metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[aqua­(pyrazino­[2,3-f][1,10]phenanthroline-κ2N8,N9)zinc(II)]-μ-penta­nedioato] monohydrate]

aDepartment of Chemistry, Baicheng Normal University, Baicheng 137000, People's Republic of China
*Correspondence e-mail: fangwei1026@126.com

(Received 23 September 2010; accepted 19 October 2010; online 6 November 2010)

In the title compound, {[Zn(C5H6O4)(C14H8N4)(H2O)]·H2O}n, the Zn2+ ion is coordinated by an N,N′-bidentate pyrazino­[2,3-f][1,10]phenanthroline (pyphen) ligand, a water molecule and a monodentate glutarate (glu) dianion. A symmetry-generated O:O′-bidentate glu dianion completes a distorted cis-ZnN2O4 octa­hedral coordination geometry for the metal ion. The bridging glu species generates [110] polymeric chains in the crystal. O—H⋯O hydrogen bonds involving both the coordinated and uncoordinated water mol­ecules help to consolidate the structure and neighbouring pyphen units inter­act through numerous aromatic ππ inter­actions [minimum centroid–centroid separation = 3.654 (3) Å], resulting in a two-dimensional network.

Related literature

For the synthesis of the ligand, see: Dickeson & Summers (1970[Dickeson, J. E. & Summers, L. A. (1970). Aust. J. Chem. 23, 1023-1027.]). For related structures, see: Fang-Wei & Mei (2007[Fang-Wei & Mei, Z.-M. (2007). Acta Cryst. E63, m3098-m3099.]); Li et al. (2006[Li, C.-B., Fang, W., Gao, G.-G. & Liu, B. (2006). Acta Cryst. E62, m1312-m1314.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C5H6O4)(C14H8N4)(H2O)]·H2O

  • Mr = 463.74

  • Triclinic, [P \overline 1]

  • a = 6.397 (3) Å

  • b = 9.384 (5) Å

  • c = 16.409 (8) Å

  • α = 98.067 (5)°

  • β = 100.859 (5)°

  • γ = 101.274 (5)°

  • V = 932.5 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.37 mm−1

  • T = 292 K

  • 0.78 × 0.52 × 0.36 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.432, Tmax = 0.611

  • 8019 measured reflections

  • 3702 independent reflections

  • 2929 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.100

  • S = 0.98

  • 3702 reflections

  • 283 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O2 1.987 (2)
Zn1—N1 2.120 (3)
Zn1—O5 2.137 (2)
Zn1—O4i 2.154 (2)
Zn1—N2 2.188 (2)
Zn1—O3i 2.347 (2)
Symmetry code: (i) x-1, y-1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯OW1ii 0.82 1.89 2.702 (3) 173
O5—H5B⋯O4iii 1.00 (4) 1.91 (4) 2.856 (3) 157 (3)
OW1—HWA1⋯O4iv 0.85 (4) 2.03 (4) 2.840 (4) 161 (3)
OW1—HWBA⋯O2 0.79 (4) 1.95 (4) 2.733 (4) 170 (4)
Symmetry codes: (ii) -x+1, -y, -z+1; (iii) -x+2, -y+1, -z+1; (iv) -x+3, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The 1,10-phenanthroline (phen) ligand and its derivatives are important ligands with numerous uses in the construction of metal-organic complexes.Supramolecular architectures baswd on the phen derivative pyrazino[2,3-f][1,10]phenanthroline(PyPhen) molecule have considerably less attention (Li et al.,2006) A s part of our ongoing studies in this area (Fang-Wei & Mei, 2007). We selected glutaric acid (C5H6O42-) to act as a metal-metal linker in its deprotonated form and L as a secondary ligand, generating the title compound, [Zn(C14H8N4)(C5H6O4)(H2O).H2O], a new coordinationg polymer, which is reported here. In compound (I), the ZnII atom of unit is surrounded by two N atoms derived from the bidentate PyPhen ligand, three O atoms from two glutaric acid dianions (one monodentate, one bidentate) and one water molecule (Figure 1, Table 1) a distorted octahedral cis-ZnN2O4arrangement is formed. Neighboring ZnII atoms are bridged by the centrosymmetric glutaric acid ligands forming a one-dimensional chain structure (Fig.2). In the crystal structure, adjacent chains are connected through π-π interactions between PyPhen and PyPhen ligands with a minimum centroid -centroid stacking distance of 3.372 Å. O—H···O hydrogen bonds involving the water molecules and carboxylate O atom acceptors (Table 2) complete the structure.

Related literature top

For the synthesis of the ligand, see: Dickeson & Summers (1970). For related structures, see: Fang-Wei & Mei (2007); Li et al. (2006).

Experimental top

The pyphen ligand was synthesized according to the literature method of Dickeson & Summers (1970). A mixture of ZnCl2 (0.3 mmol), pyphen (0.1 mmol) and glutaric acid (0.3 mmol) in distilled water (30 ml) was stirred thoroughly for 1 h at ambient temperature. The pH was adjusted to 7.5 with aqueous NaOH solution. The suspension was then sealed in a Teflon-lined stainless steel reaction vessel (40 ml). The reaction was performed under autogeneous pressure and static conditions in an oven at 443 K for 4.5 d. The vessel was then cooled slowly inside the oven to 298 K at a rate of 5 K h-1 before opening: amaranth (red) blocks of (I) were collected.

Refinement top

All H atoms on C atoms were generated geometrically and refined as riding atoms with C—H= 0.93Å and Uiso(H)= 1.2 times Ueq(C).

Structure description top

The 1,10-phenanthroline (phen) ligand and its derivatives are important ligands with numerous uses in the construction of metal-organic complexes.Supramolecular architectures baswd on the phen derivative pyrazino[2,3-f][1,10]phenanthroline(PyPhen) molecule have considerably less attention (Li et al.,2006) A s part of our ongoing studies in this area (Fang-Wei & Mei, 2007). We selected glutaric acid (C5H6O42-) to act as a metal-metal linker in its deprotonated form and L as a secondary ligand, generating the title compound, [Zn(C14H8N4)(C5H6O4)(H2O).H2O], a new coordinationg polymer, which is reported here. In compound (I), the ZnII atom of unit is surrounded by two N atoms derived from the bidentate PyPhen ligand, three O atoms from two glutaric acid dianions (one monodentate, one bidentate) and one water molecule (Figure 1, Table 1) a distorted octahedral cis-ZnN2O4arrangement is formed. Neighboring ZnII atoms are bridged by the centrosymmetric glutaric acid ligands forming a one-dimensional chain structure (Fig.2). In the crystal structure, adjacent chains are connected through π-π interactions between PyPhen and PyPhen ligands with a minimum centroid -centroid stacking distance of 3.372 Å. O—H···O hydrogen bonds involving the water molecules and carboxylate O atom acceptors (Table 2) complete the structure.

For the synthesis of the ligand, see: Dickeson & Summers (1970). For related structures, see: Fang-Wei & Mei (2007); Li et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. view of the local coordination of Zn(II) with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the two-dimensional supramolecular structure of (I) generated by π-π interactions and hydrogen-bonding.
catena-Poly[[[aqua(pyrazino[2,3-f][1,10]phenanthroline- κ2N8,N9)zinc(II)]-µ-pentanedioato] monohydrate] top
Crystal data top
[Zn(C5H6O4)(C14H8N4)(H2O)]·H2OV = 932.5 (8) Å3
Mr = 463.74Z = 2
Triclinic, P1F(000) = 476
Hall symbol: -P 1Dx = 1.652 Mg m3
a = 6.397 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.384 (5) Åθ = 2.0–26.3°
c = 16.409 (8) ŵ = 1.37 mm1
α = 98.067 (5)°T = 292 K
β = 100.859 (5)°Block, amaranth
γ = 101.274 (5)°0.78 × 0.52 × 0.36 mm
Data collection top
Bruker SMART CCD
diffractometer
3702 independent reflections
Radiation source: fine-focus sealed tube2929 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 0 pixels mm-1θmax = 26.1°, θmin = 2.3°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
k = 1111
Tmin = 0.432, Tmax = 0.611l = 2020
8019 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: constr
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0464P)2]
where P = (Fo2 + 2Fc2)/3
3702 reflections(Δ/σ)max = 0.001
283 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Zn(C5H6O4)(C14H8N4)(H2O)]·H2Oγ = 101.274 (5)°
Mr = 463.74V = 932.5 (8) Å3
Triclinic, P1Z = 2
a = 6.397 (3) ÅMo Kα radiation
b = 9.384 (5) ŵ = 1.37 mm1
c = 16.409 (8) ÅT = 292 K
α = 98.067 (5)°0.78 × 0.52 × 0.36 mm
β = 100.859 (5)°
Data collection top
Bruker SMART CCD
diffractometer
3702 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2929 reflections with I > 2σ(I)
Tmin = 0.432, Tmax = 0.611Rint = 0.062
8019 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.86 e Å3
3702 reflectionsΔρmin = 0.59 e Å3
283 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.71632 (5)0.09770 (4)0.66833 (2)0.02738 (13)
O50.4196 (3)0.1252 (2)0.59395 (14)0.0354 (5)
H5A0.32600.04790.58470.053*
O31.5203 (3)0.8764 (2)0.69454 (14)0.0384 (5)
O41.6651 (3)0.8894 (2)0.58459 (13)0.0367 (5)
OW10.9119 (4)0.1180 (3)0.44343 (17)0.0424 (6)
N20.9708 (4)0.0659 (3)0.76912 (15)0.0270 (5)
N10.6579 (4)0.2190 (3)0.77760 (15)0.0271 (5)
N30.9142 (5)0.3624 (3)1.07957 (17)0.0425 (7)
C41.1058 (5)0.1251 (3)0.92035 (18)0.0290 (7)
N41.2336 (5)0.1937 (3)1.07170 (17)0.0410 (7)
C140.9630 (4)0.1335 (3)0.84604 (18)0.0249 (6)
C80.9326 (5)0.2869 (3)1.00470 (19)0.0325 (7)
C130.7948 (5)0.2178 (3)0.85096 (18)0.0259 (6)
C120.5054 (5)0.2965 (3)0.7799 (2)0.0340 (7)
H12A0.41080.29740.72950.041*
C90.7811 (5)0.2942 (3)0.92828 (19)0.0303 (7)
C51.0920 (5)0.2042 (3)1.00158 (18)0.0327 (7)
C161.1651 (5)0.4264 (3)0.59565 (19)0.0343 (7)
H16A1.07860.42840.54070.041*
H16B1.27420.37090.58650.041*
C191.5487 (5)0.8164 (3)0.6267 (2)0.0323 (7)
C151.0173 (5)0.3451 (3)0.6441 (2)0.0352 (7)
C100.6172 (5)0.3738 (3)0.9281 (2)0.0383 (8)
H10A0.60160.42490.97860.046*
C21.2673 (5)0.0301 (4)0.8352 (2)0.0376 (8)
H2A1.36820.08790.82940.045*
C171.2817 (6)0.5833 (3)0.6374 (2)0.0400 (8)
H17A1.35810.58320.69440.048*
H17B1.17380.64220.64140.048*
C31.2606 (5)0.0399 (3)0.9126 (2)0.0350 (7)
H3B1.35860.03140.96040.042*
C110.4807 (5)0.3765 (4)0.8541 (2)0.0408 (8)
H11A0.37330.43060.85320.049*
C181.4442 (5)0.6551 (3)0.5904 (2)0.0391 (8)
H18A1.55870.60080.59070.047*
H18B1.37010.64680.53210.047*
C11.1200 (5)0.0139 (3)0.7642 (2)0.0331 (7)
H1A1.12680.06100.71130.040*
C71.0537 (6)0.3505 (4)1.1468 (2)0.0487 (9)
H7A1.04750.39991.19920.058*
C61.2114 (6)0.2665 (4)1.1429 (2)0.0490 (10)
H6A1.30450.26211.19290.059*
O20.8998 (3)0.2189 (2)0.60661 (13)0.0366 (5)
O11.0269 (5)0.3952 (3)0.71797 (17)0.0684 (9)
HWBA0.923 (6)0.152 (4)0.492 (2)0.044 (12)*
H5B0.432 (6)0.129 (4)0.534 (2)0.068 (12)*
HWA11.048 (6)0.128 (4)0.446 (2)0.047 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0268 (2)0.0244 (2)0.0289 (2)0.00223 (14)0.00547 (14)0.00410 (14)
O50.0308 (12)0.0365 (13)0.0356 (13)0.0039 (10)0.0020 (10)0.0083 (10)
O30.0386 (13)0.0318 (12)0.0401 (13)0.0035 (10)0.0087 (11)0.0027 (10)
O40.0349 (12)0.0303 (12)0.0446 (13)0.0004 (10)0.0136 (11)0.0108 (10)
OW10.0350 (15)0.0536 (16)0.0338 (15)0.0065 (12)0.0050 (12)0.0011 (12)
N20.0261 (13)0.0256 (13)0.0289 (14)0.0040 (11)0.0091 (11)0.0031 (11)
N10.0236 (13)0.0245 (13)0.0328 (14)0.0042 (10)0.0061 (11)0.0065 (11)
N30.0527 (18)0.0371 (16)0.0354 (16)0.0053 (14)0.0122 (14)0.0025 (13)
C40.0263 (16)0.0296 (16)0.0292 (16)0.0021 (13)0.0052 (13)0.0058 (13)
N40.0421 (17)0.0427 (17)0.0339 (16)0.0041 (13)0.0016 (13)0.0101 (13)
C140.0228 (15)0.0236 (15)0.0274 (15)0.0014 (12)0.0060 (12)0.0059 (12)
C80.0378 (18)0.0279 (16)0.0291 (17)0.0018 (14)0.0090 (14)0.0025 (14)
C130.0260 (15)0.0217 (15)0.0292 (16)0.0019 (12)0.0072 (13)0.0053 (13)
C120.0324 (17)0.0325 (17)0.0392 (18)0.0091 (14)0.0075 (14)0.0119 (15)
C90.0323 (17)0.0264 (16)0.0324 (17)0.0042 (13)0.0108 (14)0.0044 (13)
C50.0352 (18)0.0326 (17)0.0276 (16)0.0006 (14)0.0060 (14)0.0078 (14)
C160.0361 (18)0.0279 (16)0.0365 (18)0.0015 (14)0.0083 (14)0.0057 (14)
C190.0267 (16)0.0268 (16)0.0419 (19)0.0029 (13)0.0059 (14)0.0084 (15)
C150.0403 (19)0.0304 (18)0.0350 (19)0.0052 (15)0.0127 (15)0.0048 (15)
C100.0413 (19)0.0342 (18)0.0414 (19)0.0124 (15)0.0142 (16)0.0013 (15)
C20.0313 (17)0.0433 (19)0.046 (2)0.0154 (15)0.0149 (15)0.0145 (16)
C170.049 (2)0.0263 (17)0.0423 (19)0.0011 (15)0.0166 (17)0.0046 (15)
C30.0296 (17)0.0410 (19)0.0364 (18)0.0103 (15)0.0042 (14)0.0142 (15)
C110.0358 (19)0.0358 (19)0.054 (2)0.0137 (16)0.0122 (17)0.0087 (17)
C180.0419 (19)0.0254 (17)0.047 (2)0.0010 (15)0.0146 (16)0.0032 (15)
C10.0315 (17)0.0321 (17)0.0377 (18)0.0086 (14)0.0129 (14)0.0045 (14)
C70.066 (3)0.044 (2)0.0270 (18)0.0023 (19)0.0057 (18)0.0015 (16)
C60.060 (2)0.047 (2)0.0292 (19)0.0039 (19)0.0007 (17)0.0064 (17)
O20.0386 (13)0.0284 (12)0.0351 (12)0.0076 (10)0.0089 (10)0.0017 (10)
O10.087 (2)0.0472 (16)0.0611 (18)0.0163 (15)0.0381 (17)0.0080 (14)
Geometric parameters (Å, º) top
Zn1—O21.987 (2)C13—C91.394 (4)
Zn1—N12.120 (3)C12—C111.390 (4)
Zn1—O52.137 (2)C12—H12A0.9300
Zn1—O4i2.154 (2)C9—C101.401 (4)
Zn1—N22.188 (2)C16—C151.510 (4)
Zn1—O3i2.347 (2)C16—C171.513 (4)
Zn1—C19i2.588 (3)C16—H16A0.9700
O5—H5A0.8200C16—H16B0.9700
O5—H5B1.00 (4)C19—C181.514 (4)
O3—C191.237 (4)C19—Zn1ii2.588 (3)
O3—Zn1ii2.347 (2)C15—O11.223 (4)
O4—C191.276 (4)C15—O21.272 (4)
O4—Zn1ii2.154 (2)C10—C111.363 (4)
OW1—HWBA0.79 (4)C10—H10A0.9300
OW1—HWA10.85 (4)C2—C31.358 (4)
N2—C11.330 (4)C2—C11.400 (4)
N2—C141.345 (4)C2—H2A0.9300
N1—C121.329 (4)C17—C181.518 (4)
N1—C131.351 (4)C17—H17A0.9700
N3—C71.314 (4)C17—H17B0.9700
N3—C81.367 (4)C3—H3B0.9300
C4—C141.401 (4)C11—H11A0.9300
C4—C31.401 (4)C18—H18A0.9700
C4—C51.459 (4)C18—H18B0.9700
N4—C61.314 (4)C1—H1A0.9300
N4—C51.352 (4)C7—C61.401 (5)
C14—C131.463 (4)C7—H7A0.9300
C8—C51.401 (4)C6—H6A0.9300
C8—C91.452 (4)
O2—Zn1—N1114.24 (9)C15—C16—C17115.5 (3)
O2—Zn1—O592.64 (9)C15—C16—H16A108.4
N1—Zn1—O590.76 (9)C17—C16—H16A108.4
O2—Zn1—O4i96.87 (9)C15—C16—H16B108.4
N1—Zn1—O4i148.89 (9)C17—C16—H16B108.4
O5—Zn1—O4i87.08 (8)H16A—C16—H16B107.5
O2—Zn1—N2100.06 (10)O3—C19—O4120.8 (3)
N1—Zn1—N277.41 (9)O3—C19—C18121.2 (3)
O5—Zn1—N2165.34 (9)O4—C19—C18118.0 (3)
O4i—Zn1—N298.53 (9)O3—C19—Zn1ii64.86 (16)
O2—Zn1—O3i154.65 (8)O4—C19—Zn1ii56.11 (15)
N1—Zn1—O3i91.04 (9)C18—C19—Zn1ii172.5 (2)
O5—Zn1—O3i88.79 (9)O1—C15—O2122.9 (3)
O4i—Zn1—O3i57.90 (8)O1—C15—C16120.1 (3)
N2—Zn1—O3i82.87 (9)O2—C15—C16116.8 (3)
Zn1—O5—H5A109.5C11—C10—C9120.1 (3)
Zn1—O5—H5B111 (2)C11—C10—H10A120.0
H5A—O5—H5B98.4C9—C10—H10A120.0
C19—O3—Zn1ii86.64 (18)C3—C2—C1119.0 (3)
C19—O4—Zn1ii94.44 (19)C3—C2—H2A120.5
HWBA—OW1—HWA196 (3)C1—C2—H2A120.5
C1—N2—C14117.9 (3)C16—C17—C18113.3 (3)
C1—N2—Zn1129.1 (2)C16—C17—H17A108.9
C14—N2—Zn1112.93 (18)C18—C17—H17A108.9
C12—N1—C13118.3 (3)C16—C17—H17B108.9
C12—N1—Zn1126.4 (2)C18—C17—H17B108.9
C13—N1—Zn1115.27 (18)H17A—C17—H17B107.7
C7—N3—C8115.4 (3)C2—C3—C4119.8 (3)
C14—C4—C3117.3 (3)C2—C3—H3B120.1
C14—C4—C5120.3 (3)C4—C3—H3B120.1
C3—C4—C5122.4 (3)C10—C11—C12118.6 (3)
C6—N4—C5115.4 (3)C10—C11—H11A120.7
N2—C14—C4123.1 (3)C12—C11—H11A120.7
N2—C14—C13117.5 (2)C19—C18—C17114.4 (3)
C4—C14—C13119.4 (3)C19—C18—H18A108.7
N3—C8—C5121.1 (3)C17—C18—H18A108.7
N3—C8—C9118.0 (3)C19—C18—H18B108.7
C5—C8—C9120.8 (3)C17—C18—H18B108.7
N1—C13—C9122.5 (3)H18A—C18—H18B107.6
N1—C13—C14116.9 (2)N2—C1—C2122.9 (3)
C9—C13—C14120.6 (3)N2—C1—H1A118.6
N1—C12—C11123.0 (3)C2—C1—H1A118.6
N1—C12—H12A118.5N3—C7—C6122.9 (3)
C11—C12—H12A118.5N3—C7—H7A118.6
C13—C9—C10117.5 (3)C6—C7—H7A118.6
C13—C9—C8119.4 (3)N4—C6—C7122.9 (3)
C10—C9—C8123.1 (3)N4—C6—H6A118.5
N4—C5—C8122.2 (3)C7—C6—H6A118.5
N4—C5—C4118.4 (3)C15—O2—Zn1119.5 (2)
C8—C5—C4119.4 (3)
O2—Zn1—N2—C169.5 (3)C14—C13—C9—C81.3 (4)
N1—Zn1—N2—C1177.7 (3)N3—C8—C9—C13179.6 (3)
O5—Zn1—N2—C1140.8 (3)C5—C8—C9—C130.0 (4)
O4i—Zn1—N2—C129.1 (3)N3—C8—C9—C100.4 (5)
O3i—Zn1—N2—C185.0 (3)C5—C8—C9—C10179.2 (3)
C19i—Zn1—N2—C157.9 (3)C6—N4—C5—C80.0 (5)
O2—Zn1—N2—C14113.54 (19)C6—N4—C5—C4179.4 (3)
N1—Zn1—N2—C140.73 (18)N3—C8—C5—N40.5 (5)
O5—Zn1—N2—C1436.1 (4)C9—C8—C5—N4179.1 (3)
O4i—Zn1—N2—C14147.87 (19)N3—C8—C5—C4179.9 (3)
O3i—Zn1—N2—C1491.94 (19)C9—C8—C5—C40.2 (4)
C19i—Zn1—N2—C14119.0 (2)C14—C4—C5—N4179.7 (3)
O2—Zn1—N1—C1282.8 (3)C3—C4—C5—N40.4 (5)
O5—Zn1—N1—C1210.4 (2)C14—C4—C5—C80.9 (4)
O4i—Zn1—N1—C1296.0 (3)C3—C4—C5—C8179.8 (3)
N2—Zn1—N1—C12178.3 (3)Zn1ii—O3—C19—O44.3 (3)
O3i—Zn1—N1—C1299.2 (2)Zn1ii—O3—C19—C18174.8 (3)
C19i—Zn1—N1—C1296.7 (3)Zn1ii—O4—C19—O34.7 (3)
O2—Zn1—N1—C1395.7 (2)Zn1ii—O4—C19—C18174.5 (2)
O5—Zn1—N1—C13171.1 (2)C17—C16—C15—O113.0 (5)
O4i—Zn1—N1—C1385.5 (3)C17—C16—C15—O2172.8 (3)
N2—Zn1—N1—C130.17 (19)C13—C9—C10—C111.0 (5)
O3i—Zn1—N1—C1382.3 (2)C8—C9—C10—C11179.8 (3)
C19i—Zn1—N1—C1384.8 (2)C15—C16—C17—C18174.5 (3)
C1—N2—C14—C40.8 (4)C1—C2—C3—C40.8 (5)
Zn1—N2—C14—C4178.2 (2)C14—C4—C3—C20.0 (5)
C1—N2—C14—C13178.5 (2)C5—C4—C3—C2179.3 (3)
Zn1—N2—C14—C131.2 (3)C9—C10—C11—C121.3 (5)
C3—C4—C14—N20.9 (4)N1—C12—C11—C100.8 (5)
C5—C4—C14—N2178.4 (3)O3—C19—C18—C178.1 (4)
C3—C4—C14—C13178.4 (3)O4—C19—C18—C17171.1 (3)
C5—C4—C14—C132.2 (4)Zn1ii—C19—C18—C17133.6 (16)
C7—N3—C8—C50.4 (5)C16—C17—C18—C19175.0 (3)
C7—N3—C8—C9179.2 (3)C14—N2—C1—C20.1 (4)
C12—N1—C13—C90.2 (4)Zn1—N2—C1—C2176.8 (2)
Zn1—N1—C13—C9178.8 (2)C3—C2—C1—N20.9 (5)
C12—N1—C13—C14179.0 (2)C8—N3—C7—C60.0 (5)
Zn1—N1—C13—C140.4 (3)C5—N4—C6—C70.4 (5)
N2—C14—C13—N11.1 (4)N3—C7—C6—N40.5 (6)
C4—C14—C13—N1178.3 (3)O1—C15—O2—Zn11.6 (5)
N2—C14—C13—C9178.1 (3)C16—C15—O2—Zn1175.6 (2)
C4—C14—C13—C92.5 (4)N1—Zn1—O2—C1518.7 (3)
C13—N1—C12—C110.1 (4)O5—Zn1—O2—C15110.7 (2)
Zn1—N1—C12—C11178.3 (2)O4i—Zn1—O2—C15161.9 (2)
N1—C13—C9—C100.2 (4)N2—Zn1—O2—C1561.9 (2)
C14—C13—C9—C10179.4 (3)O3i—Zn1—O2—C15156.5 (2)
N1—C13—C9—C8179.5 (3)C19i—Zn1—O2—C15161.8 (2)
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···OW1iii0.821.892.702 (3)173
O5—H5B···O4iv1.00 (4)1.91 (4)2.856 (3)157 (3)
OW1—HWA1···O4v0.85 (4)2.03 (4)2.840 (4)161 (3)
OW1—HWBA···O20.79 (4)1.95 (4)2.733 (4)170 (4)
Symmetry codes: (iii) x+1, y, z+1; (iv) x+2, y+1, z+1; (v) x+3, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C5H6O4)(C14H8N4)(H2O)]·H2O
Mr463.74
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)6.397 (3), 9.384 (5), 16.409 (8)
α, β, γ (°)98.067 (5), 100.859 (5), 101.274 (5)
V3)932.5 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.37
Crystal size (mm)0.78 × 0.52 × 0.36
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.432, 0.611
No. of measured, independent and
observed [I > 2σ(I)] reflections
8019, 3702, 2929
Rint0.062
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.100, 0.98
No. of reflections3702
No. of parameters283
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.86, 0.59

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O21.987 (2)Zn1—O4i2.154 (2)
Zn1—N12.120 (3)Zn1—N22.188 (2)
Zn1—O52.137 (2)Zn1—O3i2.347 (2)
Symmetry code: (i) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···OW1ii0.821.892.702 (3)173
O5—H5B···O4iii1.00 (4)1.91 (4)2.856 (3)157 (3)
OW1—HWA1···O4iv0.85 (4)2.03 (4)2.840 (4)161 (3)
OW1—HWBA···O20.79 (4)1.95 (4)2.733 (4)170 (4)
Symmetry codes: (ii) x+1, y, z+1; (iii) x+2, y+1, z+1; (iv) x+3, y+1, z+1.
 

Acknowledgements

The author thanks Baicheng Normal University for supporting this work.

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDickeson, J. E. & Summers, L. A. (1970). Aust. J. Chem. 23, 1023–1027.  CrossRef CAS Web of Science Google Scholar
First citationFang-Wei & Mei, Z.-M. (2007). Acta Cryst. E63, m3098–m3099.  Google Scholar
First citationLi, C.-B., Fang, W., Gao, G.-G. & Liu, B. (2006). Acta Cryst. E62, m1312–m1314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds