorpionate' complex was described by Trofimenko (1967[Trofimenko, S. (1967). J. Am. Chem. Soc. 89, 3170-3177.]). For the importance of the structures of Mo(VI/V/IV) complexes related to the Mo-enzymes, see: Hille (1996[Hille, R. (1996). Chem. Rev. 96, 2757-2816.]); Heinze & Fischer (2010[Heinze, K. & Fischer, A. (2010). Eur. J. Inorg. Chem. pp. 1939-1947.]). For complexes with κ3N,N′,O-bound heteroscorpionate ligands, see: Otero et al. (2004[Otero, A., Fernández-Baeza, J., Antiñolo, A., Tejeda, J. & Lara-Sánchez, A. (2004). Dalton Trans. pp. 1499-1510.]); Burzlaff (2008[Burzlaff, N. (2008). Adv. Inorg. Chem. 60, 101-165.]); Kitanovski et al. (2006[Kitanovski, N., Golobič, A. & Čeh, B. (2006). Inorg. Chem. Commun. 9, 296-299.]). For Mo complexes with bis­(3,5 dimethyl-1H-pyrazol-1-yl)acetate ligands, see: Kitanovski et al. (2006[Kitanovski, N., Golobič, A. & Čeh, B. (2006). Inorg. Chem. Commun. 9, 296-299.]); Hammes et al. (2004[Hammes, B. S., Chohan, B. S., Hoffman, J. T., Einwächter, S. & Carrano, C. J. (2004). Inorg. Chem. 43, 7800-7806.]). For the weighting scheme used in the refinement, see: Wang et al. (1985[Wang, H. & Robertson, B. E. (1985). Structure and Statistics in Crystallography, edited by A. J. C. Wilson, pp. 125-136. New York: Adenine Press.])

[Scheme 1]

Experimental

Crystal data
  • [Mo2(C12H15N4O2)2Cl2O3]·H2O

  • Mr = 823.36

  • Orthorhombic, P b c a

  • a = 14.6869 (1) Å

  • b = 20.6499 (2) Å

  • c = 21.0082 (2) Å

  • V = 6371.43 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 293 K

  • 0.30 × 0.15 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan DENZO-SMN (Otwinowski & Minor, 1997)[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.] Tmin = 0.69, Tmax = 0.95

  • 91066 measured reflections

  • 7300 independent reflections

  • 5534 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.028

  • S = 1.42

  • 6640 reflections

  • 397 parameters

  • H-atom parameters not refined

  • Δρmax = 0.97 e Å−3

  • Δρmin = −1.50 e Å−3

Table 1
Selected bond lengths (Å)

Mo1—Cl1 2.3594 (11)
Mo1—O1 1.675 (3)
Mo1—O1a 2.151 (3)
Mo1—O3 1.865 (3)
Mo1—N2a 2.225 (3)
Mo1—N2b 2.201 (3)
Mo2—Cl2 2.3759 (11)
Mo2—O1c 2.150 (3)
Mo2—O2 1.674 (3)
Mo2—O3 1.861 (3)
Mo2—N2c 2.232 (3)
Mo2—N2d 2.190 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1w⋯O2c 1.02 2.23 2.889 (8) 121
O1w—H2w⋯Cl2i 1.00 2.42 3.335 (7) 151
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: Xtal3.6 (Hall et al., 1999[Hall, S. R., du Boulay, D. J. & Olthof-Hazekamp, R. (1999). Editors. Xtal3.6 System. University of Western Australia, Australia.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: Xtal3.6.

Supporting information


Comment top

Since the preparation of the first tris(pyrazolyl)borate-complexes by Trofimenko (1967) the coordination compounds of almost all transition elements with different "scorpionate" ligands have been prepared. The characteristics and the synthetic routes of divers tripodal heteroscorpionate N,N,O-, N,N,S- and, N,N,N- ligands based on bis(pyrazol-1-yl)acetate, -thioacetate and -ethoxide with pyrazolyl rings substituted at 3 and 5 positions, as well as their complexes with different metals have been discussed. (Otero et al., 2004). For some time afterwards, the complexes with metal atoms coordinated with tripodal κ3N,N',O-bound "scorpionate" ligands have attracted considerable interest because they can serve as structural models, mimicking the active sites like, for example, the 2-His-1-carboxylate triad, which is present in different metalloenzymes and –proteins, mostly containing Zn, Fe, Mn, Ni, Co and Mo atoms (Burzlaff, 2008). The mononuclear molybdenum-containing enzymes serve for catalyzing of a net oxygen atom transfer with the Mo atom cycling between +4 and +6 oxidation states (Hille, 1996). The elucidation of the structures of mononuclear Mo(VI/V/IV) complexes can help the understanding of interaction of the intermediate, and resting states of these enzymes (Heinze & Fischer, 2010). The complexes with di-1H-pyrazol-1-ylacetate, substituted at the 3 and 5 positions, are known with more than a half of d-elements in different oxidation states (Kitanovski et al., 2006). Some Mo(VI), and Mo(V) complexes with bdmpza as ligand have already been prepared so far (Hammes et al., 2004; Kitanovski et al., 2006).

The compound crystallizes in the orthorhombic space group Pbca with eight binuclear complex molecules and eight water molecules per unit cell. Both MoCl(O)(bdmpza) moieties are symmetry independent. The Mo1—-O1 and Mo2—-O2 bond lengths are 1.675 (3) and 1.674 (3) Å, and the Mo1—-Cl1 and Mo2—-Cl2 bond distances are 2.3594 (11) and 2.3759 (11) Å, respectively. With respect to the nonlinear Mo—-O—-Mo bridge (178.31 (16)°), the Mo=O vectors in the binuclear unit adopt an anti-orientation (torsion angle O1—Mo1—Mo2—O2 is 175.59 (14)°), and the Mo—-Cl vectors an approximate cis-orientation (torsion angle Cl1—Mo1—Mo2—Cl2 is -31.01 (4)°). The O-atom of Mo=O and the coordinated O-atom of the acetate group are in trans-position (O1—Mo1—O1a 164.75 (12) and O2—Mo2—O1c 165.25 (12)°). Both central atoms have a significantly distorted octahedral coordination, caused in first line by a typically low angles between κ3N,N',O-coordination bonds with Mo-atom (between 78.28 (11) and 81.07 (12)° for Mo1, and between 78.09 (10) and 80.90 (11)° for Mo2). The high values are also observed between Mo=O and Mo—-Cl bonds (102.86 (10)° for Mo1 and 102.51 (10)° for Mo2, respectively). The solvate water acts as a donor of two weak hydrogen bonds accepted by the uncoordinated O2c of the acetate ligand from the same asymmetric unit (with O1w···O2c distance 2.889 (8) Å) and Cl2 from symmetry related unit (with O1w···Cl2(x,3/2 - y,1/2 + z) distance 3.335 (7) Å).

Related literature top

The prepraration of the first 'scorpionate' complex is described by Trofimenko (1967). For the importance of the structures of Mo(VI/V/IV) complexes related to the Mo-enzymes, see: Hille (1996); Heinze & Fischer (2010). For complexes with κ3N,N',O-bound heteroscorpionate ligands, see: Otero et al. (2004); Burzlaff (2008); Kitanovski et al. (2006). For Mo complexes with bis(3,5 dimethyl-1H-pyrazol-1-yl)acetate ligands, see: Kitanovski et al. (2006); Hammes et al. (2004). For the weighting scheme used in the refinement, see: Wang et al. (1985)

Experimental top

A mixture of MoCl4(CH3CN)2 (0.450 mg, 1.40 mmol), Hdmpza (0.347 g, 1.40 mmol) and acetonitrile (20 ml) was stirred at room temperature. At first the mixture became clear and after an hour the orange precipitate started to separate. After the filtration of the precipitate, a small amount of water (0.13 g) was added to the portion of filtrate (0.65 g) and the solution left on air at room temperature. After about 14 h the black crystals, suitable for X-ray diffraction started to grow and were isolated in 45% yield. Anal. Calcd. for C24H32Cl2N8O8: C,35.01; H, 3.92; N, 13.61. Found: C, 35.74; H, 4.03; N, 13.71.

Refinement top

Full matrix least-squares refinement on F values with anisotropic displacement parameters for all non-hydrogen atoms was employed. Hydrogen atoms were located from difference Fourier maps. Their parameters were not refined. A REGINA (Wang et al., 1985) weighting scheme using the normal equation of the second order was applied for individual reflections so that w= A(0,0) + A(1,0)V(F) + A(0,1)V(S) + A(2,0)V(F)2 + A(0,2)V(S)2 + A(1,1)V(F)V(S), where V(F)= Fobs/Fobs(max), Fobs(max)= 496.47 and V(S)=(sinθ/λ)/ ((sinθ/λ)(max)),(sinθ/λ)(max)=.6495. The parameters were: A(0,0) = 110.7607, A(1,0) = .7072179 A(0,1) = -502.5041, A(2,0) = -.0004053 A(1,1) = -1.637116, A(0,2) = 576.1985. The location of the deepest hole is at the site of Mo2 atom.

Structure description top

Since the preparation of the first tris(pyrazolyl)borate-complexes by Trofimenko (1967) the coordination compounds of almost all transition elements with different "scorpionate" ligands have been prepared. The characteristics and the synthetic routes of divers tripodal heteroscorpionate N,N,O-, N,N,S- and, N,N,N- ligands based on bis(pyrazol-1-yl)acetate, -thioacetate and -ethoxide with pyrazolyl rings substituted at 3 and 5 positions, as well as their complexes with different metals have been discussed. (Otero et al., 2004). For some time afterwards, the complexes with metal atoms coordinated with tripodal κ3N,N',O-bound "scorpionate" ligands have attracted considerable interest because they can serve as structural models, mimicking the active sites like, for example, the 2-His-1-carboxylate triad, which is present in different metalloenzymes and –proteins, mostly containing Zn, Fe, Mn, Ni, Co and Mo atoms (Burzlaff, 2008). The mononuclear molybdenum-containing enzymes serve for catalyzing of a net oxygen atom transfer with the Mo atom cycling between +4 and +6 oxidation states (Hille, 1996). The elucidation of the structures of mononuclear Mo(VI/V/IV) complexes can help the understanding of interaction of the intermediate, and resting states of these enzymes (Heinze & Fischer, 2010). The complexes with di-1H-pyrazol-1-ylacetate, substituted at the 3 and 5 positions, are known with more than a half of d-elements in different oxidation states (Kitanovski et al., 2006). Some Mo(VI), and Mo(V) complexes with bdmpza as ligand have already been prepared so far (Hammes et al., 2004; Kitanovski et al., 2006).

The compound crystallizes in the orthorhombic space group Pbca with eight binuclear complex molecules and eight water molecules per unit cell. Both MoCl(O)(bdmpza) moieties are symmetry independent. The Mo1—-O1 and Mo2—-O2 bond lengths are 1.675 (3) and 1.674 (3) Å, and the Mo1—-Cl1 and Mo2—-Cl2 bond distances are 2.3594 (11) and 2.3759 (11) Å, respectively. With respect to the nonlinear Mo—-O—-Mo bridge (178.31 (16)°), the Mo=O vectors in the binuclear unit adopt an anti-orientation (torsion angle O1—Mo1—Mo2—O2 is 175.59 (14)°), and the Mo—-Cl vectors an approximate cis-orientation (torsion angle Cl1—Mo1—Mo2—Cl2 is -31.01 (4)°). The O-atom of Mo=O and the coordinated O-atom of the acetate group are in trans-position (O1—Mo1—O1a 164.75 (12) and O2—Mo2—O1c 165.25 (12)°). Both central atoms have a significantly distorted octahedral coordination, caused in first line by a typically low angles between κ3N,N',O-coordination bonds with Mo-atom (between 78.28 (11) and 81.07 (12)° for Mo1, and between 78.09 (10) and 80.90 (11)° for Mo2). The high values are also observed between Mo=O and Mo—-Cl bonds (102.86 (10)° for Mo1 and 102.51 (10)° for Mo2, respectively). The solvate water acts as a donor of two weak hydrogen bonds accepted by the uncoordinated O2c of the acetate ligand from the same asymmetric unit (with O1w···O2c distance 2.889 (8) Å) and Cl2 from symmetry related unit (with O1w···Cl2(x,3/2 - y,1/2 + z) distance 3.335 (7) Å).

The prepraration of the first 'scorpionate' complex is described by Trofimenko (1967). For the importance of the structures of Mo(VI/V/IV) complexes related to the Mo-enzymes, see: Hille (1996); Heinze & Fischer (2010). For complexes with κ3N,N',O-bound heteroscorpionate ligands, see: Otero et al. (2004); Burzlaff (2008); Kitanovski et al. (2006). For Mo complexes with bis(3,5 dimethyl-1H-pyrazol-1-yl)acetate ligands, see: Kitanovski et al. (2006); Hammes et al. (2004). For the weighting scheme used in the refinement, see: Wang et al. (1985)

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: Xtal3.6 (Hall et al., 1999); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: Xtal3.6 (Hall et al., 1999).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the asymmetric unit of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are drawn as small spheres of arbitrary radii.
µ-Oxido-bis{[2,2-bis(3,5-dimethyl-1H-pyrazol-1-yl)acetato-κ3N2,O,N2']chloridooxidomolybdenum(V)} monohydrate top
Crystal data top
[Mo2(C12H15N4O2)2Cl2O3]·H2OF(000) = 3312
Mr = 823.36Dx = 1.717 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ac 2abCell parameters from 7980 reflections
a = 14.6869 (1) Åθ = 2.6–27.5°
b = 20.6499 (2) ŵ = 1.01 mm1
c = 21.0082 (2) ÅT = 293 K
V = 6371.43 (10) Å3Plate, black
Z = 80.3 × 0.15 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
5534 reflections with F2 > 2σ(F2)
φ and ω scansRint = 0.064
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
θmax = 27.5°, θmin = 2.6°
Tmin = 0.69, Tmax = 0.95h = 1919
91066 measured reflectionsk = 2626
7300 independent reflectionsl = 2727
Refinement top
Refinement on F0 constraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: difference Fourier map
wR(F2) = 0.028H-atom parameters not refined
S = 1.42 A REGINA (Wang et al., 1985) weighting scheme using the normal equation of the second order was applied for individual reflections so that w = A(0,0) + A(1,0)V(F) + A(0,1)V(S) + A(2,0)V(F)2 + A(0,2)V(S)2 + A(1,1)V(F)V(S),
where V(F) = Fobs/Fobs(max), Fobs(max) = 496.47 and V(S) = (sinθ/λ)/ ((sinθ/λ)(max)), (sinθ/λ)(max) = .6495. The parameters were: A(0,0) = 110.7607, A(1,0) = .7072179 A(0,1) = -502.5041, A(2,0) = -.0004053 A(1,1) = -1.637116, A(0,2) = 576.1985
6640 reflections(Δ/σ)max = 0.002
397 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 1.50 e Å3
Crystal data top
[Mo2(C12H15N4O2)2Cl2O3]·H2OV = 6371.43 (10) Å3
Mr = 823.36Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.6869 (1) ŵ = 1.01 mm1
b = 20.6499 (2) ÅT = 293 K
c = 21.0082 (2) Å0.3 × 0.15 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
7300 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
5534 reflections with F2 > 2σ(F2)
Tmin = 0.69, Tmax = 0.95Rint = 0.064
91066 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.028H-atom parameters not refined
S = 1.42Δρmax = 0.97 e Å3
6640 reflectionsΔρmin = 1.50 e Å3
397 parameters
Special details top

Refinement. Independent reflections: contributing reflections are all observed (I > 2?(I)) and those "less than" reflections for which Fcal > Fobs

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.356763 (18)0.580454 (15)0.363344 (13)0.03224 (16)
Mo20.127609 (18)0.634123 (13)0.418255 (13)0.03082 (15)
Cl10.33672 (7)0.63258 (6)0.26439 (5)0.0575 (6)
Cl20.13854 (8)0.72985 (5)0.35598 (5)0.0518 (5)
O10.42851 (19)0.63004 (14)0.40162 (14)0.0469 (14)
O20.05836 (19)0.58758 (15)0.37453 (13)0.0459 (14)
O30.24283 (17)0.60782 (13)0.39192 (12)0.0376 (12)
O1a0.29066 (17)0.49772 (14)0.32167 (12)0.0403 (14)
O1c0.19247 (17)0.68744 (13)0.49357 (13)0.0389 (13)
O1w0.1181 (6)0.7030 (5)0.7123 (3)0.120 (5)
O2a0.2706 (3)0.3928 (2)0.3027 (2)0.072 (2)
O2c0.2051 (4)0.7262 (3)0.5911 (2)0.102 (3)
N1a0.4782 (2)0.45992 (18)0.32861 (16)0.0426 (17)
N1b0.3950 (2)0.44470 (16)0.42532 (16)0.0381 (15)
N1c0.0069 (2)0.67646 (15)0.53542 (15)0.0364 (15)
N1d0.1010 (2)0.58456 (17)0.55781 (15)0.0363 (15)
N2a0.4745 (2)0.52597 (18)0.32370 (15)0.0404 (17)
N2b0.3723 (2)0.50768 (15)0.43911 (14)0.0348 (14)
N2c0.0083 (2)0.67518 (16)0.47019 (15)0.0374 (15)
N2d0.1203 (2)0.56463 (15)0.49686 (15)0.0343 (14)
C10.4037 (2)0.4250 (2)0.35926 (19)0.0400 (17)
C20.3131 (3)0.4384 (2)0.32399 (19)0.042 (2)
C30.0850 (2)0.6528 (2)0.57055 (17)0.0363 (17)
C40.1695 (3)0.6934 (2)0.5519 (2)0.043 (2)
C1a0.5527 (3)0.5441 (3)0.2959 (2)0.050 (2)
C1b0.3692 (2)0.5115 (2)0.50244 (17)0.0373 (18)
C1c0.0725 (3)0.69854 (18)0.4513 (2)0.042 (2)
C1d0.1307 (2)0.50069 (18)0.5001 (2)0.0386 (18)
C2a0.6050 (3)0.4893 (3)0.2824 (2)0.054 (2)
C2b0.3862 (3)0.4508 (2)0.5289 (2)0.047 (2)
C2c0.1235 (3)0.7160 (2)0.5045 (2)0.046 (2)
C2d0.1215 (3)0.4801 (2)0.5624 (2)0.049 (2)
C3a0.5574 (3)0.4366 (3)0.30345 (19)0.051 (2)
C3b0.4029 (3)0.4091 (2)0.4791 (2)0.043 (2)
C3c0.0725 (3)0.70158 (18)0.5574 (2)0.041 (2)
C3d0.1028 (3)0.5335 (2)0.5988 (2)0.046 (2)
C4a0.5761 (3)0.6135 (3)0.2839 (3)0.064 (3)
C4b0.3479 (3)0.5733 (2)0.53618 (17)0.0436 (19)
C4c0.0982 (3)0.7015 (2)0.3832 (2)0.054 (2)
C4d0.1487 (3)0.46071 (19)0.4415 (2)0.048 (2)
C5a0.5788 (4)0.3660 (3)0.3004 (3)0.066 (3)
C5b0.4230 (4)0.3388 (2)0.4802 (3)0.059 (3)
C5c0.0935 (3)0.7086 (2)0.6267 (2)0.056 (2)
C5d0.0856 (4)0.5399 (3)0.6682 (2)0.066 (3)
H10.413200.375600.361300.05100*
H30.073650.658190.615120.04400*
H2a0.662840.488810.262120.06900*
H2b0.375600.441310.574700.06000*
H2c0.188300.729800.508000.05800*
H2d0.127430.436660.577390.04800*
H41a0.527800.639900.294600.09700*
H41b0.403780.596630.540400.03500*
H41c0.161090.690290.378450.08300*
H41d0.095510.460900.415350.07400*
H42a0.628210.624970.308710.09700*
H42b0.306660.600260.512660.03500*
H42c0.087930.744440.367590.08300*
H42d0.198700.478630.417820.07400*
H43a0.589640.618950.239380.09700*
H43b0.324470.566340.578240.03500*
H43c0.061180.671380.359750.08300*
H43d0.162720.416870.453180.07400*
H51a0.610910.356340.261960.10200*
H51b0.470000.333110.453700.09200*
H51c0.155470.722950.630450.08700*
H51d0.029010.561770.674370.08600*
H52a0.615420.355040.336850.10200*
H52b0.438470.325260.522190.09200*
H52c0.088090.668390.648950.08700*
H52d0.081870.497970.687660.08600*
H53a0.522710.342240.302070.10200*
H53b0.371100.314830.465230.09200*
H53c0.055270.740580.646500.08700*
H53d0.133010.564600.688100.08600*
H1w0.179300.695500.691100.13000*
H2w0.147500.724290.750000.13000*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02782 (15)0.04180 (17)0.02709 (16)0.00192 (11)0.00332 (10)0.00246 (11)
Mo20.02996 (15)0.03545 (16)0.02706 (15)0.00194 (11)0.00348 (11)0.00135 (11)
Cl10.0550 (5)0.0798 (7)0.0378 (5)0.0089 (5)0.0059 (4)0.0207 (5)
Cl20.0681 (6)0.0448 (5)0.0424 (5)0.0066 (4)0.0105 (4)0.0108 (4)
O10.0440 (13)0.0474 (14)0.0492 (16)0.0056 (12)0.0014 (11)0.0005 (12)
O20.0472 (13)0.0515 (15)0.0389 (14)0.0047 (12)0.0008 (11)0.0033 (11)
O30.0364 (12)0.0438 (12)0.0327 (12)0.0079 (10)0.0077 (10)0.0078 (10)
O1a0.0328 (11)0.0529 (17)0.0351 (13)0.0034 (10)0.0054 (9)0.0023 (11)
O1c0.0348 (12)0.0435 (13)0.0384 (15)0.0077 (10)0.0049 (10)0.0005 (10)
O1w0.139 (5)0.157 (6)0.064 (3)0.019 (5)0.007 (3)0.032 (3)
O2a0.071 (2)0.0570 (19)0.088 (3)0.0032 (17)0.036 (2)0.0100 (17)
O2c0.095 (3)0.157 (5)0.052 (2)0.078 (3)0.013 (2)0.035 (3)
N1a0.0359 (15)0.058 (2)0.0343 (16)0.0101 (14)0.0017 (12)0.0037 (14)
N1b0.0367 (14)0.0422 (16)0.0353 (16)0.0013 (11)0.0000 (12)0.0010 (13)
N1c0.0324 (14)0.0445 (16)0.0324 (16)0.0012 (12)0.0051 (12)0.0025 (12)
N1d0.0345 (13)0.0441 (17)0.0304 (14)0.0014 (12)0.0043 (11)0.0039 (13)
N2a0.0309 (14)0.058 (2)0.0321 (16)0.0020 (13)0.0027 (11)0.0023 (13)
N2b0.0314 (13)0.0442 (16)0.0288 (14)0.0031 (12)0.0003 (11)0.0010 (11)
N2c0.0349 (15)0.0454 (16)0.0318 (15)0.0022 (12)0.0000 (12)0.0009 (12)
N2d0.0288 (13)0.0392 (16)0.0350 (14)0.0010 (11)0.0024 (11)0.0024 (11)
C10.0377 (16)0.0495 (19)0.0328 (17)0.0045 (15)0.0019 (14)0.0028 (16)
C20.0385 (18)0.052 (2)0.0344 (19)0.0014 (16)0.0013 (14)0.0053 (16)
C30.0345 (16)0.0440 (19)0.0304 (17)0.0019 (14)0.0025 (13)0.0002 (13)
C40.0388 (18)0.053 (2)0.036 (2)0.0095 (16)0.0013 (16)0.0028 (16)
C1a0.0338 (19)0.083 (3)0.034 (2)0.002 (2)0.0060 (15)0.0015 (18)
C1b0.0322 (16)0.052 (2)0.0278 (16)0.0040 (15)0.0030 (13)0.0007 (14)
C1c0.0352 (18)0.0388 (18)0.051 (2)0.0031 (14)0.0012 (16)0.0002 (15)
C1d0.0305 (16)0.0362 (17)0.049 (2)0.0019 (14)0.0036 (15)0.0045 (14)
C2a0.039 (2)0.088 (3)0.037 (2)0.010 (2)0.0073 (15)0.005 (2)
C2b0.050 (2)0.060 (2)0.0324 (18)0.0022 (18)0.0069 (16)0.0076 (17)
C2c0.038 (2)0.047 (2)0.052 (2)0.0073 (16)0.0064 (17)0.0044 (16)
C2d0.052 (2)0.0403 (19)0.053 (2)0.0022 (17)0.0102 (18)0.0125 (16)
C3a0.042 (2)0.079 (3)0.0312 (18)0.017 (2)0.0004 (15)0.0078 (19)
C3b0.0430 (18)0.047 (2)0.039 (2)0.0044 (16)0.0104 (15)0.0078 (16)
C3c0.0371 (18)0.0363 (17)0.050 (2)0.0014 (14)0.0108 (16)0.0035 (15)
C3d0.047 (2)0.052 (2)0.038 (2)0.0036 (16)0.0045 (15)0.0154 (16)
C4a0.041 (2)0.092 (4)0.060 (3)0.011 (2)0.0163 (19)0.011 (2)
C4b0.0418 (18)0.057 (2)0.0317 (17)0.0051 (16)0.0026 (14)0.0077 (16)
C4c0.046 (2)0.065 (3)0.051 (2)0.0140 (18)0.0073 (17)0.005 (2)
C4d0.046 (2)0.0378 (18)0.060 (2)0.0017 (15)0.0043 (17)0.0061 (16)
C5a0.063 (3)0.076 (3)0.059 (3)0.023 (2)0.004 (2)0.015 (2)
C5b0.069 (3)0.049 (2)0.060 (3)0.000 (2)0.014 (2)0.007 (2)
C5c0.059 (2)0.060 (2)0.050 (2)0.013 (2)0.012 (2)0.0029 (19)
C5d0.089 (4)0.070 (3)0.038 (2)0.004 (2)0.004 (2)0.011 (2)
Geometric parameters (Å, º) top
Mo1—Cl12.3594 (11)C1d—C2d1.383 (6)
Mo1—O11.675 (3)C1d—C4d1.506 (6)
Mo1—O1a2.151 (3)C2a—C3a1.367 (8)
Mo1—O31.865 (3)C2b—C3b1.377 (6)
Mo1—N2a2.225 (3)C2c—C3c1.373 (6)
Mo1—N2b2.201 (3)C2d—C3d1.370 (6)
Mo2—Cl22.3759 (11)C3—C41.548 (5)
Mo2—O1c2.150 (3)C3a—C5a1.493 (9)
Mo2—O21.674 (3)C3b—C5b1.482 (6)
Mo2—O31.861 (3)C3c—C5c1.495 (6)
Mo2—N2c2.232 (3)C3d—C5d1.486 (6)
Mo2—N2d2.190 (3)C1—H11.0305
O1a—C21.270 (5)C2a—H2a0.9504
O1c—C41.277 (5)C2b—H2b0.9942
O2a—C21.215 (6)C2c—H2c0.9962
O2c—C41.188 (7)C2d—H2d0.9547
O1w—H1w1.0150C3—H30.9575
O1w—H2w1.0035C4a—H42a0.9558
N1a—N2a1.369 (5)C4a—H41a0.9225
N1a—C3a1.365 (6)C4a—H43a0.9628
N1a—C11.460 (5)C4b—H42b0.9597
N1b—C3b1.353 (5)C4b—H43b0.9591
N1b—N2b1.374 (5)C4b—H41b0.9558
N1b—C11.452 (5)C4c—H43c0.9619
N1c—C31.449 (4)C4c—H41c0.9574
N1c—N2c1.371 (4)C4c—H42c0.9574
N1c—C3c1.357 (5)C4d—H43d0.9603
N1d—C31.454 (5)C4d—H42d0.9611
N1d—N2d1.375 (4)C4d—H41d0.9550
N1d—C3d1.362 (5)C5a—H52a0.9627
N2a—C1a1.342 (5)C5a—H51a0.9562
N2b—C1b1.334 (5)C5a—H53a0.9595
N2c—C1c1.341 (5)C5b—H52b0.9529
N2d—C1d1.331 (5)C5b—H51b0.8946
C1—C21.548 (5)C5b—H53b0.9617
C1a—C2a1.397 (8)C5c—H52c0.9562
C1a—C4a1.495 (9)C5c—H53c0.9615
C1b—C2b1.394 (6)C5c—H51c0.9604
C1b—C4b1.493 (6)C5d—H53d0.9590
C1c—C4c1.481 (6)C5d—H51d0.9547
C1c—C2c1.393 (6)C5d—H52d0.9591
Cl1—Mo1—O1102.86 (10)N1c—C3—N1d111.2 (3)
Cl1—Mo1—O1a86.99 (8)N1c—C3—C4108.9 (3)
Cl1—Mo1—O391.92 (8)N1d—C3—C4110.4 (3)
Cl1—Mo1—N2a89.88 (9)N1a—C3a—C5a122.7 (5)
Cl1—Mo1—N2b164.08 (9)C2a—C3a—C5a131.0 (5)
O1—Mo1—O1a164.75 (12)N1a—C3a—C2a106.3 (5)
O1—Mo1—O3102.98 (13)N1b—C3b—C2b106.2 (4)
O1—Mo1—N2a89.99 (13)C2b—C3b—C5b129.5 (4)
O1—Mo1—N2b90.29 (13)N1b—C3b—C5b124.2 (4)
O1a—Mo1—O388.09 (11)N1c—C3c—C2c106.0 (4)
O1a—Mo1—N2a78.28 (11)C2c—C3c—C5c130.9 (4)
O1a—Mo1—N2b78.40 (11)N1c—C3c—C5c123.1 (4)
O3—Mo1—N2a166.14 (12)N1d—C3d—C2d105.9 (4)
O3—Mo1—N2b93.85 (11)N1d—C3d—C5d123.3 (4)
N2a—Mo1—N2b81.07 (12)C2d—C3d—C5d130.8 (4)
Cl2—Mo2—O1c87.09 (8)O1c—C4—O2c127.2 (5)
Cl2—Mo2—O2102.51 (10)O1c—C4—C3113.7 (3)
Cl2—Mo2—O391.01 (9)O2c—C4—C3119.1 (4)
Cl2—Mo2—N2c90.35 (9)N1b—C1—H1104.45
Cl2—Mo2—N2d164.48 (9)C2—C1—H1108.26
O1c—Mo2—O2165.25 (12)N1a—C1—H1113.94
O1c—Mo2—O388.02 (10)C3a—C2a—H2a126.42
O1c—Mo2—N2c78.09 (10)C1a—C2a—H2a126.24
O1c—Mo2—N2d78.60 (11)C1b—C2b—H2b122.36
O2—Mo2—O3102.81 (13)C3b—C2b—H2b129.79
O2—Mo2—N2c90.54 (13)C1c—C2c—H2c130.32
O2—Mo2—N2d90.45 (13)C3c—C2c—H2c121.57
O3—Mo2—N2c165.95 (11)C3d—C2d—H2d126.20
O3—Mo2—N2d94.44 (11)C1d—C2d—H2d126.32
N2c—Mo2—N2d80.90 (11)N1c—C3—H3108.73
Mo1—O1a—C2129.3 (3)N1d—C3—H3108.72
Mo2—O1c—C4129.7 (3)C4—C3—H3108.91
Mo1—O3—Mo2178.31 (16)C1a—C4a—H41a110.40
H1w—O1w—H2w91.84C1a—C4a—H42a109.25
N2a—N1a—C3a110.9 (4)H41a—C4a—H42a109.66
C1—N1a—C3a129.4 (4)H41a—C4a—H43a109.05
N2a—N1a—C1119.7 (3)H42a—C4a—H43a109.60
N2b—N1b—C3b111.1 (3)C1a—C4a—H43a108.86
C1—N1b—C3b129.7 (3)C1b—C4b—H41b107.16
N2b—N1b—C1119.2 (3)C1b—C4b—H43b112.61
N2c—N1c—C3119.4 (3)H41b—C4b—H42b107.30
C3—N1c—C3c129.5 (3)C1b—C4b—H42b112.56
N2c—N1c—C3c111.1 (3)H42b—C4b—H43b109.56
N2d—N1d—C3119.7 (3)H41b—C4b—H43b107.35
C3—N1d—C3d129.6 (3)C1c—C4c—H41c109.67
N2d—N1d—C3d110.7 (3)C1c—C4c—H42c109.21
Mo1—N2a—N1a120.4 (2)H41c—C4c—H42c109.89
Mo1—N2a—C1a133.4 (3)H41c—C4c—H43c109.61
N1a—N2a—C1a106.1 (4)C1c—C4c—H43c108.91
Mo1—N2b—N1b121.3 (2)H42c—C4c—H43c109.54
Mo1—N2b—C1b132.7 (3)C1d—C4d—H42d110.26
N1b—N2b—C1b106.0 (3)C1d—C4d—H43d110.22
Mo2—N2c—C1c133.4 (3)H41d—C4d—H42d109.01
N1c—N2c—C1c106.0 (3)H41d—C4d—H43d109.04
Mo2—N2c—N1c120.5 (2)H42d—C4d—H43d109.35
Mo2—N2d—N1d121.1 (2)C1d—C4d—H41d108.93
N1d—N2d—C1d105.9 (3)C3a—C5a—H51a110.11
Mo2—N2d—C1d133.1 (3)C3a—C5a—H52a108.24
N1a—C1—N1b110.4 (3)H51a—C5a—H52a110.31
N1b—C1—C2109.4 (3)H51a—C5a—H53a110.34
N1a—C1—C2110.2 (3)H52a—C5a—H53a109.29
N2a—C1a—C2a109.5 (5)C3a—C5a—H53a108.49
N2a—C1a—C4a122.5 (5)C3b—C5b—H52b110.45
C2a—C1a—C4a128.0 (4)C3b—C5b—H53b109.95
N2b—C1b—C2b109.8 (3)C3b—C5b—H51b105.83
N2b—C1b—C4b122.1 (3)H51b—C5b—H53b109.91
C2b—C1b—C4b128.1 (3)H52b—C5b—H53b109.92
N2c—C1c—C4c121.8 (4)H51b—C5b—H52b110.71
C2c—C1c—C4c128.9 (4)C3c—C5c—H51c107.77
N2c—C1c—C2c109.4 (4)C3c—C5c—H52c112.00
N2d—C1d—C2d110.0 (4)H51c—C5c—H52c107.85
N2d—C1d—C4d121.5 (4)H51c—C5c—H53c107.82
C2d—C1d—C4d128.5 (4)C3c—C5c—H53c111.55
O1a—C2—O2a126.9 (4)H52c—C5c—H53c109.66
O1a—C2—C1114.5 (3)C3d—C5d—H52d110.35
O2a—C2—C1118.6 (4)C3d—C5d—H53d110.59
C1a—C2a—C3a107.3 (4)C3d—C5d—H51d108.87
C1b—C2b—C3b106.9 (4)H51d—C5d—H53d108.74
C1c—C2c—C3c107.5 (4)H52d—C5d—H53d109.62
C1d—C2d—C3d107.5 (4)H51d—C5d—H52d108.63
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w···O2c1.022.232.889 (8)121
O1w—H2w···Cl2i1.002.423.335 (7)151
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mo2(C12H15N4O2)2Cl2O3]·H2O
Mr823.36
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)14.6869 (1), 20.6499 (2), 21.0082 (2)
V3)6371.43 (10)
Z8
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.3 × 0.15 × 0.05
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Tmin, Tmax0.69, 0.95
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
91066, 7300, 5534
Rint0.064
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.028, 1.42
No. of reflections6640
No. of parameters397
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.97, 1.50

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), Xtal3.6 (Hall et al., 1999), ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) top
Mo1—Cl12.3594 (11)Mo2—Cl22.3759 (11)
Mo1—O11.675 (3)Mo2—O1c2.150 (3)
Mo1—O1a2.151 (3)Mo2—O21.674 (3)
Mo1—O31.865 (3)Mo2—O31.861 (3)
Mo1—N2a2.225 (3)Mo2—N2c2.232 (3)
Mo1—N2b2.201 (3)Mo2—N2d2.190 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w···O2c1.022.232.889 (8)121
O1w—H2w···Cl2i1.002.423.335 (7)151
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

We are grateful for the financial contribution of the Ministry of Higher Education, Science and Technology of the Republic of Slovenia through grants X-2000 and PO-511–103.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurzlaff, N. (2008). Adv. Inorg. Chem. 60, 101–165.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHall, S. R., du Boulay, D. J. & Olthof-Hazekamp, R. (1999). Editors. Xtal3.6 System. University of Western Australia, Australia.  Google Scholar
First citationHammes, B. S., Chohan, B. S., Hoffman, J. T., Einwächter, S. & Carrano, C. J. (2004). Inorg. Chem. 43, 7800–7806.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHeinze, K. & Fischer, A. (2010). Eur. J. Inorg. Chem. pp. 1939–1947.  CrossRef Google Scholar
First citationHille, R. (1996). Chem. Rev. 96, 2757–2816.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKitanovski, N., Golobič, A. & Čeh, B. (2006). Inorg. Chem. Commun. 9, 296–299.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtero, A., Fernández-Baeza, J., Antiñolo, A., Tejeda, J. & Lara-Sánchez, A. (2004). Dalton Trans. pp. 1499–1510.  Web of Science CrossRef Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationTrofimenko, S. (1967). J. Am. Chem. Soc. 89, 3170–3177.  CrossRef CAS Web of Science Google Scholar
First citationWang, H. & Robertson, B. E. (1985). Structure and Statistics in Crystallography, edited by A. J. C. Wilson, pp. 125–136. New York: Adenine Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds