metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­chloridozinc(II)]-μ-[1,1′-(butane-1,4-di­yl)di­imidazole-κ2N3:N3′]]

aDepartment of Pharmacy, Xiamen University, Xiamen, Fujian 363105, People's Republic of China, and bDepartment of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou, Fujian,363000, People's Republic of China
*Correspondence e-mail: xizhonglifjzs@yahoo.cn

(Received 24 October 2010; accepted 10 November 2010; online 17 November 2010)

The title one-dimensional coordination polymer, [ZnCl2(C10H14N4)]n, was synthesized by hydro­thermal methods from ZnCl2 and 1,1′-(butane-1,4-di­yl)diimidazole. The Zn atom is coordinated by two chloride ions and two N atoms from two symmetry-independent organic ligands and shows a distorted tetra­hedral coordination geometry. The 1,1′-(butane-1,4-di­yl)diimidazole ligands are located around two sets of inversion centers and bridge ZnII ions, forming a zigzag polymeric chain. C—H⋯Cl hydrogen bonding results in the formation of a three-dimensional supra­molecular network

Related literature

For general background to this work, see: Hamada et al. (2004[Hamada, T., Manabe, K. & Kobayashi, S. (2004). J. Am. Chem. Soc. 126, 7768-7769.]); Wang et al. (2006[Wang, X. L., Qin, C., Wang, E. B. & Su, Z. M. (2006). Chem. Eur. J. 12, 2680-2691.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C10H14N4)]

  • Mr = 326.52

  • Monoclinic, P 21 /c

  • a = 7.8583 (16) Å

  • b = 11.689 (2) Å

  • c = 15.882 (3) Å

  • β = 93.82 (3)°

  • V = 1455.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.04 mm−1

  • T = 293 K

  • 0.34 × 0.27 × 0.22 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.428, Tmax = 0.731

  • 13865 measured reflections

  • 3309 independent reflections

  • 2701 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.126

  • S = 1.01

  • 3309 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 1.33 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯Cl2i 0.93 2.77 3.601 (4) 149
C6—H6A⋯Cl1ii 0.93 2.65 3.553 (3) 164
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1994[Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1994[Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of novel metal–organic coordination complexes has attached more and more attention in recent years because of their interesting topologies and unexpected properties for potential applications . Recently, there has been increasing interest in zinc–halogen compounds because of their applications in molecular materials (Hamada et al. 2004; Wang et al., 2006). In this communication, we have introduced 1,1'-(butane-1,4-diyl)diimidazole (bbi) as a bridging ligand which favors crystal growth of the 1-D chain-like polymer. Through a mild-temperature hydrothermal process, we have successfully synthesized the title crystalline Cl-coordinated Zn complex, [ZnCl2(C10H14N4)]n, (I).

The molecular structure of (I) is shown in Fig. 1. The compound features 1-D chain-like polymer complex, in which the Zn atom is coordinated by two Cl anions and two N atoms from two bbi ligands in a distorted tetrahedral geometry, in which the Zn—Cl (2.238 (1) and 2.2567 (9) Å) and Zn—N(2.010 (2) and 2.016 (3) Å) bond lengths are in the expected ranges. Each bbi ligand in the title compound is located on an inversion center and bridges ZnII ions, forming a zigzag polymeric chain with the adjacent Zn···Zn separation of 13.971 Å.

The strong C—H···Cl hydrogen bonding results in the formation of a 3-D supramolecular network, as shown in Fig. 2.

Related literature top

For general background to this work, see: Hamada et al. (2004); Wang et al. (2006).

Experimental top

The hydrothermal reaction of ZnCl2 (0.041 g, 0.3 mmol), bbi (0.076 g, 0.4 mmol) and water (15.0 ml) was carried out at 423 K for 3 d. After cooling to room temperature at a rate of 5 K h-1, block-shaped colorless crystals of the title compound suitable for X-ray analysis were obtained.

Refinement top

The C-bound H atoms were positioned geometrically, with C—H = 0.93 - 0.97 Å and all refined as riding with Uiso(H) = 1.2Ueq(C). The crystal exhibited minor twinning which was not accounted for.

Structure description top

The chemistry of novel metal–organic coordination complexes has attached more and more attention in recent years because of their interesting topologies and unexpected properties for potential applications . Recently, there has been increasing interest in zinc–halogen compounds because of their applications in molecular materials (Hamada et al. 2004; Wang et al., 2006). In this communication, we have introduced 1,1'-(butane-1,4-diyl)diimidazole (bbi) as a bridging ligand which favors crystal growth of the 1-D chain-like polymer. Through a mild-temperature hydrothermal process, we have successfully synthesized the title crystalline Cl-coordinated Zn complex, [ZnCl2(C10H14N4)]n, (I).

The molecular structure of (I) is shown in Fig. 1. The compound features 1-D chain-like polymer complex, in which the Zn atom is coordinated by two Cl anions and two N atoms from two bbi ligands in a distorted tetrahedral geometry, in which the Zn—Cl (2.238 (1) and 2.2567 (9) Å) and Zn—N(2.010 (2) and 2.016 (3) Å) bond lengths are in the expected ranges. Each bbi ligand in the title compound is located on an inversion center and bridges ZnII ions, forming a zigzag polymeric chain with the adjacent Zn···Zn separation of 13.971 Å.

The strong C—H···Cl hydrogen bonding results in the formation of a 3-D supramolecular network, as shown in Fig. 2.

For general background to this work, see: Hamada et al. (2004); Wang et al. (2006).

Computing details top

Data collection: SMART (Siemens, 1994); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title coordination polymer showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level. Symmetry code: (i) -x, -1/2 + y, 1/2 - z; (ii) x, 3/2 - y, -1/2 + z.
[Figure 2] Fig. 2. Crystal packing viewed along the a axis. C-H···Cl contacts are shown with dashed lines
catena-Poly[[dichloridozinc(II)]-µ-[1,1'-(butane-1,4-diyl)diimidazole- κ2N3:N3']] top
Crystal data top
[ZnCl2(C10H14N4)]F(000) = 664
Mr = 326.52Dx = 1.490 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13865 reflections
a = 7.8583 (16) Åθ = 3.1–27.4°
b = 11.689 (2) ŵ = 2.04 mm1
c = 15.882 (3) ÅT = 293 K
β = 93.82 (3)°Block, colorless
V = 1455.6 (5) Å30.34 × 0.27 × 0.22 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
3309 independent reflections
Radiation source: fine-focus sealed tube2701 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 0 pixels mm-1θmax = 27.4°, θmin = 3.1°
φ and ω scansh = 108
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1515
Tmin = 0.428, Tmax = 0.731l = 2020
13865 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0822P)2 + 0.5697P]
where P = (Fo2 + 2Fc2)/3
3309 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 1.33 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[ZnCl2(C10H14N4)]V = 1455.6 (5) Å3
Mr = 326.52Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8583 (16) ŵ = 2.04 mm1
b = 11.689 (2) ÅT = 293 K
c = 15.882 (3) Å0.34 × 0.27 × 0.22 mm
β = 93.82 (3)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3309 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2701 reflections with I > 2σ(I)
Tmin = 0.428, Tmax = 0.731Rint = 0.036
13865 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.01Δρmax = 1.33 e Å3
3309 reflectionsΔρmin = 0.35 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.03756 (4)0.88757 (3)0.221856 (19)0.03812 (15)
Cl10.16460 (10)1.03238 (7)0.15605 (5)0.0490 (2)
Cl20.16703 (11)0.94302 (9)0.30450 (5)0.0595 (3)
N10.0583 (3)0.7849 (2)0.12834 (15)0.0459 (6)
N20.1741 (4)0.6401 (3)0.05838 (18)0.0564 (7)
N30.2244 (3)0.7996 (2)0.28566 (15)0.0414 (5)
N40.3570 (3)0.6570 (2)0.35199 (15)0.0418 (5)
C10.1396 (5)0.6874 (3)0.1340 (2)0.0561 (9)
H1A0.16950.65540.18450.067*
C20.0383 (5)0.7996 (3)0.0444 (2)0.0604 (9)
H2A0.01750.86070.02090.072*
C30.1123 (6)0.7112 (4)0.0007 (2)0.0692 (11)
H3A0.11920.70150.05750.083*
C40.2665 (6)0.5326 (3)0.0393 (3)0.0721 (11)
H4A0.25900.48400.08900.087*
H4B0.21320.49260.00550.087*
C50.4511 (6)0.5543 (3)0.0128 (3)0.0687 (11)
H5A0.45770.60720.03440.082*
H5B0.50530.59040.05910.082*
C60.2058 (4)0.7031 (3)0.32738 (19)0.0443 (7)
H6A0.10110.67120.33830.053*
C70.3969 (4)0.8154 (3)0.2830 (2)0.0539 (8)
H7A0.44830.87690.25760.065*
C80.4809 (4)0.7279 (3)0.3232 (2)0.0565 (9)
H8A0.59840.71760.32990.068*
C90.3835 (4)0.5474 (3)0.3955 (2)0.0487 (7)
H9A0.44690.49690.36070.058*
H9B0.27350.51230.40260.058*
C100.4794 (4)0.5590 (3)0.48174 (18)0.0437 (7)
H10A0.58420.60140.47620.052*
H10B0.41020.60100.51950.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0373 (2)0.0380 (2)0.0379 (2)0.00093 (13)0.00600 (14)0.00377 (12)
Cl10.0466 (4)0.0420 (4)0.0590 (5)0.0042 (3)0.0084 (3)0.0081 (3)
Cl20.0531 (5)0.0777 (7)0.0488 (4)0.0073 (4)0.0110 (4)0.0122 (4)
N10.0504 (15)0.0459 (14)0.0400 (12)0.0080 (12)0.0086 (10)0.0022 (11)
N20.0651 (19)0.0498 (16)0.0520 (15)0.0153 (14)0.0124 (14)0.0002 (13)
N30.0360 (13)0.0409 (13)0.0460 (12)0.0014 (10)0.0065 (10)0.0084 (11)
N40.0400 (13)0.0421 (14)0.0422 (12)0.0022 (11)0.0056 (10)0.0072 (10)
C10.073 (2)0.052 (2)0.0418 (16)0.0170 (17)0.0112 (15)0.0081 (14)
C20.073 (2)0.064 (2)0.0437 (16)0.0237 (19)0.0012 (16)0.0009 (16)
C30.087 (3)0.077 (3)0.0434 (17)0.028 (2)0.0009 (18)0.0078 (18)
C40.087 (3)0.051 (2)0.074 (2)0.020 (2)0.022 (2)0.0015 (19)
C50.081 (3)0.057 (2)0.065 (2)0.025 (2)0.0131 (19)0.0024 (18)
C60.0374 (15)0.0431 (16)0.0507 (16)0.0028 (13)0.0089 (12)0.0069 (13)
C70.0449 (17)0.057 (2)0.0591 (19)0.0017 (15)0.0001 (14)0.0220 (16)
C80.0363 (16)0.066 (2)0.067 (2)0.0072 (15)0.0039 (14)0.0189 (18)
C90.0534 (19)0.0411 (17)0.0499 (17)0.0026 (14)0.0097 (14)0.0074 (13)
C100.0476 (17)0.0436 (17)0.0393 (15)0.0059 (13)0.0007 (12)0.0060 (12)
Geometric parameters (Å, º) top
Zn1—N32.010 (2)C3—H3A0.9300
Zn1—N12.016 (3)C4—C51.505 (6)
Zn1—Cl22.2381 (11)C4—H4A0.9700
Zn1—Cl12.2567 (9)C4—H4B0.9700
N1—C11.312 (4)C5—C5i1.525 (7)
N1—C21.363 (4)C5—H5A0.9700
N2—C11.334 (4)C5—H5B0.9700
N2—C31.352 (5)C6—H6A0.9300
N2—C41.472 (5)C7—C81.354 (5)
N3—C61.322 (4)C7—H7A0.9300
N3—C71.371 (4)C8—H8A0.9300
N4—C61.339 (4)C9—C101.524 (4)
N4—C81.380 (4)C9—H9A0.9700
N4—C91.464 (4)C9—H9B0.9700
C1—H1A0.9300C10—C10ii1.522 (6)
C2—C31.353 (5)C10—H10A0.9700
C2—H2A0.9300C10—H10B0.9700
N3—Zn1—N1106.94 (11)N2—C4—H4B109.3
N3—Zn1—Cl2112.43 (8)C5—C4—H4B109.3
N1—Zn1—Cl2110.90 (8)H4A—C4—H4B108.0
N3—Zn1—Cl1106.64 (8)C4—C5—C5i113.2 (5)
N1—Zn1—Cl1105.09 (8)C4—C5—H5A108.9
Cl2—Zn1—Cl1114.31 (4)C5i—C5—H5A108.9
C1—N1—C2105.3 (3)C4—C5—H5B108.9
C1—N1—Zn1128.8 (2)C5i—C5—H5B108.9
C2—N1—Zn1125.7 (2)H5A—C5—H5B107.8
C1—N2—C3107.1 (3)N3—C6—N4111.4 (3)
C1—N2—C4127.4 (3)N3—C6—H6A124.3
C3—N2—C4125.5 (3)N4—C6—H6A124.3
C6—N3—C7105.8 (2)C8—C7—N3109.6 (3)
C6—N3—Zn1126.0 (2)C8—C7—H7A125.2
C7—N3—Zn1127.3 (2)N3—C7—H7A125.2
C6—N4—C8107.1 (3)C7—C8—N4106.1 (3)
C6—N4—C9125.8 (3)C7—C8—H8A126.9
C8—N4—C9127.0 (3)N4—C8—H8A126.9
N1—C1—N2111.7 (3)N4—C9—C10113.1 (3)
N1—C1—H1A124.2N4—C9—H9A109.0
N2—C1—H1A124.2C10—C9—H9A109.0
C3—C2—N1109.4 (3)N4—C9—H9B109.0
C3—C2—H2A125.3C10—C9—H9B109.0
N1—C2—H2A125.3H9A—C9—H9B107.8
N2—C3—C2106.5 (3)C10ii—C10—C9110.0 (3)
N2—C3—H3A126.8C10ii—C10—H10A109.7
C2—C3—H3A126.8C9—C10—H10A109.7
N2—C4—C5111.5 (3)C10ii—C10—H10B109.7
N2—C4—H4A109.3C9—C10—H10B109.7
C5—C4—H4A109.3H10A—C10—H10B108.2
N3—Zn1—N1—C164.7 (3)C1—N2—C3—C21.2 (5)
Cl2—Zn1—N1—C158.2 (3)C4—N2—C3—C2179.5 (4)
Cl1—Zn1—N1—C1177.8 (3)N1—C2—C3—N21.7 (5)
N3—Zn1—N1—C2109.5 (3)C1—N2—C4—C597.3 (5)
Cl2—Zn1—N1—C2127.6 (3)C3—N2—C4—C580.7 (5)
Cl1—Zn1—N1—C23.6 (3)N2—C4—C5—C5i176.4 (4)
N1—Zn1—N3—C662.4 (3)C7—N3—C6—N40.4 (4)
Cl2—Zn1—N3—C659.6 (3)Zn1—N3—C6—N4170.4 (2)
Cl1—Zn1—N3—C6174.4 (2)C8—N4—C6—N30.8 (4)
N1—Zn1—N3—C7105.5 (3)C9—N4—C6—N3176.6 (3)
Cl2—Zn1—N3—C7132.6 (3)C6—N3—C7—C80.1 (4)
Cl1—Zn1—N3—C76.6 (3)Zn1—N3—C7—C8169.7 (2)
C2—N1—C1—N20.7 (4)N3—C7—C8—N40.6 (4)
Zn1—N1—C1—N2175.9 (2)C6—N4—C8—C70.9 (4)
C3—N2—C1—N10.3 (5)C9—N4—C8—C7176.6 (3)
C4—N2—C1—N1178.6 (4)C6—N4—C9—C10120.0 (3)
C1—N1—C2—C31.5 (5)C8—N4—C9—C1065.1 (4)
Zn1—N1—C2—C3176.8 (3)N4—C9—C10—C10ii173.2 (3)
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cl2iii0.932.773.601 (4)149
C6—H6A···Cl1iv0.932.653.553 (3)164
Symmetry codes: (iii) x, y+3/2, z1/2; (iv) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[ZnCl2(C10H14N4)]
Mr326.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.8583 (16), 11.689 (2), 15.882 (3)
β (°) 93.82 (3)
V3)1455.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.04
Crystal size (mm)0.34 × 0.27 × 0.22
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.428, 0.731
No. of measured, independent and
observed [I > 2σ(I)] reflections
13865, 3309, 2701
Rint0.036
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.126, 1.01
No. of reflections3309
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.33, 0.35

Computer programs: SMART (Siemens, 1994), SAINT (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cl2i0.932.773.601 (4)149.0
C6—H6A···Cl1ii0.932.653.553 (3)163.8
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y1/2, z+1/2.
 

Acknowledgements

We are grateful for financial support from the Natural Science Foundation of Fujian (2008 J0172) and the Foundation of Fujian Education Committee (JA10205).

References

First citationHamada, T., Manabe, K. & Kobayashi, S. (2004). J. Am. Chem. Soc. 126, 7768–7769.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, X. L., Qin, C., Wang, E. B. & Su, Z. M. (2006). Chem. Eur. J. 12, 2680–2691.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds