organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2SR,3SR)-Iso­propyl 3-{[dimeth­yl(phenyl)­sil­yl]meth­yl}-2-hy­dr­oxy-2-vinyl­pent-4-enoate

aFakultät Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
*Correspondence e-mail: hans.preut@tu-dortmund.de

(Received 30 September 2010; accepted 2 November 2010; online 6 November 2010)

The relative configuration of the title compound, C19H28O3Si, which was synthesized using a dienolate-[2,3]-Wittig rearrangement, was corroborated by single-crystal X-ray diffraction analysis. The Si—C bond distances are in the range 1.858 (2)–1.880 (2) Å and an intra­molecular O—H⋯O hydrogen bond helps to stabilize the mol­ecular conformation.

Related literature

For background literature on Wittig rearrangements, see: Abraham et al. (2003[Abraham, L., Pollex, A. & Hiersemann, M. (2003). Synlett, pp. 1088-1095.]); Hiersemann (1999[Hiersemann, M. (1999). Tetrahedron, 55, 2625-2638.], 2000[Hiersemann, M. (2000). Synthesis, pp. 1279-1290.]); Lauterbach et al. (1999[Lauterbach, C., Pollex, A. & Hiersemann, M. (1999). Eur. J. Org. Chem. pp. 2713-2724.]); Le Menez et al. (1995[Le Menez, P., Fargeas, V., Berque, I., Poisson, J. & Ardisson, J. (1995). J. Org. Chem. 60, 3592-3599.]).

[Scheme 1]

Experimental

Crystal data
  • C19H28O3Si

  • Mr = 332.50

  • Monoclinic, C c

  • a = 18.4311 (15) Å

  • b = 12.0676 (10) Å

  • c = 8.8508 (6) Å

  • β = 95.366 (7)°

  • V = 1960.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 173 K

  • 0.44 × 0.12 × 0.10 mm

Data collection
  • Oxford Xcalibur S CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.92, Tmax = 1.00

  • 6497 measured reflections

  • 3425 independent reflections

  • 2466 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.044

  • S = 1.01

  • 3425 reflections

  • 213 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1066 Friedel pairs

  • Flack parameter: 0.09 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.84 2.17 2.664 (2) 118

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis CCD; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound I was synthesized from allylic alcohol (Le Menez et al., 1995), followed by diastereoselective dienolate-[2,3]-Wittig rearrangement (Lauterbach et al., 1999). Fig. 1 depicts the structure of isolated racemic major diastereomer of I. The relative configuration of the stereogenic centers in I can be attributed to the stereochemical course of the dienolate-[2,3]-Wittig rearrangement (Hiersemann, 1999, 2000; Abraham et al., 2003).

Related literature top

For background literature on Wittig rearrangements, see: Abraham et al. (2003); Hiersemann (1999, 2000); Lauterbach et al. (1999); Le Menez et al. (1995).

Experimental top

To a cooled (195 K) solution of LDA [prepared in situ from NEt3 (4.2 mmol, 0.6 ml, 1.4 eq) and n-BuLi (2.3 M in hexanes, 4.2 mmol, 1.8 ml, 1.4 eq) in THF (15 ml, 3.5 ml/mmol NEt3) was added dropwise a pre-cooled (195 K) solution of the allyl vinyl ether II ((Z,E)/(E,E) = 3/2, 3.0 mmol, 1 g, 1 eq) in THF (6 ml, 2 ml/mmol II). The reaction mixture was stirred at 195 K for 30 min, warmed to 273 K and stirred for an additional 60 min. After the addition of saturated aqueous NH4Cl solution the aqueous layer was extracted with CH2Cl2 (3×) and the combined organic phases were dried (MgSO4) and concentrated under reduced pressure. Purification by flash chromatography (cyclohexane/ethyl acetate 100/1 to 50/1) afforded the 1,5-hexadiene I (813 mg, 2.44 mmol, 82%) as a mixture of diastereomers (dr = 86/14) as colourless crystals. Subsequent recrystallization of I by vapour diffusion technique from isohexane and ethyl acetate provided colourless needles of the major diastereomer of (I) suitable for an X-ray crystal structure analysis.

Rf 0.60 (cyclohexane/ethyl acetate 5/1); 1H NMR (CDCl3, 400 MHZ, δ): 0.23 (s, 3Hminor, CH3), 0.24 (s, 3Hmajor, CH3), 0.26 (s, 3Hminor, CH3), 0.27 (s, 3Hmajor, CH3), 0.58 (dd, J = 14.6, 2.0 Hz, 2Hmajor, CH2), 0.86 (dd, J = 15.1, 12.1 Hz, 2Hminor, CH2), 1.03 (dd, J = 14.8, 2.3 Hz, 2Hminor, CH2), 1.10 (dd, J = 14.6, 12.6 Hz, 2Hmajor, CH2), 1.20–1.24 (m, 6H, 2 × CH3), 2.50 (ddd, J = 12.1, 9.8, 2.3 Hz, 1Hminor, CH), 2.59 (ddd, J = 12.6, 9.8, 2.0 Hz, 1Hmajor, CH), 3.29 (s, 1Hminor, OH), 3.33 (s, 1Hmajor, OH), 4.88–5.07 (m, 3 × 1H, CH), 5.13 (dd, J = 10.5, 1,5 Hz, 1Hmajor, H2C), 5.23 (dd, J = 10.5, 1,5 Hz, 1Hminor, H2C), 5.37 (dd, J = 17.1, 1,5 Hz, 1Hmajor, H2C), 5.42–5.52 (m, 1Hmajor+1Hminor, CH), 5.56–5.65 (m, 1Hminor, CH), 5.78 (dd, J = 16.8, 10,3 Hz, 1Hminor, H2C), 5.81 (dd, J = 17.1, 10.5 Hz, 1Hmajor, H2C), 7.31–7.35 (m, 3H, 3 × CHAr), 7.42–7.48 (m, 2H, 2 × CHAr); 13C NMR (CDCl3, 101 MHz, δ): -2.4 (CH3minor), -2.3 (CH3major), -1.5 (CH3minor), -1.4 (CH3major), 13.8 (CH2minor), 15.8 (CH2major), 21.8 (CH3), 21.8 (CH3minor), 21.9 (CH2major), 47.6 (CHminor), 47.8 (CHmajor), 70.3 (CH), 80.9 (Cmajor), 81.0 (Cminor), 115.3 (CH2major), 116.6 (CH2minor), 117.4 (CH2minor), 117.8 (CH2major), 127.7 (CHminor), 127.8 (CHmajor), 128.9 (CHminor), 129.0 (CHmajor), 133.7 (CHmajor), 133.8 (CHminor), 138.0 (CHminor), 138.0 (CHmajor), 138.3 (CHmajor), 138.8 (CHminor), 139.4 (C), 174.6 (C); IR (cm-1): 3505 (br,s) (ν OH), 3070 (w), 3050 (w), 3020 (w), 2980 (m), 2955 (m), 2920 (w), 1725 (s) (ν CO), 1640 (w), 1620 (w), 1470 (w), 1455 (w), 1430 (m), 1400 (w), 1390 (w), 1375 (m), 1260 (s), 1190 (s), 1140 (m), 1105 (s), 1085 (m); Anal. Calcd. for C19H28O3Si: C, 68.6; H, 8.5; Found: C, 68.6; H,8.2; M = 332.51 g/mol.

Structure description top

The title compound I was synthesized from allylic alcohol (Le Menez et al., 1995), followed by diastereoselective dienolate-[2,3]-Wittig rearrangement (Lauterbach et al., 1999). Fig. 1 depicts the structure of isolated racemic major diastereomer of I. The relative configuration of the stereogenic centers in I can be attributed to the stereochemical course of the dienolate-[2,3]-Wittig rearrangement (Hiersemann, 1999, 2000; Abraham et al., 2003).

For background literature on Wittig rearrangements, see: Abraham et al. (2003); Hiersemann (1999, 2000); Lauterbach et al. (1999); Le Menez et al. (1995).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis CCD (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids shown at the 30% probability level.
(2SR,3SR)-Isopropyl 3-{[dimethyl(phenyl)silyl]methyl}-2-hydroxy-2-vinylpent-4-enoate top
Crystal data top
C19H28O3SiF(000) = 720
Mr = 332.50Dx = 1.127 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2622 reflections
a = 18.4311 (15) Åθ = 2.2–29.1°
b = 12.0676 (10) ŵ = 0.13 mm1
c = 8.8508 (6) ÅT = 173 K
β = 95.366 (7)°Block, colourless
V = 1960.0 (3) Å30.44 × 0.12 × 0.10 mm
Z = 4
Data collection top
Oxford Xcalibur S CCD
diffractometer
3425 independent reflections
Radiation source: Enhance (Mo) X-ray Source2466 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 16.0560 pixels mm-1θmax = 25.5°, θmin = 2.2°
ω scansh = 2122
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1414
Tmin = 0.92, Tmax = 1.00l = 1010
6497 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.044 w = 1/[σ2(Fo2)
S = 1.01(Δ/σ)max = 0.001
3425 reflectionsΔρmax = 0.28 e Å3
213 parametersΔρmin = 0.21 e Å3
2 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (9)
Crystal data top
C19H28O3SiV = 1960.0 (3) Å3
Mr = 332.50Z = 4
Monoclinic, CcMo Kα radiation
a = 18.4311 (15) ŵ = 0.13 mm1
b = 12.0676 (10) ÅT = 173 K
c = 8.8508 (6) Å0.44 × 0.12 × 0.10 mm
β = 95.366 (7)°
Data collection top
Oxford Xcalibur S CCD
diffractometer
3425 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
2466 reflections with I > 2σ(I)
Tmin = 0.92, Tmax = 1.00Rint = 0.035
6497 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.044Δρmax = 0.28 e Å3
S = 1.01Δρmin = 0.21 e Å3
3425 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
213 parametersAbsolute structure parameter: 0.09 (9)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si0.22320 (4)0.22241 (6)0.31540 (6)0.02606 (19)
C10.17453 (12)0.2779 (2)0.4769 (2)0.0203 (6)
O10.42490 (8)0.24617 (13)0.68996 (16)0.0266 (5)
O20.50238 (10)0.17136 (15)0.53585 (17)0.0373 (5)
C20.17399 (13)0.2176 (2)0.6094 (2)0.0271 (7)
H20.19740.14740.61730.033*
O30.46978 (10)0.32269 (15)0.32107 (15)0.0304 (5)
H30.49880.26890.32970.046*
C30.13979 (16)0.2578 (2)0.7307 (3)0.0375 (8)
H3A0.14040.21550.82130.045*
C40.10492 (15)0.3585 (2)0.7211 (3)0.0343 (8)
H40.08100.38560.80420.041*
C50.10492 (16)0.4195 (2)0.5904 (3)0.0353 (7)
H50.08110.48940.58280.042*
C60.13942 (14)0.3794 (2)0.4699 (2)0.0263 (7)
H60.13910.42250.38000.032*
C70.32344 (12)0.2331 (2)0.3641 (2)0.0251 (6)
H7A0.33770.17590.44130.030*
H7B0.34750.21400.27220.030*
C80.35493 (12)0.3452 (2)0.4244 (2)0.0200 (6)
H80.33310.36200.52110.024*
C90.43837 (13)0.3388 (2)0.4608 (2)0.0224 (6)
C100.45930 (13)0.2409 (2)0.5653 (3)0.0213 (7)
C110.44411 (16)0.1640 (2)0.8072 (3)0.0338 (8)
H110.49810.15320.81840.041*
C120.40720 (19)0.0556 (2)0.7641 (3)0.0637 (11)
H12A0.42240.03030.66670.096*
H12B0.35420.06590.75530.096*
H12C0.42100.00010.84250.096*
C130.20207 (15)0.0718 (2)0.2902 (3)0.0478 (9)
H13A0.22850.04190.20820.072*
H13B0.14960.06210.26450.072*
H13C0.21700.03220.38470.072*
C140.19202 (14)0.2949 (2)0.1357 (2)0.0411 (8)
H14A0.19990.37480.14850.062*
H14B0.14000.28050.10980.062*
H14C0.21970.26770.05400.062*
C150.33501 (13)0.4375 (2)0.3156 (2)0.0225 (7)
H150.35030.43100.21640.027*
C160.29856 (14)0.5262 (2)0.3452 (3)0.0367 (8)
H16A0.28230.53610.44300.044*
H16B0.28830.58090.26900.044*
C170.46867 (14)0.4419 (2)0.5398 (3)0.0278 (7)
H170.44810.46470.62920.033*
C180.52116 (15)0.5018 (2)0.4934 (3)0.0445 (8)
H18A0.54290.48130.40440.053*
H18B0.53760.56590.54880.053*
C190.42038 (18)0.2118 (2)0.9503 (3)0.0549 (10)
H19A0.44440.28340.97070.082*
H19B0.43380.16101.03480.082*
H19C0.36740.22210.93940.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si0.0214 (5)0.0303 (5)0.0268 (4)0.0022 (5)0.0040 (3)0.0070 (4)
C10.0163 (16)0.0245 (16)0.0198 (14)0.0033 (15)0.0006 (12)0.0011 (14)
O10.0297 (12)0.0260 (12)0.0247 (9)0.0058 (9)0.0058 (8)0.0037 (8)
O20.0312 (14)0.0389 (14)0.0432 (12)0.0143 (11)0.0103 (10)0.0044 (10)
C20.0278 (18)0.0244 (16)0.0290 (14)0.0001 (15)0.0017 (13)0.0041 (14)
O30.0249 (13)0.0384 (14)0.0300 (10)0.0074 (10)0.0143 (9)0.0014 (9)
C30.047 (2)0.044 (2)0.0217 (14)0.0211 (17)0.0032 (13)0.0031 (14)
C40.033 (2)0.039 (2)0.0348 (17)0.0160 (16)0.0202 (14)0.0153 (15)
C50.0300 (19)0.0297 (19)0.0481 (16)0.0024 (15)0.0126 (14)0.0056 (16)
C60.0240 (18)0.0287 (18)0.0261 (14)0.0005 (14)0.0029 (13)0.0064 (13)
C70.0236 (16)0.0261 (17)0.0256 (13)0.0003 (14)0.0025 (11)0.0014 (13)
C80.0201 (18)0.0242 (17)0.0164 (11)0.0007 (13)0.0050 (11)0.0020 (12)
C90.0176 (18)0.0270 (18)0.0234 (14)0.0007 (13)0.0065 (12)0.0019 (13)
C100.0158 (19)0.0235 (19)0.0239 (14)0.0067 (14)0.0018 (13)0.0014 (13)
C110.032 (2)0.038 (2)0.0309 (16)0.0057 (16)0.0018 (14)0.0100 (15)
C120.104 (3)0.035 (2)0.0538 (19)0.021 (2)0.014 (2)0.0047 (17)
C130.039 (2)0.044 (2)0.0622 (19)0.0111 (16)0.0144 (16)0.0227 (17)
C140.0227 (18)0.073 (2)0.0273 (14)0.0045 (17)0.0008 (13)0.0037 (15)
C150.0206 (17)0.0261 (18)0.0211 (13)0.0022 (14)0.0044 (12)0.0028 (13)
C160.039 (2)0.034 (2)0.0363 (16)0.0047 (16)0.0031 (15)0.0064 (14)
C170.0202 (18)0.029 (2)0.0336 (15)0.0023 (14)0.0000 (13)0.0064 (14)
C180.040 (2)0.037 (2)0.0553 (19)0.0103 (18)0.0019 (16)0.0032 (16)
C190.092 (3)0.046 (2)0.0287 (16)0.004 (2)0.0137 (17)0.0057 (16)
Geometric parameters (Å, º) top
Si—C141.859 (2)C9—C171.508 (3)
Si—C71.862 (2)C9—C101.527 (3)
Si—C131.868 (2)C11—C191.494 (3)
Si—C11.880 (2)C11—C121.507 (3)
C1—C21.381 (3)C11—H111.0000
C1—C61.385 (3)C12—H12A0.9800
O1—C101.325 (2)C12—H12B0.9800
O1—C111.454 (3)C12—H12C0.9800
O2—C101.200 (3)C13—H13A0.9800
C2—C31.383 (3)C13—H13B0.9800
C2—H20.9500C13—H13C0.9800
O3—C91.427 (2)C14—H14A0.9800
O3—H30.8400C14—H14B0.9800
C3—C41.373 (3)C14—H14C0.9800
C3—H3A0.9500C15—C161.303 (3)
C4—C51.371 (3)C15—H150.9500
C4—H40.9500C16—H16A0.9500
C5—C61.379 (3)C16—H16B0.9500
C5—H50.9500C17—C181.304 (3)
C6—H60.9500C17—H170.9500
C7—C81.547 (3)C18—H18A0.9500
C7—H7A0.9900C18—H18B0.9500
C7—H7B0.9900C19—H19A0.9800
C8—C151.496 (3)C19—H19B0.9800
C8—C91.543 (3)C19—H19C0.9800
C8—H81.0000
C14—Si—C7112.71 (11)O2—C10—C9123.0 (2)
C14—Si—C13108.16 (12)O1—C10—C9110.7 (2)
C7—Si—C13106.64 (12)O1—C11—C19105.7 (2)
C14—Si—C1110.59 (11)O1—C11—C12109.7 (2)
C7—Si—C1109.45 (10)C19—C11—C12112.8 (2)
C13—Si—C1109.15 (12)O1—C11—H11109.5
C2—C1—C6117.6 (2)C19—C11—H11109.5
C2—C1—Si119.99 (19)C12—C11—H11109.5
C6—C1—Si122.36 (17)C11—C12—H12A109.5
C10—O1—C11117.3 (2)C11—C12—H12B109.5
C3—C2—C1121.0 (2)H12A—C12—H12B109.5
C3—C2—H2119.5C11—C12—H12C109.5
C1—C2—H2119.5H12A—C12—H12C109.5
C9—O3—H3109.5H12B—C12—H12C109.5
C4—C3—C2120.5 (2)Si—C13—H13A109.5
C4—C3—H3A119.8Si—C13—H13B109.5
C2—C3—H3A119.8H13A—C13—H13B109.5
C5—C4—C3119.3 (2)Si—C13—H13C109.5
C5—C4—H4120.3H13A—C13—H13C109.5
C3—C4—H4120.3H13B—C13—H13C109.5
C4—C5—C6120.1 (2)Si—C14—H14A109.5
C4—C5—H5120.0Si—C14—H14B109.5
C6—C5—H5120.0H14A—C14—H14B109.5
C1—C6—C5121.5 (2)Si—C14—H14C109.5
C1—C6—H6119.2H14A—C14—H14C109.5
C5—C6—H6119.2H14B—C14—H14C109.5
C8—C7—Si118.22 (17)C16—C15—C8125.6 (2)
C8—C7—H7A107.8C16—C15—H15117.2
Si—C7—H7A107.8C8—C15—H15117.2
C8—C7—H7B107.8C15—C16—H16A120.0
Si—C7—H7B107.8C15—C16—H16B120.0
H7A—C7—H7B107.1H16A—C16—H16B120.0
C15—C8—C9110.6 (2)C18—C17—C9124.4 (2)
C15—C8—C7111.55 (18)C18—C17—H17117.8
C9—C8—C7111.3 (2)C9—C17—H17117.8
C15—C8—H8107.8C17—C18—H18A120.0
C9—C8—H8107.8C17—C18—H18B120.0
C7—C8—H8107.8H18A—C18—H18B120.0
O3—C9—C17110.6 (2)C11—C19—H19A109.5
O3—C9—C10108.6 (2)C11—C19—H19B109.5
C17—C9—C10107.24 (19)H19A—C19—H19B109.5
O3—C9—C8107.62 (18)C11—C19—H19C109.5
C17—C9—C8112.0 (2)H19A—C19—H19C109.5
C10—C9—C8110.8 (2)H19B—C19—H19C109.5
O2—C10—O1126.3 (3)
C14—Si—C1—C2162.39 (19)C7—C8—C9—O366.2 (2)
C7—Si—C1—C272.9 (2)C15—C8—C9—C1763.3 (2)
C13—Si—C1—C243.5 (2)C7—C8—C9—C17172.12 (17)
C14—Si—C1—C618.7 (2)C15—C8—C9—C10177.0 (2)
C7—Si—C1—C6106.0 (2)C7—C8—C9—C1052.4 (2)
C13—Si—C1—C6137.6 (2)C11—O1—C10—O24.0 (4)
C6—C1—C2—C30.3 (3)C11—O1—C10—C9174.6 (2)
Si—C1—C2—C3178.7 (2)O3—C9—C10—O28.1 (3)
C1—C2—C3—C40.7 (4)C17—C9—C10—O2111.4 (3)
C2—C3—C4—C50.7 (4)C8—C9—C10—O2126.1 (3)
C3—C4—C5—C60.3 (4)O3—C9—C10—O1173.21 (19)
C2—C1—C6—C50.1 (4)C17—C9—C10—O167.3 (2)
Si—C1—C6—C5179.0 (2)C8—C9—C10—O155.2 (3)
C4—C5—C6—C10.1 (4)C10—O1—C11—C19159.6 (2)
C14—Si—C7—C874.11 (18)C10—O1—C11—C1278.5 (3)
C13—Si—C7—C8167.35 (17)C9—C8—C15—C16114.6 (3)
C1—Si—C7—C849.40 (18)C7—C8—C15—C16121.0 (3)
Si—C7—C8—C1556.7 (2)O3—C9—C17—C186.0 (4)
Si—C7—C8—C9179.26 (14)C10—C9—C17—C18112.3 (3)
C15—C8—C9—O358.4 (3)C8—C9—C17—C18126.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.842.172.664 (2)118

Experimental details

Crystal data
Chemical formulaC19H28O3Si
Mr332.50
Crystal system, space groupMonoclinic, Cc
Temperature (K)173
a, b, c (Å)18.4311 (15), 12.0676 (10), 8.8508 (6)
β (°) 95.366 (7)
V3)1960.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.44 × 0.12 × 0.10
Data collection
DiffractometerOxford Xcalibur S CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.92, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
6497, 3425, 2466
Rint0.035
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.044, 1.01
No. of reflections3425
No. of parameters213
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.21
Absolute structureFlack (1983), with how many Friedel pairs?
Absolute structure parameter0.09 (9)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.842.172.664 (2)118
 

References

First citationAbraham, L., Pollex, A. & Hiersemann, M. (2003). Synlett, pp. 1088–1095.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHiersemann, M. (1999). Tetrahedron, 55, 2625–2638.  Web of Science CrossRef CAS Google Scholar
First citationHiersemann, M. (2000). Synthesis, pp. 1279–1290.  CrossRef Google Scholar
First citationLauterbach, C., Pollex, A. & Hiersemann, M. (1999). Eur. J. Org. Chem. pp. 2713–2724.  Google Scholar
First citationLe Menez, P., Fargeas, V., Berque, I., Poisson, J. & Ardisson, J. (1995). J. Org. Chem. 60, 3592–3599.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds