organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Chloro­pyridin-3-yl)-N-ethyl-4-methyl-1,3-oxazole-5-carboxamide

aShenyang Universtity of Chemical Technology, Shenyang 110142, People's Republic of China, and bAgrochemicals Division, Shenyang Research Institute of Chemical Industry, Shenyang 110021, People's Republic of China
*Correspondence e-mail: yangguiqiu@gmail.com

(Received 20 October 2010; accepted 8 November 2010; online 13 November 2010)

In the title compound, C12H12ClN3O2, the dihedral angle between the aromatic rings is 8.42 (10)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, generating C(4) chains propagating in [001].

Related literature

For background to derivatives of oxazolyl carb­oxy­lic acids, see: Takechi et al. (2000[Takechi, H., Oda, Y., Nishizono, N., Oda, K. & Machida, M. (2000). Chem. Pharm. Bull. 48, 1702-1710.]); Lechel et al. (2009[Lechel, T., Lentz, D. & Reissig, H. U. (2009). Chem. Eur. J. 15, 5432-5435.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12ClN3O2

  • Mr = 265.70

  • Monoclinic, P 21 /c

  • a = 8.2143 (12) Å

  • b = 14.545 (2) Å

  • c = 10.4360 (16) Å

  • β = 97.425 (3)°

  • V = 1236.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.32 × 0.28 × 0.22 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.908, Tmax = 0.936

  • 6234 measured reflections

  • 2183 independent reflections

  • 1736 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.07

  • 2183 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O2i 0.86 2.29 3.115 (2) 161
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Derivatives of oxazolyl carboxylic acid are important heterocyclic compounds. They display a broad range of biological, medical and pharmacological properties (Takechi et al., 2000; Lechel et al., 2009). We report the crystal structure of the title compound (I) to determine the structure of the main product in the preparation of derivatives ofoxazolyl carboxylic acid. The molecular structure of (I) (Fig. 1) contains no crystallographically imposed symmetry. The pyridine and oxazole rings in each of the ligands are not coplanar, the dihedral angle formed by the least-squares planes of the benzene and pyrazole rings being equal to 8.8°. Analysis of the crystal packing of (I) shows the existence of N3—H3···O2 interactions, as shown in Fig. 2.

Related literature top

For background to derivatives of oxazolyl carboxylic acids, see: Takechi et al. (2000); Lechel et al. (2009).

Experimental top

The title compound was synthesized by 2-(2-chloropyridin-3-yl) -4-methyloxazole-5-carbonyl chloride with ethanamine in toluene. The crude products were purified by silica-gel column chromatography and then grown from dichloromethane to afford colorless blocks of (I). To a 100 ml flask ethanamine (0.24 g, 5.40 mmol),triethylamine (0.68 g, 6.75 mmol), 2-(2-chloropyridin-3-yl)-4-methyloxazole-5-carbonyl chloride (1.16 g, 4.50 mmol) and 45 ml toluene were added sequentially. The reaction mixture was reacted for 2 h. After separation through silica gel column chromatography (fluent: ethyl acetate/petroleum ether=1/5), The title compound was gained as a yellow solid (0.42 g, 58%).

Anal. Calcd for C12H12N3: C, 54.25; H, 4.55; N, 15.82. Found: C, 54.33; H, 4.54; N, 15.75. 1H NMR(CDCl3): 1.27 (t,3H, CH3), 2.61 (s,3H, Ar—CH3), 3.50 (m, 2H, CH2), 6.29 (br s, 1H, NH), 7.40 (dd, 1H, py—H), 8.42 (dd, 1H, py—H), 8.53 (dd, 1H, py—H).

Refinement top

Although all H atoms were visible in difference maps, they were finally placed in geometrically calculated positions, with C-Hdistances in the range 0.93–0.97Å and N—H distances of 0.86 Å, andincluded in the final refinement in the riding model approximation,with Uiso(H) = 1.2Ueq(C, N) and Uiso(H) = 1.5Ueq(C).

Structure description top

Derivatives of oxazolyl carboxylic acid are important heterocyclic compounds. They display a broad range of biological, medical and pharmacological properties (Takechi et al., 2000; Lechel et al., 2009). We report the crystal structure of the title compound (I) to determine the structure of the main product in the preparation of derivatives ofoxazolyl carboxylic acid. The molecular structure of (I) (Fig. 1) contains no crystallographically imposed symmetry. The pyridine and oxazole rings in each of the ligands are not coplanar, the dihedral angle formed by the least-squares planes of the benzene and pyrazole rings being equal to 8.8°. Analysis of the crystal packing of (I) shows the existence of N3—H3···O2 interactions, as shown in Fig. 2.

For background to derivatives of oxazolyl carboxylic acids, see: Takechi et al. (2000); Lechel et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing of (I).
2-(2-Chloropyridin-3-yl)-N-ethyl-4-methyl-1,3-oxazole-5-carboxamide top
Crystal data top
C12H12ClN3O2F(000) = 552
Mr = 265.70Dx = 1.427 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.2143 (12) ÅCell parameters from 2185 reflections
b = 14.545 (2) Åθ = 2.4–25.4°
c = 10.4360 (16) ŵ = 0.31 mm1
β = 97.425 (3)°T = 296 K
V = 1236.4 (3) Å3Block, colorless
Z = 40.32 × 0.28 × 0.22 mm
Data collection top
Bruker SMART CCD
diffractometer
2183 independent reflections
Radiation source: fine-focus sealed tube1736 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.908, Tmax = 0.936k = 1717
6234 measured reflectionsl = 128
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.2339P]
where P = (Fo2 + 2Fc2)/3
2183 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C12H12ClN3O2V = 1236.4 (3) Å3
Mr = 265.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2143 (12) ŵ = 0.31 mm1
b = 14.545 (2) ÅT = 296 K
c = 10.4360 (16) Å0.32 × 0.28 × 0.22 mm
β = 97.425 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2183 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1736 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.936Rint = 0.027
6234 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.07Δρmax = 0.23 e Å3
2183 reflectionsΔρmin = 0.23 e Å3
165 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.52313 (8)1.15459 (4)0.30039 (6)0.0650 (2)
O10.81459 (15)0.89027 (8)0.35667 (12)0.0424 (3)
O20.91578 (18)0.72507 (9)0.12724 (13)0.0542 (4)
N10.6093 (2)1.15962 (11)0.54565 (19)0.0582 (5)
N20.6424 (2)0.96872 (10)0.21507 (15)0.0449 (4)
N30.9699 (2)0.72633 (10)0.34513 (15)0.0476 (4)
H30.95230.75300.41560.057*
C10.6202 (2)1.10823 (12)0.4431 (2)0.0457 (5)
C20.6806 (3)1.12864 (15)0.6593 (2)0.0625 (6)
H20.67331.16420.73240.075*
C30.7641 (3)1.04702 (15)0.6739 (2)0.0636 (6)
H3A0.81221.02780.75510.076*
C40.7752 (3)0.99428 (13)0.56647 (19)0.0525 (5)
H40.83200.93880.57440.063*
C50.7019 (2)1.02335 (12)0.44587 (18)0.0420 (4)
C60.7133 (2)0.96435 (12)0.33294 (18)0.0399 (4)
C70.8032 (2)0.84506 (11)0.23930 (18)0.0402 (4)
C80.6982 (2)0.89204 (12)0.15339 (18)0.0416 (4)
C90.6388 (3)0.87207 (15)0.0153 (2)0.0567 (6)
H9A0.71790.89360.03780.085*
H9B0.53590.90270.00910.085*
H9C0.62420.80700.00380.085*
C100.9008 (2)0.76014 (12)0.23233 (18)0.0412 (4)
C111.0747 (3)0.64501 (15)0.3517 (2)0.0627 (6)
H11A1.01090.59310.31490.075*
H11B1.16310.65540.30010.075*
C121.1446 (4)0.6227 (2)0.4837 (3)0.0857 (9)
H12A1.20370.67490.52200.129*
H12B1.21810.57150.48270.129*
H12C1.05800.60700.53330.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0845 (4)0.0471 (3)0.0613 (4)0.0194 (3)0.0012 (3)0.0078 (2)
O10.0535 (8)0.0366 (7)0.0360 (7)0.0063 (6)0.0015 (6)0.0004 (5)
O20.0808 (10)0.0446 (8)0.0379 (8)0.0047 (7)0.0104 (7)0.0043 (6)
N10.0718 (12)0.0405 (9)0.0626 (12)0.0066 (8)0.0098 (10)0.0062 (8)
N20.0531 (10)0.0376 (8)0.0428 (9)0.0036 (7)0.0016 (8)0.0025 (7)
N30.0633 (10)0.0408 (9)0.0387 (9)0.0139 (7)0.0071 (8)0.0002 (7)
C10.0502 (11)0.0347 (10)0.0524 (12)0.0005 (8)0.0078 (9)0.0015 (8)
C20.0843 (16)0.0496 (12)0.0541 (14)0.0016 (12)0.0106 (12)0.0126 (11)
C30.0910 (17)0.0517 (13)0.0461 (13)0.0102 (12)0.0011 (12)0.0032 (10)
C40.0688 (14)0.0396 (10)0.0481 (12)0.0090 (9)0.0034 (10)0.0018 (9)
C50.0474 (11)0.0339 (9)0.0453 (11)0.0019 (8)0.0080 (9)0.0023 (8)
C60.0454 (10)0.0308 (9)0.0431 (11)0.0008 (7)0.0048 (9)0.0039 (7)
C70.0502 (11)0.0345 (9)0.0353 (10)0.0022 (8)0.0029 (8)0.0011 (7)
C80.0479 (11)0.0375 (10)0.0387 (10)0.0033 (8)0.0031 (8)0.0016 (8)
C90.0672 (14)0.0549 (12)0.0442 (12)0.0043 (11)0.0069 (10)0.0020 (10)
C100.0500 (11)0.0348 (9)0.0392 (10)0.0035 (8)0.0072 (9)0.0006 (8)
C110.0796 (16)0.0500 (13)0.0578 (14)0.0237 (11)0.0068 (12)0.0004 (10)
C120.103 (2)0.0863 (18)0.0661 (17)0.0496 (16)0.0029 (15)0.0079 (14)
Geometric parameters (Å, º) top
Cl1—C11.733 (2)C4—C51.389 (3)
O1—C61.364 (2)C4—H40.9300
O1—C71.383 (2)C5—C61.471 (3)
O2—C101.230 (2)C7—C81.347 (2)
N1—C11.318 (3)C7—C101.479 (3)
N1—C21.332 (3)C8—C91.489 (3)
N2—C61.293 (2)C9—H9A0.9600
N2—C81.395 (2)C9—H9B0.9600
N3—C101.333 (2)C9—H9C0.9600
N3—C111.459 (2)C11—C121.459 (3)
N3—H30.8600C11—H11A0.9700
C1—C51.404 (3)C11—H11B0.9700
C2—C31.370 (3)C12—H12A0.9600
C2—H20.9300C12—H12B0.9600
C3—C41.372 (3)C12—H12C0.9600
C3—H3A0.9300
C6—O1—C7104.17 (14)O1—C7—C10117.74 (15)
C1—N1—C2117.59 (18)C7—C8—N2108.60 (16)
C6—N2—C8105.37 (15)C7—C8—C9130.30 (18)
C10—N3—C11121.45 (17)N2—C8—C9121.08 (17)
C10—N3—H3119.3C8—C9—H9A109.5
C11—N3—H3119.3C8—C9—H9B109.5
N1—C1—C5124.39 (19)H9A—C9—H9B109.5
N1—C1—Cl1113.91 (15)C8—C9—H9C109.5
C5—C1—Cl1121.70 (15)H9A—C9—H9C109.5
N1—C2—C3123.3 (2)H9B—C9—H9C109.5
N1—C2—H2118.4O2—C10—N3123.63 (17)
C3—C2—H2118.4O2—C10—C7120.50 (17)
C2—C3—C4118.6 (2)N3—C10—C7115.86 (16)
C2—C3—H3A120.7C12—C11—N3112.48 (19)
C4—C3—H3A120.7C12—C11—H11A109.1
C3—C4—C5120.25 (19)N3—C11—H11A109.1
C3—C4—H4119.9C12—C11—H11B109.1
C5—C4—H4119.9N3—C11—H11B109.1
C4—C5—C1115.87 (18)H11A—C11—H11B107.8
C4—C5—C6118.92 (16)C11—C12—H12A109.5
C1—C5—C6125.21 (17)C11—C12—H12B109.5
N2—C6—O1113.63 (16)H12A—C12—H12B109.5
N2—C6—C5131.78 (17)C11—C12—H12C109.5
O1—C6—C5114.57 (16)H12A—C12—H12C109.5
C8—C7—O1108.22 (15)H12B—C12—H12C109.5
C8—C7—C10134.03 (17)
C2—N1—C1—C50.1 (3)C4—C5—C6—O17.8 (3)
C2—N1—C1—Cl1179.87 (17)C1—C5—C6—O1172.89 (16)
C1—N1—C2—C30.3 (4)C6—O1—C7—C80.41 (19)
N1—C2—C3—C40.0 (4)C6—O1—C7—C10179.86 (15)
C2—C3—C4—C50.5 (4)O1—C7—C8—N20.6 (2)
C3—C4—C5—C10.6 (3)C10—C7—C8—N2179.76 (19)
C3—C4—C5—C6178.8 (2)O1—C7—C8—C9178.03 (19)
N1—C1—C5—C40.3 (3)C10—C7—C8—C91.6 (4)
Cl1—C1—C5—C4179.72 (15)C6—N2—C8—C70.5 (2)
N1—C1—C5—C6179.00 (19)C6—N2—C8—C9178.25 (18)
Cl1—C1—C5—C61.0 (3)C11—N3—C10—O21.9 (3)
C8—N2—C6—O10.2 (2)C11—N3—C10—C7177.52 (18)
C8—N2—C6—C5178.29 (19)C8—C7—C10—O211.7 (3)
C7—O1—C6—N20.1 (2)O1—C7—C10—O2168.64 (17)
C7—O1—C6—C5178.89 (15)C8—C7—C10—N3168.8 (2)
C4—C5—C6—N2170.7 (2)O1—C7—C10—N310.8 (2)
C1—C5—C6—N28.6 (3)C10—N3—C11—C12176.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O2i0.862.293.115 (2)161
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H12ClN3O2
Mr265.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.2143 (12), 14.545 (2), 10.4360 (16)
β (°) 97.425 (3)
V3)1236.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.32 × 0.28 × 0.22
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.908, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
6234, 2183, 1736
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.07
No. of reflections2183
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O2i0.862.293.115 (2)161
Symmetry code: (i) x, y+3/2, z+1/2.
 

References

First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLechel, T., Lentz, D. & Reissig, H. U. (2009). Chem. Eur. J. 15, 5432–5435.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakechi, H., Oda, Y., Nishizono, N., Oda, K. & Machida, M. (2000). Chem. Pharm. Bull. 48, 1702–1710.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds