organic compounds
(2SR,3SR)-Isopropyl 3-{[dimethyl(phenyl)silyl]methyl}-2-hydroxy-2-vinylpent-4-enoate
aFakultät Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
*Correspondence e-mail: hans.preut@tu-dortmund.de
The 19H28O3Si, which was synthesized using a dienolate-[2,3]-Wittig rearrangement, was corroborated by single-crystal X-ray The Si—C bond distances are in the range 1.858 (2)–1.880 (2) Å and an intramolecular O—H⋯O hydrogen bond helps to stabilize the molecular conformation.
of the title compound, CRelated literature
For background literature on Wittig rearrangements, see: Abraham et al. (2003); Hiersemann (1999, 2000); Lauterbach et al. (1999); Le Menez et al. (1995).
Experimental
Crystal data
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis CCD; data reduction: CrysAlis CCD; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810044818/hb5668sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810044818/hb5668Isup2.hkl
To a cooled (195 K) solution of LDA [prepared in situ from NEt3 (4.2 mmol, 0.6 ml, 1.4 eq) and n-BuLi (2.3 M in hexanes, 4.2 mmol, 1.8 ml, 1.4 eq) in THF (15 ml, 3.5 ml/mmol NEt3) was added dropwise a pre-cooled (195 K) solution of the allyl vinyl ether II ((Z,E)/(E,E) = 3/2, 3.0 mmol, 1 g, 1 eq) in THF (6 ml, 2 ml/mmol II). The reaction mixture was stirred at 195 K for 30 min, warmed to 273 K and stirred for an additional 60 min. After the addition of saturated aqueous NH4Cl solution the aqueous layer was extracted with CH2Cl2 (3×) and the combined organic phases were dried (MgSO4) and concentrated under reduced pressure. Purification by flash
(cyclohexane/ethyl acetate 100/1 to 50/1) afforded the 1,5-hexadiene I (813 mg, 2.44 mmol, 82%) as a mixture of (dr = 86/14) as colourless crystals. Subsequent recrystallization of I by vapour diffusion technique from isohexane and ethyl acetate provided colourless needles of the major diastereomer of (I) suitable for an X-ray analysis.Rf 0.60 (cyclohexane/ethyl acetate 5/1); 1H NMR (CDCl3, 400 MHZ, δ): 0.23 (s, 3Hminor, CH3), 0.24 (s, 3Hmajor, CH3), 0.26 (s, 3Hminor, CH3), 0.27 (s, 3Hmajor, CH3), 0.58 (dd, J = 14.6, 2.0 Hz, 2Hmajor, CH2), 0.86 (dd, J = 15.1, 12.1 Hz, 2Hminor, CH2), 1.03 (dd, J = 14.8, 2.3 Hz, 2Hminor, CH2), 1.10 (dd, J = 14.6, 12.6 Hz, 2Hmajor, CH2), 1.20–1.24 (m, 6H, 2 × CH3), 2.50 (ddd, J = 12.1, 9.8, 2.3 Hz, 1Hminor, CH), 2.59 (ddd, J = 12.6, 9.8, 2.0 Hz, 1Hmajor, CH), 3.29 (s, 1Hminor, OH), 3.33 (s, 1Hmajor, OH), 4.88–5.07 (m, 3 × 1H, CH), 5.13 (dd, J = 10.5, 1,5 Hz, 1Hmajor, H2C═), 5.23 (dd, J = 10.5, 1,5 Hz, 1Hminor, H2C═), 5.37 (dd, J = 17.1, 1,5 Hz, 1Hmajor, H2C═), 5.42–5.52 (m, 1Hmajor+1Hminor, CH), 5.56–5.65 (m, 1Hminor, CH), 5.78 (dd, J = 16.8, 10,3 Hz, 1Hminor, H2C═), 5.81 (dd, J = 17.1, 10.5 Hz, 1Hmajor, H2C═), 7.31–7.35 (m, 3H, 3 × CHAr), 7.42–7.48 (m, 2H, 2 × CHAr); 13C NMR (CDCl3, 101 MHz, δ): -2.4 (CH3minor), -2.3 (CH3major), -1.5 (CH3minor), -1.4 (CH3major), 13.8 (CH2minor), 15.8 (CH2major), 21.8 (CH3), 21.8 (CH3minor), 21.9 (CH2major), 47.6 (CHminor), 47.8 (CHmajor), 70.3 (CH), 80.9 (Cmajor), 81.0 (Cminor), 115.3 (CH2major), 116.6 (CH2minor), 117.4 (CH2minor), 117.8 (CH2major), 127.7 (CHminor), 127.8 (CHmajor), 128.9 (CHminor), 129.0 (CHmajor), 133.7 (CHmajor), 133.8 (CHminor), 138.0 (CHminor), 138.0 (CHmajor), 138.3 (CHmajor), 138.8 (CHminor), 139.4 (C), 174.6 (C); IR (cm-1): 3505 (br,s) (ν OH), 3070 (w), 3050 (w), 3020 (w), 2980 (m), 2955 (m), 2920 (w), 1725 (s) (ν C═O), 1640 (w), 1620 (w), 1470 (w), 1455 (w), 1430 (m), 1400 (w), 1390 (w), 1375 (m), 1260 (s), 1190 (s), 1140 (m), 1105 (s), 1085 (m); Anal. Calcd. for C19H28O3Si: C, 68.6; H, 8.5; Found: C, 68.6; H,8.2; M = 332.51 g/mol.
The title compound I was synthesized from allylic alcohol (Le Menez et al., 1995), followed by diastereoselective dienolate-[2,3]-Wittig rearrangement (Lauterbach et al., 1999). Fig. 1 depicts the structure of isolated racemic major diastereomer of I. The
of the stereogenic centers in I can be attributed to the stereochemical course of the dienolate-[2,3]-Wittig rearrangement (Hiersemann, 1999, 2000; Abraham et al., 2003).For background literature on Wittig rearrangements, see: Abraham et al. (2003); Hiersemann (1999, 2000); Lauterbach et al. (1999); Le Menez et al. (1995).
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis CCD (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, with displacement ellipsoids shown at the 30% probability level. |
C19H28O3Si | F(000) = 720 |
Mr = 332.50 | Dx = 1.127 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 2622 reflections |
a = 18.4311 (15) Å | θ = 2.2–29.1° |
b = 12.0676 (10) Å | µ = 0.13 mm−1 |
c = 8.8508 (6) Å | T = 173 K |
β = 95.366 (7)° | Block, colourless |
V = 1960.0 (3) Å3 | 0.44 × 0.12 × 0.10 mm |
Z = 4 |
Oxford Xcalibur S CCD diffractometer | 3425 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2466 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
Detector resolution: 16.0560 pixels mm-1 | θmax = 25.5°, θmin = 2.2° |
ω scans | h = −21→22 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −14→14 |
Tmin = 0.92, Tmax = 1.00 | l = −10→10 |
6497 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.044 | w = 1/[σ2(Fo2) |
S = 1.01 | (Δ/σ)max = 0.001 |
3425 reflections | Δρmax = 0.28 e Å−3 |
213 parameters | Δρmin = −0.21 e Å−3 |
2 restraints | Absolute structure: Flack (1983), with how many Friedel pairs? |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.09 (9) |
C19H28O3Si | V = 1960.0 (3) Å3 |
Mr = 332.50 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 18.4311 (15) Å | µ = 0.13 mm−1 |
b = 12.0676 (10) Å | T = 173 K |
c = 8.8508 (6) Å | 0.44 × 0.12 × 0.10 mm |
β = 95.366 (7)° |
Oxford Xcalibur S CCD diffractometer | 3425 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 2466 reflections with I > 2σ(I) |
Tmin = 0.92, Tmax = 1.00 | Rint = 0.035 |
6497 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.044 | Δρmax = 0.28 e Å−3 |
S = 1.01 | Δρmin = −0.21 e Å−3 |
3425 reflections | Absolute structure: Flack (1983), with how many Friedel pairs? |
213 parameters | Absolute structure parameter: 0.09 (9) |
2 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Si | 0.22320 (4) | 0.22241 (6) | 0.31540 (6) | 0.02606 (19) | |
C1 | 0.17453 (12) | 0.2779 (2) | 0.4769 (2) | 0.0203 (6) | |
O1 | 0.42490 (8) | 0.24617 (13) | 0.68996 (16) | 0.0266 (5) | |
O2 | 0.50238 (10) | 0.17136 (15) | 0.53585 (17) | 0.0373 (5) | |
C2 | 0.17399 (13) | 0.2176 (2) | 0.6094 (2) | 0.0271 (7) | |
H2 | 0.1974 | 0.1474 | 0.6173 | 0.033* | |
O3 | 0.46978 (10) | 0.32269 (15) | 0.32107 (15) | 0.0304 (5) | |
H3 | 0.4988 | 0.2689 | 0.3297 | 0.046* | |
C3 | 0.13979 (16) | 0.2578 (2) | 0.7307 (3) | 0.0375 (8) | |
H3A | 0.1404 | 0.2155 | 0.8213 | 0.045* | |
C4 | 0.10492 (15) | 0.3585 (2) | 0.7211 (3) | 0.0343 (8) | |
H4 | 0.0810 | 0.3856 | 0.8042 | 0.041* | |
C5 | 0.10492 (16) | 0.4195 (2) | 0.5904 (3) | 0.0353 (7) | |
H5 | 0.0811 | 0.4894 | 0.5828 | 0.042* | |
C6 | 0.13942 (14) | 0.3794 (2) | 0.4699 (2) | 0.0263 (7) | |
H6 | 0.1391 | 0.4225 | 0.3800 | 0.032* | |
C7 | 0.32344 (12) | 0.2331 (2) | 0.3641 (2) | 0.0251 (6) | |
H7A | 0.3377 | 0.1759 | 0.4413 | 0.030* | |
H7B | 0.3475 | 0.2140 | 0.2722 | 0.030* | |
C8 | 0.35493 (12) | 0.3452 (2) | 0.4244 (2) | 0.0200 (6) | |
H8 | 0.3331 | 0.3620 | 0.5211 | 0.024* | |
C9 | 0.43837 (13) | 0.3388 (2) | 0.4608 (2) | 0.0224 (6) | |
C10 | 0.45930 (13) | 0.2409 (2) | 0.5653 (3) | 0.0213 (7) | |
C11 | 0.44411 (16) | 0.1640 (2) | 0.8072 (3) | 0.0338 (8) | |
H11 | 0.4981 | 0.1532 | 0.8184 | 0.041* | |
C12 | 0.40720 (19) | 0.0556 (2) | 0.7641 (3) | 0.0637 (11) | |
H12A | 0.4224 | 0.0303 | 0.6667 | 0.096* | |
H12B | 0.3542 | 0.0659 | 0.7553 | 0.096* | |
H12C | 0.4210 | 0.0001 | 0.8425 | 0.096* | |
C13 | 0.20207 (15) | 0.0718 (2) | 0.2902 (3) | 0.0478 (9) | |
H13A | 0.2285 | 0.0419 | 0.2082 | 0.072* | |
H13B | 0.1496 | 0.0621 | 0.2645 | 0.072* | |
H13C | 0.2170 | 0.0322 | 0.3847 | 0.072* | |
C14 | 0.19202 (14) | 0.2949 (2) | 0.1357 (2) | 0.0411 (8) | |
H14A | 0.1999 | 0.3748 | 0.1485 | 0.062* | |
H14B | 0.1400 | 0.2805 | 0.1098 | 0.062* | |
H14C | 0.2197 | 0.2677 | 0.0540 | 0.062* | |
C15 | 0.33501 (13) | 0.4375 (2) | 0.3156 (2) | 0.0225 (7) | |
H15 | 0.3503 | 0.4310 | 0.2164 | 0.027* | |
C16 | 0.29856 (14) | 0.5262 (2) | 0.3452 (3) | 0.0367 (8) | |
H16A | 0.2823 | 0.5361 | 0.4430 | 0.044* | |
H16B | 0.2883 | 0.5809 | 0.2690 | 0.044* | |
C17 | 0.46867 (14) | 0.4419 (2) | 0.5398 (3) | 0.0278 (7) | |
H17 | 0.4481 | 0.4647 | 0.6292 | 0.033* | |
C18 | 0.52116 (15) | 0.5018 (2) | 0.4934 (3) | 0.0445 (8) | |
H18A | 0.5429 | 0.4813 | 0.4044 | 0.053* | |
H18B | 0.5376 | 0.5659 | 0.5488 | 0.053* | |
C19 | 0.42038 (18) | 0.2118 (2) | 0.9503 (3) | 0.0549 (10) | |
H19A | 0.4444 | 0.2834 | 0.9707 | 0.082* | |
H19B | 0.4338 | 0.1610 | 1.0348 | 0.082* | |
H19C | 0.3674 | 0.2221 | 0.9394 | 0.082* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si | 0.0214 (5) | 0.0303 (5) | 0.0268 (4) | −0.0022 (5) | 0.0040 (3) | −0.0070 (4) |
C1 | 0.0163 (16) | 0.0245 (16) | 0.0198 (14) | −0.0033 (15) | −0.0006 (12) | 0.0011 (14) |
O1 | 0.0297 (12) | 0.0260 (12) | 0.0247 (9) | 0.0058 (9) | 0.0058 (8) | 0.0037 (8) |
O2 | 0.0312 (14) | 0.0389 (14) | 0.0432 (12) | 0.0143 (11) | 0.0103 (10) | 0.0044 (10) |
C2 | 0.0278 (18) | 0.0244 (16) | 0.0290 (14) | 0.0001 (15) | 0.0017 (13) | 0.0041 (14) |
O3 | 0.0249 (13) | 0.0384 (14) | 0.0300 (10) | 0.0074 (10) | 0.0143 (9) | 0.0014 (9) |
C3 | 0.047 (2) | 0.044 (2) | 0.0217 (14) | −0.0211 (17) | 0.0032 (13) | 0.0031 (14) |
C4 | 0.033 (2) | 0.039 (2) | 0.0348 (17) | −0.0160 (16) | 0.0202 (14) | −0.0153 (15) |
C5 | 0.0300 (19) | 0.0297 (19) | 0.0481 (16) | 0.0024 (15) | 0.0126 (14) | −0.0056 (16) |
C6 | 0.0240 (18) | 0.0287 (18) | 0.0261 (14) | 0.0005 (14) | 0.0029 (13) | 0.0064 (13) |
C7 | 0.0236 (16) | 0.0261 (17) | 0.0256 (13) | −0.0003 (14) | 0.0025 (11) | −0.0014 (13) |
C8 | 0.0201 (18) | 0.0242 (17) | 0.0164 (11) | 0.0007 (13) | 0.0050 (11) | −0.0020 (12) |
C9 | 0.0176 (18) | 0.0270 (18) | 0.0234 (14) | 0.0007 (13) | 0.0065 (12) | 0.0019 (13) |
C10 | 0.0158 (19) | 0.0235 (19) | 0.0239 (14) | −0.0067 (14) | −0.0018 (13) | −0.0014 (13) |
C11 | 0.032 (2) | 0.038 (2) | 0.0309 (16) | 0.0057 (16) | −0.0018 (14) | 0.0100 (15) |
C12 | 0.104 (3) | 0.035 (2) | 0.0538 (19) | −0.021 (2) | 0.014 (2) | 0.0047 (17) |
C13 | 0.039 (2) | 0.044 (2) | 0.0622 (19) | −0.0111 (16) | 0.0144 (16) | −0.0227 (17) |
C14 | 0.0227 (18) | 0.073 (2) | 0.0273 (14) | −0.0045 (17) | −0.0008 (13) | −0.0037 (15) |
C15 | 0.0206 (17) | 0.0261 (18) | 0.0211 (13) | −0.0022 (14) | 0.0044 (12) | 0.0028 (13) |
C16 | 0.039 (2) | 0.034 (2) | 0.0363 (16) | 0.0047 (16) | 0.0031 (15) | 0.0064 (14) |
C17 | 0.0202 (18) | 0.029 (2) | 0.0336 (15) | −0.0023 (14) | 0.0000 (13) | −0.0064 (14) |
C18 | 0.040 (2) | 0.037 (2) | 0.0553 (19) | −0.0103 (18) | −0.0019 (16) | −0.0032 (16) |
C19 | 0.092 (3) | 0.046 (2) | 0.0287 (16) | 0.004 (2) | 0.0137 (17) | 0.0057 (16) |
Si—C14 | 1.859 (2) | C9—C17 | 1.508 (3) |
Si—C7 | 1.862 (2) | C9—C10 | 1.527 (3) |
Si—C13 | 1.868 (2) | C11—C19 | 1.494 (3) |
Si—C1 | 1.880 (2) | C11—C12 | 1.507 (3) |
C1—C2 | 1.381 (3) | C11—H11 | 1.0000 |
C1—C6 | 1.385 (3) | C12—H12A | 0.9800 |
O1—C10 | 1.325 (2) | C12—H12B | 0.9800 |
O1—C11 | 1.454 (3) | C12—H12C | 0.9800 |
O2—C10 | 1.200 (3) | C13—H13A | 0.9800 |
C2—C3 | 1.383 (3) | C13—H13B | 0.9800 |
C2—H2 | 0.9500 | C13—H13C | 0.9800 |
O3—C9 | 1.427 (2) | C14—H14A | 0.9800 |
O3—H3 | 0.8400 | C14—H14B | 0.9800 |
C3—C4 | 1.373 (3) | C14—H14C | 0.9800 |
C3—H3A | 0.9500 | C15—C16 | 1.303 (3) |
C4—C5 | 1.371 (3) | C15—H15 | 0.9500 |
C4—H4 | 0.9500 | C16—H16A | 0.9500 |
C5—C6 | 1.379 (3) | C16—H16B | 0.9500 |
C5—H5 | 0.9500 | C17—C18 | 1.304 (3) |
C6—H6 | 0.9500 | C17—H17 | 0.9500 |
C7—C8 | 1.547 (3) | C18—H18A | 0.9500 |
C7—H7A | 0.9900 | C18—H18B | 0.9500 |
C7—H7B | 0.9900 | C19—H19A | 0.9800 |
C8—C15 | 1.496 (3) | C19—H19B | 0.9800 |
C8—C9 | 1.543 (3) | C19—H19C | 0.9800 |
C8—H8 | 1.0000 | ||
C14—Si—C7 | 112.71 (11) | O2—C10—C9 | 123.0 (2) |
C14—Si—C13 | 108.16 (12) | O1—C10—C9 | 110.7 (2) |
C7—Si—C13 | 106.64 (12) | O1—C11—C19 | 105.7 (2) |
C14—Si—C1 | 110.59 (11) | O1—C11—C12 | 109.7 (2) |
C7—Si—C1 | 109.45 (10) | C19—C11—C12 | 112.8 (2) |
C13—Si—C1 | 109.15 (12) | O1—C11—H11 | 109.5 |
C2—C1—C6 | 117.6 (2) | C19—C11—H11 | 109.5 |
C2—C1—Si | 119.99 (19) | C12—C11—H11 | 109.5 |
C6—C1—Si | 122.36 (17) | C11—C12—H12A | 109.5 |
C10—O1—C11 | 117.3 (2) | C11—C12—H12B | 109.5 |
C3—C2—C1 | 121.0 (2) | H12A—C12—H12B | 109.5 |
C3—C2—H2 | 119.5 | C11—C12—H12C | 109.5 |
C1—C2—H2 | 119.5 | H12A—C12—H12C | 109.5 |
C9—O3—H3 | 109.5 | H12B—C12—H12C | 109.5 |
C4—C3—C2 | 120.5 (2) | Si—C13—H13A | 109.5 |
C4—C3—H3A | 119.8 | Si—C13—H13B | 109.5 |
C2—C3—H3A | 119.8 | H13A—C13—H13B | 109.5 |
C5—C4—C3 | 119.3 (2) | Si—C13—H13C | 109.5 |
C5—C4—H4 | 120.3 | H13A—C13—H13C | 109.5 |
C3—C4—H4 | 120.3 | H13B—C13—H13C | 109.5 |
C4—C5—C6 | 120.1 (2) | Si—C14—H14A | 109.5 |
C4—C5—H5 | 120.0 | Si—C14—H14B | 109.5 |
C6—C5—H5 | 120.0 | H14A—C14—H14B | 109.5 |
C1—C6—C5 | 121.5 (2) | Si—C14—H14C | 109.5 |
C1—C6—H6 | 119.2 | H14A—C14—H14C | 109.5 |
C5—C6—H6 | 119.2 | H14B—C14—H14C | 109.5 |
C8—C7—Si | 118.22 (17) | C16—C15—C8 | 125.6 (2) |
C8—C7—H7A | 107.8 | C16—C15—H15 | 117.2 |
Si—C7—H7A | 107.8 | C8—C15—H15 | 117.2 |
C8—C7—H7B | 107.8 | C15—C16—H16A | 120.0 |
Si—C7—H7B | 107.8 | C15—C16—H16B | 120.0 |
H7A—C7—H7B | 107.1 | H16A—C16—H16B | 120.0 |
C15—C8—C9 | 110.6 (2) | C18—C17—C9 | 124.4 (2) |
C15—C8—C7 | 111.55 (18) | C18—C17—H17 | 117.8 |
C9—C8—C7 | 111.3 (2) | C9—C17—H17 | 117.8 |
C15—C8—H8 | 107.8 | C17—C18—H18A | 120.0 |
C9—C8—H8 | 107.8 | C17—C18—H18B | 120.0 |
C7—C8—H8 | 107.8 | H18A—C18—H18B | 120.0 |
O3—C9—C17 | 110.6 (2) | C11—C19—H19A | 109.5 |
O3—C9—C10 | 108.6 (2) | C11—C19—H19B | 109.5 |
C17—C9—C10 | 107.24 (19) | H19A—C19—H19B | 109.5 |
O3—C9—C8 | 107.62 (18) | C11—C19—H19C | 109.5 |
C17—C9—C8 | 112.0 (2) | H19A—C19—H19C | 109.5 |
C10—C9—C8 | 110.8 (2) | H19B—C19—H19C | 109.5 |
O2—C10—O1 | 126.3 (3) | ||
C14—Si—C1—C2 | 162.39 (19) | C7—C8—C9—O3 | 66.2 (2) |
C7—Si—C1—C2 | −72.9 (2) | C15—C8—C9—C17 | 63.3 (2) |
C13—Si—C1—C2 | 43.5 (2) | C7—C8—C9—C17 | −172.12 (17) |
C14—Si—C1—C6 | −18.7 (2) | C15—C8—C9—C10 | −177.0 (2) |
C7—Si—C1—C6 | 106.0 (2) | C7—C8—C9—C10 | −52.4 (2) |
C13—Si—C1—C6 | −137.6 (2) | C11—O1—C10—O2 | 4.0 (4) |
C6—C1—C2—C3 | −0.3 (3) | C11—O1—C10—C9 | −174.6 (2) |
Si—C1—C2—C3 | 178.7 (2) | O3—C9—C10—O2 | 8.1 (3) |
C1—C2—C3—C4 | 0.7 (4) | C17—C9—C10—O2 | −111.4 (3) |
C2—C3—C4—C5 | −0.7 (4) | C8—C9—C10—O2 | 126.1 (3) |
C3—C4—C5—C6 | 0.3 (4) | O3—C9—C10—O1 | −173.21 (19) |
C2—C1—C6—C5 | −0.1 (4) | C17—C9—C10—O1 | 67.3 (2) |
Si—C1—C6—C5 | −179.0 (2) | C8—C9—C10—O1 | −55.2 (3) |
C4—C5—C6—C1 | 0.1 (4) | C10—O1—C11—C19 | 159.6 (2) |
C14—Si—C7—C8 | 74.11 (18) | C10—O1—C11—C12 | −78.5 (3) |
C13—Si—C7—C8 | −167.35 (17) | C9—C8—C15—C16 | −114.6 (3) |
C1—Si—C7—C8 | −49.40 (18) | C7—C8—C15—C16 | 121.0 (3) |
Si—C7—C8—C15 | −56.7 (2) | O3—C9—C17—C18 | −6.0 (4) |
Si—C7—C8—C9 | 179.26 (14) | C10—C9—C17—C18 | 112.3 (3) |
C15—C8—C9—O3 | −58.4 (3) | C8—C9—C17—C18 | −126.0 (3) |
Experimental details
Crystal data | |
Chemical formula | C19H28O3Si |
Mr | 332.50 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 173 |
a, b, c (Å) | 18.4311 (15), 12.0676 (10), 8.8508 (6) |
β (°) | 95.366 (7) |
V (Å3) | 1960.0 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.44 × 0.12 × 0.10 |
Data collection | |
Diffractometer | Oxford Xcalibur S CCD |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.92, 1.00 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6497, 3425, 2466 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.044, 1.01 |
No. of reflections | 3425 |
No. of parameters | 213 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.21 |
Absolute structure | Flack (1983), with how many Friedel pairs? |
Absolute structure parameter | 0.09 (9) |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
References
Abraham, L., Pollex, A. & Hiersemann, M. (2003). Synlett, pp. 1088–1095. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hiersemann, M. (1999). Tetrahedron, 55, 2625–2638. Web of Science CrossRef CAS Google Scholar
Hiersemann, M. (2000). Synthesis, pp. 1279–1290. CrossRef Google Scholar
Lauterbach, C., Pollex, A. & Hiersemann, M. (1999). Eur. J. Org. Chem. pp. 2713–2724. Google Scholar
Le Menez, P., Fargeas, V., Berque, I., Poisson, J. & Ardisson, J. (1995). J. Org. Chem. 60, 3592–3599. CrossRef CAS Web of Science Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound I was synthesized from allylic alcohol (Le Menez et al., 1995), followed by diastereoselective dienolate-[2,3]-Wittig rearrangement (Lauterbach et al., 1999). Fig. 1 depicts the structure of isolated racemic major diastereomer of I. The relative configuration of the stereogenic centers in I can be attributed to the stereochemical course of the dienolate-[2,3]-Wittig rearrangement (Hiersemann, 1999, 2000; Abraham et al., 2003).