organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(E)-1,3-Benzodioxol-5-yl­methyl­­idene]-4-methyl­aniline

aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, bDepartment of Chemistry, Govt. M. D. College, Toba Tek Singh, Punjab, Pakistan, cApplied Chemistry Research Center, PCSIR Laboratories Complex, Lahore 54600, Pakistan, and dInstitute of Chemical and Pharmaceutical Sciences, The University of Faisalabad, Faisalabad, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 15 November 2010; accepted 18 November 2010; online 24 November 2010)

The two symmetry-independent mol­ecules in the asymmetric unit of the title compound, C15H13NO2, differ in conformation, with the virtually planar 4-methyl­aniline (r.m.s. deviations of 0.0511 and 0.0082 Å) and piperonal groups (r.m.s. deviations of 0.0241 and 0.0486 Å) forming dihedral angles of 19.40 (5) and 42.90 (6)°. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯π inter­actions. The H atoms of the two methyl groups are disordered over two sets of sites of equal occupancy.

Related literature

For background to our ongoing project on the synthesis of various Schiff bases of piperonal and then their metal complexation and for a related structure, see: Tahir et al. (2010[Tahir, M. N., Shad, H. A., Khan, M. N. & Tariq, M. I. (2010). Acta Cryst. E66, o2672.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13NO2

  • Mr = 239.26

  • Triclinic, [P \overline 1]

  • a = 10.6914 (4) Å

  • b = 10.7680 (3) Å

  • c = 13.3332 (5) Å

  • α = 89.443 (2)°

  • β = 67.112 (2)°

  • γ = 62.534 (1)°

  • V = 1227.41 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.32 × 0.22 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.988

  • 18069 measured reflections

  • 4417 independent reflections

  • 3294 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.110

  • S = 1.03

  • 4417 reflections

  • 323 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3, Cg5 and Cg6 are the centroids of the C9–C14, C16–C21 and C24–C29 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C28—H28⋯O2i 0.93 2.59 3.447 (2) 153
C17—H17⋯Cg3ii 0.93 2.73 3.5306 (16) 145
C22—H22BCg5ii 0.96 2.86 3.5480 (18) 130
C22—H22DCg5ii 0.96 2.71 3.5480 (18) 146
C22—H22ECg6iii 0.96 2.91 3.8610 (18) 169
Symmetry codes: (i) x-1, y+2, z; (ii) -x+1, -y+1, -z; (iii) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I, Fig. 1) is being reported as a part of our ongoing project related to synthesis of various Schiff bases of piperonal and then their metal complexation (Tahir et al., 2010).

The title compound consists of two molecules in the crystallographic asymmetric unit which differ from each other geometrically. In one molecule, 4-methylanilinic group A (C1—C7/N1) and the piperonalic group B (C8—C15/O1/O2) are almost planar with r. m. s deviation of 0.0511 and 0.0241 Å, respectively. The dihedral angle between A/B is 42.90 (6)°. In second molecule, the 4-methylanilinic group C (C16—C22/N2) and the piperonalic group D (C23—C30/O3/O4) are also almost planar with r. m. s deviation of 0.0082 and 0.0486 Å, respectively. The dihedral angle between C/D is 19.40 (5)°. The molecules are interlinked through hydrogen bonds of C—H···O type (Table 1, Fig. 2). The C—H···π interactions (Table 1) play important role in consolidating the crystal packing. The H atoms of methyl groups are disordered over two set of sites with equal occupancy ratio.

Related literature top

For background to our ongoing project on the synthesis of various Schiff bases of piperonal and then their metal complexation and for a related structure, see: Tahir et al. (2010).

Experimental top

Equimolar quantities of 4-methylaniline and and piperonal were refluxed in methanol along with few drops of acetic acid as catalyst for 30 min resulting in orange yellow solution. The solution was kept at room temperature which affoarded orange yellow prisms after a week.

Refinement top

The H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H-atoms and x = 1.2 for aryl H-atoms. The H-atoms of methyl groups are disordered over two set of sites with equal occupancy ratio.

Structure description top

The title compound (I, Fig. 1) is being reported as a part of our ongoing project related to synthesis of various Schiff bases of piperonal and then their metal complexation (Tahir et al., 2010).

The title compound consists of two molecules in the crystallographic asymmetric unit which differ from each other geometrically. In one molecule, 4-methylanilinic group A (C1—C7/N1) and the piperonalic group B (C8—C15/O1/O2) are almost planar with r. m. s deviation of 0.0511 and 0.0241 Å, respectively. The dihedral angle between A/B is 42.90 (6)°. In second molecule, the 4-methylanilinic group C (C16—C22/N2) and the piperonalic group D (C23—C30/O3/O4) are also almost planar with r. m. s deviation of 0.0082 and 0.0486 Å, respectively. The dihedral angle between C/D is 19.40 (5)°. The molecules are interlinked through hydrogen bonds of C—H···O type (Table 1, Fig. 2). The C—H···π interactions (Table 1) play important role in consolidating the crystal packing. The H atoms of methyl groups are disordered over two set of sites with equal occupancy ratio.

For background to our ongoing project on the synthesis of various Schiff bases of piperonal and then their metal complexation and for a related structure, see: Tahir et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.
[Figure 2] Fig. 2. The partial crystal packing (PLATON; Spek, 2009)
N-[(E)-1,3-Benzodioxol-5-ylmethylidene]-4-methylaniline top
Crystal data top
C15H13NO2Z = 4
Mr = 239.26F(000) = 504
Triclinic, P1Dx = 1.295 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.6914 (4) ÅCell parameters from 3294 reflections
b = 10.7680 (3) Åθ = 2.2–25.3°
c = 13.3332 (5) ŵ = 0.09 mm1
α = 89.443 (2)°T = 296 K
β = 67.112 (2)°Prisms, yellow
γ = 62.534 (1)°0.32 × 0.22 × 0.18 mm
V = 1227.41 (8) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4417 independent reflections
Radiation source: fine-focus sealed tube3294 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.20 pixels mm-1θmax = 25.3°, θmin = 2.8°
ω scansh = 1112
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1212
Tmin = 0.980, Tmax = 0.988l = 1616
18069 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.050P)2 + 0.2009P]
where P = (Fo2 + 2Fc2)/3
4417 reflections(Δ/σ)max < 0.001
323 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C15H13NO2γ = 62.534 (1)°
Mr = 239.26V = 1227.41 (8) Å3
Triclinic, P1Z = 4
a = 10.6914 (4) ÅMo Kα radiation
b = 10.7680 (3) ŵ = 0.09 mm1
c = 13.3332 (5) ÅT = 296 K
α = 89.443 (2)°0.32 × 0.22 × 0.18 mm
β = 67.112 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4417 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3294 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.988Rint = 0.026
18069 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
4417 reflectionsΔρmin = 0.15 e Å3
323 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.85323 (13)0.05174 (12)0.16217 (13)0.0823 (5)
O20.84925 (13)0.15617 (11)0.13086 (10)0.0649 (4)
N10.27161 (15)0.46441 (13)0.35889 (10)0.0525 (4)
C10.12804 (17)0.59481 (15)0.39573 (12)0.0479 (5)
C20.10114 (18)0.70402 (16)0.46908 (13)0.0545 (5)
C30.0303 (2)0.83722 (17)0.50051 (14)0.0594 (6)
C40.1380 (2)0.86823 (17)0.45801 (14)0.0603 (6)
C50.1111 (2)0.75802 (19)0.38577 (16)0.0702 (7)
C60.0193 (2)0.62326 (18)0.35508 (15)0.0649 (6)
C70.27620 (18)1.01681 (13)0.48639 (16)0.0868 (8)
C80.27767 (15)0.34643 (13)0.33754 (12)0.0518 (5)
C90.42524 (17)0.21151 (15)0.28682 (12)0.0476 (5)
C100.56824 (18)0.20906 (15)0.25598 (13)0.0527 (5)
C110.70124 (18)0.08074 (16)0.20435 (13)0.0512 (5)
C120.69907 (18)0.04387 (14)0.18398 (12)0.0481 (5)
C130.56266 (19)0.04509 (16)0.21265 (13)0.0547 (6)
C140.42526 (19)0.08612 (16)0.26411 (13)0.0534 (6)
C150.9484 (2)0.09882 (17)0.12271 (18)0.0729 (7)
O30.35490 (13)1.45856 (11)0.39324 (10)0.0723 (4)
O40.34615 (13)1.64734 (11)0.31303 (10)0.0668 (4)
N20.18413 (14)1.00194 (12)0.16824 (10)0.0483 (4)
C160.31939 (16)0.86467 (14)0.12541 (12)0.0431 (5)
C170.43932 (17)0.81718 (16)0.01782 (12)0.0513 (5)
C180.56401 (18)0.67969 (17)0.01516 (13)0.0544 (5)
C190.57678 (17)0.58422 (15)0.05568 (13)0.0499 (5)
C200.45610 (19)0.63169 (16)0.16171 (14)0.0563 (6)
C210.32925 (18)0.76868 (16)0.19582 (13)0.0532 (5)
C220.71353 (14)0.43394 (12)0.01711 (12)0.0656 (6)
C230.18014 (14)1.10785 (12)0.12391 (11)0.0479 (5)
C240.04255 (17)1.25022 (14)0.16788 (12)0.0439 (5)
C250.09113 (17)1.27386 (15)0.26267 (12)0.0485 (5)
C260.21271 (17)1.40978 (15)0.30257 (12)0.0486 (5)
C270.20845 (18)1.52255 (15)0.25424 (13)0.0484 (5)
C280.08194 (19)1.50285 (16)0.16051 (13)0.0539 (6)
C290.04428 (18)1.36396 (15)0.11813 (13)0.0512 (5)
C300.4330 (2)1.61064 (18)0.40804 (17)0.0795 (7)
H20.172880.687330.497670.0655*
H30.046780.907840.551510.0712*
H50.182600.774850.356920.0843*
H60.033490.551340.306620.0778*
H7A0.298531.067960.555260.1302*0.500
H7B0.365761.010180.493750.1302*0.500
H7C0.252111.066730.428190.1302*0.500
H7D0.312401.028620.429530.1302*0.500
H7E0.245171.086400.491060.1302*0.500
H7F0.358831.029840.556610.1302*0.500
H80.184790.346040.354840.0622*
H100.571630.291540.270280.0632*
H130.561260.128780.198670.0656*
H140.329930.089640.283960.0640*
H15A1.004990.140570.167090.0875*
H15B1.023810.120570.045950.0875*
H170.435180.878510.031900.0616*
H180.642360.649930.087510.0653*
H200.460380.570050.211200.0676*
H210.249120.796900.267300.0638*
H22A0.806630.436430.005730.0984*0.500
H22B0.726850.390480.051500.0984*0.500
H22C0.694260.379150.072520.0984*0.500
H22D0.678530.367610.012100.0984*0.500
H22E0.758310.413560.069330.0984*0.500
H22F0.790900.424890.054680.0984*0.500
H230.267961.094090.061290.0575*
H250.096081.199380.296670.0582*
H280.080111.578310.126680.0647*
H290.132661.346640.054460.0615*
H30A0.439321.653120.474900.0954*
H30B0.538391.646390.415590.0954*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0454 (7)0.0472 (7)0.1337 (12)0.0163 (6)0.0273 (7)0.0082 (7)
O20.0563 (7)0.0391 (6)0.0825 (8)0.0145 (6)0.0256 (6)0.0000 (5)
N10.0473 (8)0.0487 (7)0.0477 (8)0.0166 (6)0.0165 (6)0.0037 (6)
C10.0435 (9)0.0477 (8)0.0422 (8)0.0183 (7)0.0143 (7)0.0074 (7)
C20.0507 (10)0.0553 (9)0.0512 (9)0.0237 (8)0.0193 (8)0.0069 (7)
C30.0606 (11)0.0488 (9)0.0530 (10)0.0229 (9)0.0151 (9)0.0045 (7)
C40.0546 (10)0.0490 (9)0.0536 (10)0.0149 (8)0.0149 (8)0.0145 (8)
C50.0645 (12)0.0657 (11)0.0755 (12)0.0200 (10)0.0410 (10)0.0156 (10)
C60.0650 (12)0.0556 (10)0.0672 (11)0.0195 (9)0.0350 (10)0.0022 (8)
C70.0789 (14)0.0574 (11)0.0812 (14)0.0085 (10)0.0263 (11)0.0199 (10)
C80.0470 (9)0.0536 (9)0.0472 (9)0.0224 (8)0.0166 (7)0.0104 (7)
C90.0474 (9)0.0462 (8)0.0435 (8)0.0203 (7)0.0181 (7)0.0101 (6)
C100.0530 (10)0.0398 (8)0.0610 (10)0.0210 (8)0.0232 (8)0.0034 (7)
C110.0450 (9)0.0452 (8)0.0600 (10)0.0202 (8)0.0222 (8)0.0052 (7)
C120.0513 (10)0.0371 (8)0.0489 (9)0.0164 (7)0.0221 (7)0.0080 (6)
C130.0666 (11)0.0447 (8)0.0590 (10)0.0321 (8)0.0276 (9)0.0141 (7)
C140.0527 (10)0.0549 (9)0.0563 (10)0.0311 (8)0.0219 (8)0.0166 (7)
C150.0519 (11)0.0451 (9)0.0973 (14)0.0146 (9)0.0212 (10)0.0035 (9)
O30.0521 (7)0.0471 (6)0.0740 (8)0.0125 (6)0.0016 (6)0.0077 (6)
O40.0593 (7)0.0405 (6)0.0775 (8)0.0121 (6)0.0237 (6)0.0094 (5)
N20.0434 (7)0.0425 (7)0.0483 (7)0.0166 (6)0.0156 (6)0.0054 (5)
C160.0385 (8)0.0420 (8)0.0451 (8)0.0178 (7)0.0172 (7)0.0047 (6)
C170.0473 (9)0.0499 (9)0.0474 (9)0.0192 (8)0.0179 (8)0.0118 (7)
C180.0413 (9)0.0562 (9)0.0484 (9)0.0171 (8)0.0119 (7)0.0019 (7)
C190.0421 (9)0.0448 (8)0.0634 (10)0.0189 (7)0.0267 (8)0.0049 (7)
C200.0604 (11)0.0469 (9)0.0606 (10)0.0241 (8)0.0285 (9)0.0165 (8)
C210.0519 (10)0.0502 (9)0.0472 (9)0.0233 (8)0.0144 (8)0.0089 (7)
C220.0526 (10)0.0481 (9)0.0890 (13)0.0156 (8)0.0355 (10)0.0026 (8)
C230.0456 (9)0.0484 (8)0.0440 (8)0.0234 (7)0.0139 (7)0.0039 (7)
C240.0464 (9)0.0421 (8)0.0430 (8)0.0214 (7)0.0197 (7)0.0053 (6)
C250.0528 (9)0.0399 (8)0.0480 (9)0.0223 (7)0.0182 (8)0.0091 (6)
C260.0445 (9)0.0436 (8)0.0481 (9)0.0186 (7)0.0151 (7)0.0049 (7)
C270.0502 (9)0.0380 (8)0.0562 (9)0.0179 (7)0.0272 (8)0.0072 (7)
C280.0661 (11)0.0472 (9)0.0588 (10)0.0325 (8)0.0315 (9)0.0190 (7)
C290.0535 (10)0.0519 (9)0.0485 (9)0.0302 (8)0.0173 (8)0.0101 (7)
C300.0655 (12)0.0465 (10)0.0794 (13)0.0093 (9)0.0105 (10)0.0069 (9)
Geometric parameters (Å, º) top
O1—C111.371 (3)C8—H80.9300
O1—C151.421 (2)C10—H100.9300
O2—C121.372 (2)C13—H130.9300
O2—C151.425 (3)C14—H140.9300
O3—C261.377 (2)C15—H15B0.9700
O3—C301.426 (2)C15—H15A0.9700
O4—C271.373 (2)C16—C171.394 (2)
O4—C301.427 (2)C16—C211.385 (2)
N1—C11.417 (2)C17—C181.378 (2)
N1—C81.271 (2)C18—C191.386 (2)
N2—C161.416 (2)C19—C201.383 (2)
N2—C231.2702 (17)C19—C221.507 (2)
C1—C21.383 (2)C20—C211.382 (2)
C1—C61.378 (3)C23—C241.458 (2)
C2—C31.379 (2)C24—C251.404 (2)
C3—C41.381 (3)C24—C291.391 (2)
C4—C51.382 (3)C25—C261.355 (2)
C4—C71.511 (2)C26—C271.380 (2)
C5—C61.385 (3)C27—C281.365 (3)
C8—C91.460 (2)C28—C291.392 (2)
C9—C101.408 (3)C17—H170.9300
C9—C141.387 (2)C18—H180.9300
C10—C111.360 (2)C20—H200.9300
C11—C121.384 (2)C21—H210.9300
C12—C131.363 (3)C22—H22A0.9600
C13—C141.395 (2)C22—H22B0.9600
C2—H20.9300C22—H22C0.9600
C3—H30.9300C22—H22D0.9600
C5—H50.9300C22—H22E0.9600
C6—H60.9300C22—H22F0.9600
C7—H7D0.9600C23—H230.9300
C7—H7E0.9600C25—H250.9300
C7—H7A0.9600C28—H280.9300
C7—H7B0.9600C29—H290.9300
C7—H7C0.9600C30—H30A0.9700
C7—H7F0.9600C30—H30B0.9700
C11—O1—C15106.38 (15)O2—C15—H15A110.00
C12—O2—C15105.90 (13)O2—C15—H15B110.00
C26—O3—C30105.62 (14)O1—C15—H15A110.00
C27—O4—C30105.60 (12)N2—C16—C17125.51 (13)
C1—N1—C8120.32 (17)N2—C16—C21116.66 (14)
C16—N2—C23121.55 (14)C17—C16—C21117.79 (14)
N1—C1—C2118.47 (17)C16—C17—C18120.24 (14)
N1—C1—C6123.39 (15)C17—C18—C19122.32 (15)
C2—C1—C6117.89 (16)C18—C19—C20116.99 (15)
C1—C2—C3121.09 (19)C18—C19—C22121.24 (14)
C2—C3—C4121.56 (17)C20—C19—C22121.74 (14)
C3—C4—C5116.92 (17)C19—C20—C21121.48 (15)
C5—C4—C7121.5 (2)C16—C21—C20121.15 (15)
C3—C4—C7121.57 (17)N2—C23—C24122.21 (14)
C4—C5—C6121.9 (2)C23—C24—C25119.96 (13)
C1—C6—C5120.59 (18)C23—C24—C29120.34 (15)
N1—C8—C9122.35 (17)C25—C24—C29119.68 (14)
C8—C9—C10120.28 (15)C24—C25—C26117.21 (14)
C8—C9—C14119.97 (18)O3—C26—C25127.71 (14)
C10—C9—C14119.68 (15)O3—C26—C27109.61 (13)
C9—C10—C11117.06 (16)C25—C26—C27122.69 (16)
O1—C11—C12109.29 (15)O4—C27—C26109.96 (15)
O1—C11—C10128.18 (17)O4—C27—C28128.39 (14)
C10—C11—C12122.5 (2)C26—C27—C28121.64 (15)
O2—C12—C11109.89 (17)C27—C28—C29116.57 (15)
O2—C12—C13128.21 (15)C24—C29—C28122.18 (16)
C11—C12—C13121.88 (15)O3—C30—O4108.15 (15)
C12—C13—C14116.30 (17)C16—C17—H17120.00
C9—C14—C13122.6 (2)C18—C17—H17120.00
O1—C15—O2108.12 (17)C17—C18—H18119.00
C1—C2—H2119.00C19—C18—H18119.00
C3—C2—H2119.00C19—C20—H20119.00
C2—C3—H3119.00C21—C20—H20119.00
C4—C3—H3119.00C16—C21—H21119.00
C4—C5—H5119.00C20—C21—H21119.00
C6—C5—H5119.00C19—C22—H22A109.00
C5—C6—H6120.00C19—C22—H22B109.00
C1—C6—H6120.00C19—C22—H22C109.00
C4—C7—H7A109.00C19—C22—H22D109.00
C4—C7—H7B109.00C19—C22—H22E109.00
C4—C7—H7C109.00C19—C22—H22F109.00
H7A—C7—H7B109.00H22A—C22—H22B109.00
H7A—C7—H7C109.00H22A—C22—H22C109.00
H7A—C7—H7D141.00H22A—C22—H22D141.00
H7A—C7—H7E56.00H22A—C22—H22E56.00
H7A—C7—H7F56.00H22A—C22—H22F56.00
H7B—C7—H7C109.00H22B—C22—H22C109.00
H7B—C7—H7D56.00H22B—C22—H22D56.00
H7B—C7—H7E141.00H22B—C22—H22E141.00
H7B—C7—H7F56.00H22B—C22—H22F56.00
H7C—C7—H7D56.00H22C—C22—H22D56.00
H7C—C7—H7E56.00H22C—C22—H22E56.00
H7C—C7—H7F141.00H22C—C22—H22F141.00
H7D—C7—H7E109.00H22D—C22—H22E109.00
H7D—C7—H7F109.00H22D—C22—H22F109.00
H7E—C7—H7F109.00H22E—C22—H22F109.00
C4—C7—H7F109.00N2—C23—H23119.00
C4—C7—H7E109.00C24—C23—H23119.00
C4—C7—H7D109.00C24—C25—H25121.00
N1—C8—H8119.00C26—C25—H25121.00
C9—C8—H8119.00C27—C28—H28122.00
C9—C10—H10121.00C29—C28—H28122.00
C11—C10—H10121.00C24—C29—H29119.00
C12—C13—H13122.00C28—C29—H29119.00
C14—C13—H13122.00O3—C30—H30A110.00
C9—C14—H14119.00O3—C30—H30B110.00
C13—C14—H14119.00O4—C30—H30A110.00
O1—C15—H15B110.00O4—C30—H30B110.00
H15A—C15—H15B108.00H30A—C30—H30B108.00
C15—O1—C11—C10176.76 (18)C9—C10—C11—O1176.83 (16)
C15—O1—C11—C125.02 (19)C9—C10—C11—C121.2 (2)
C11—O1—C15—O26.6 (2)C10—C11—C12—O2179.84 (15)
C15—O2—C12—C112.67 (18)C10—C11—C12—C131.3 (3)
C15—O2—C12—C13178.93 (17)O1—C11—C12—C13177.02 (15)
C12—O2—C15—O15.73 (19)O1—C11—C12—O21.50 (18)
C26—O3—C30—O410.3 (2)O2—C12—C13—C14178.49 (15)
C30—O3—C26—C277.0 (2)C11—C12—C13—C140.3 (2)
C30—O3—C26—C25173.0 (2)C12—C13—C14—C90.9 (2)
C27—O4—C30—O39.8 (2)N2—C16—C17—C18178.61 (19)
C30—O4—C27—C28175.6 (2)C21—C16—C17—C181.2 (3)
C30—O4—C27—C265.5 (2)N2—C16—C21—C20179.60 (19)
C1—N1—C8—C9172.46 (13)C17—C16—C21—C201.9 (3)
C8—N1—C1—C638.5 (2)C16—C17—C18—C190.5 (3)
C8—N1—C1—C2147.31 (16)C17—C18—C19—C201.4 (3)
C16—N2—C23—C24179.17 (16)C17—C18—C19—C22179.34 (19)
C23—N2—C16—C21161.80 (18)C18—C19—C20—C210.6 (3)
C23—N2—C16—C1720.7 (3)C22—C19—C20—C21178.55 (19)
N1—C1—C2—C3174.47 (15)C19—C20—C21—C161.0 (3)
C2—C1—C6—C51.1 (3)N2—C23—C24—C250.4 (3)
N1—C1—C6—C5173.16 (17)N2—C23—C24—C29178.66 (17)
C6—C1—C2—C30.0 (3)C23—C24—C25—C26177.07 (17)
C1—C2—C3—C41.8 (3)C29—C24—C25—C261.2 (3)
C2—C3—C4—C7175.81 (17)C23—C24—C29—C28176.98 (18)
C2—C3—C4—C52.4 (3)C25—C24—C29—C281.3 (3)
C3—C4—C5—C61.4 (3)C24—C25—C26—O3179.66 (18)
C7—C4—C5—C6176.84 (18)C24—C25—C26—C270.4 (3)
C4—C5—C6—C10.3 (3)O3—C26—C27—O41.0 (2)
N1—C8—C9—C14179.24 (15)O3—C26—C27—C28178.02 (18)
N1—C8—C9—C102.3 (2)C25—C26—C27—O4179.03 (17)
C8—C9—C10—C11176.93 (14)C25—C26—C27—C282.0 (3)
C14—C9—C10—C110.1 (2)O4—C27—C28—C29179.37 (19)
C10—C9—C14—C131.0 (2)C26—C27—C28—C291.9 (3)
C8—C9—C14—C13177.97 (15)C27—C28—C29—C240.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg3, Cg5 and Cg6 are the centroids of the C9–C14, C16–C21 and C24–C29 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C28—H28···O2i0.932.593.447 (2)153
C17—H17···Cg3ii0.932.733.5306 (16)145
C22—H22B···Cg5ii0.962.863.5480 (18)130
C22—H22D···Cg5ii0.962.713.5480 (18)146
C22—H22E···Cg6iii0.962.913.8610 (18)169
Symmetry codes: (i) x1, y+2, z; (ii) x+1, y+1, z; (iii) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC15H13NO2
Mr239.26
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.6914 (4), 10.7680 (3), 13.3332 (5)
α, β, γ (°)89.443 (2), 67.112 (2), 62.534 (1)
V3)1227.41 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.22 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.980, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
18069, 4417, 3294
Rint0.026
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.110, 1.03
No. of reflections4417
No. of parameters323
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3, Cg5 and Cg6 are the centroids of the C9–C14, C16–C21 and C24–C29 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C28—H28···O2i0.932.593.447 (2)153
C17—H17···Cg3ii0.932.733.5306 (16)145
C22—H22B···Cg5ii0.962.863.5480 (18)130
C22—H22D···Cg5ii0.962.713.5480 (18)146
C22—H22E···Cg6iii0.962.913.8610 (18)169
Symmetry codes: (i) x1, y+2, z; (ii) x+1, y+1, z; (iii) x+1, y1, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Shad, H. A., Khan, M. N. & Tariq, M. I. (2010). Acta Cryst. E66, o2672.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds