organic compounds
2-(2-Chloropyridin-3-yl)-N-ethyl-4-methyl-1,3-oxazole-5-carboxamide
aShenyang Universtity of Chemical Technology, Shenyang 110142, People's Republic of China, and bAgrochemicals Division, Shenyang Research Institute of Chemical Industry, Shenyang 110021, People's Republic of China
*Correspondence e-mail: yangguiqiu@gmail.com
In the title compound, C12H12ClN3O2, the dihedral angle between the aromatic rings is 8.42 (10)°. In the crystal, molecules are linked by N—H⋯O hydrogen bonds, generating C(4) chains propagating in [001].
Related literature
For background to derivatives of oxazolyl carboxylic acids, see: Takechi et al. (2000); Lechel et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810045885/hb5697sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810045885/hb5697Isup2.hkl
The title compound was synthesized by 2-(2-chloropyridin-3-yl) -4-methyloxazole-5-carbonyl chloride with ethanamine in toluene. The crude products were purified by silica-gel
and then grown from dichloromethane to afford colorless blocks of (I). To a 100 ml flask ethanamine (0.24 g, 5.40 mmol),triethylamine (0.68 g, 6.75 mmol), 2-(2-chloropyridin-3-yl)-4-methyloxazole-5-carbonyl chloride (1.16 g, 4.50 mmol) and 45 ml toluene were added sequentially. The reaction mixture was reacted for 2 h. After separation through silica gel (fluent: ethyl acetate/petroleum ether=1/5), The title compound was gained as a yellow solid (0.42 g, 58%).Anal. Calcd for C12H12N3: C, 54.25; H, 4.55; N, 15.82. Found: C, 54.33; H, 4.54; N, 15.75. 1H NMR(CDCl3): 1.27 (t,3H, CH3), 2.61 (s,3H, Ar—CH3), 3.50 (m, 2H, CH2), 6.29 (br s, 1H, NH), 7.40 (dd, 1H, py—H), 8.42 (dd, 1H, py—H), 8.53 (dd, 1H, py—H).
Although all H atoms were visible in difference maps, they were finally placed in geometrically calculated positions, with C-Hdistances in the range 0.93–0.97Å and N—H distances of 0.86 Å, andincluded in the final
in the riding model approximation,with Uiso(H) = 1.2Ueq(C, N) and Uiso(H) = 1.5Ueq(C).Derivatives of oxazolyl carboxylic acid are important
They display a broad range of biological, medical and pharmacological properties (Takechi et al., 2000; Lechel et al., 2009). We report the of the title compound (I) to determine the structure of the main product in the preparation of derivatives ofoxazolyl carboxylic acid. The molecular structure of (I) (Fig. 1) contains no crystallographically imposed symmetry. The pyridine and oxazole rings in each of the ligands are not coplanar, the dihedral angle formed by the least-squares planes of the benzene and pyrazole rings being equal to 8.8°. Analysis of the crystal packing of (I) shows the existence of N3—H3···O2 interactions, as shown in Fig. 2.For background to derivatives of oxazolyl
see: Takechi et al. (2000); Lechel et al. (2009).Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids. | |
Fig. 2. Crystal packing of (I). |
C12H12ClN3O2 | F(000) = 552 |
Mr = 265.70 | Dx = 1.427 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.2143 (12) Å | Cell parameters from 2185 reflections |
b = 14.545 (2) Å | θ = 2.4–25.4° |
c = 10.4360 (16) Å | µ = 0.31 mm−1 |
β = 97.425 (3)° | T = 296 K |
V = 1236.4 (3) Å3 | Block, colorless |
Z = 4 | 0.32 × 0.28 × 0.22 mm |
Bruker SMART CCD diffractometer | 2183 independent reflections |
Radiation source: fine-focus sealed tube | 1736 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ω scans | θmax = 25.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −9→9 |
Tmin = 0.908, Tmax = 0.936 | k = −17→17 |
6234 measured reflections | l = −12→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0583P)2 + 0.2339P] where P = (Fo2 + 2Fc2)/3 |
2183 reflections | (Δ/σ)max < 0.001 |
165 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C12H12ClN3O2 | V = 1236.4 (3) Å3 |
Mr = 265.70 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.2143 (12) Å | µ = 0.31 mm−1 |
b = 14.545 (2) Å | T = 296 K |
c = 10.4360 (16) Å | 0.32 × 0.28 × 0.22 mm |
β = 97.425 (3)° |
Bruker SMART CCD diffractometer | 2183 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1736 reflections with I > 2σ(I) |
Tmin = 0.908, Tmax = 0.936 | Rint = 0.027 |
6234 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.23 e Å−3 |
2183 reflections | Δρmin = −0.23 e Å−3 |
165 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.52313 (8) | 1.15459 (4) | 0.30039 (6) | 0.0650 (2) | |
O1 | 0.81459 (15) | 0.89027 (8) | 0.35667 (12) | 0.0424 (3) | |
O2 | 0.91578 (18) | 0.72507 (9) | 0.12724 (13) | 0.0542 (4) | |
N1 | 0.6093 (2) | 1.15962 (11) | 0.54565 (19) | 0.0582 (5) | |
N2 | 0.6424 (2) | 0.96872 (10) | 0.21507 (15) | 0.0449 (4) | |
N3 | 0.9699 (2) | 0.72633 (10) | 0.34513 (15) | 0.0476 (4) | |
H3 | 0.9523 | 0.7530 | 0.4156 | 0.057* | |
C1 | 0.6202 (2) | 1.10823 (12) | 0.4431 (2) | 0.0457 (5) | |
C2 | 0.6806 (3) | 1.12864 (15) | 0.6593 (2) | 0.0625 (6) | |
H2 | 0.6733 | 1.1642 | 0.7324 | 0.075* | |
C3 | 0.7641 (3) | 1.04702 (15) | 0.6739 (2) | 0.0636 (6) | |
H3A | 0.8122 | 1.0278 | 0.7551 | 0.076* | |
C4 | 0.7752 (3) | 0.99428 (13) | 0.56647 (19) | 0.0525 (5) | |
H4 | 0.8320 | 0.9388 | 0.5744 | 0.063* | |
C5 | 0.7019 (2) | 1.02335 (12) | 0.44587 (18) | 0.0420 (4) | |
C6 | 0.7133 (2) | 0.96435 (12) | 0.33294 (18) | 0.0399 (4) | |
C7 | 0.8032 (2) | 0.84506 (11) | 0.23930 (18) | 0.0402 (4) | |
C8 | 0.6982 (2) | 0.89204 (12) | 0.15339 (18) | 0.0416 (4) | |
C9 | 0.6388 (3) | 0.87207 (15) | 0.0153 (2) | 0.0567 (6) | |
H9A | 0.7179 | 0.8936 | −0.0378 | 0.085* | |
H9B | 0.5359 | 0.9027 | −0.0091 | 0.085* | |
H9C | 0.6242 | 0.8070 | 0.0038 | 0.085* | |
C10 | 0.9008 (2) | 0.76014 (12) | 0.23233 (18) | 0.0412 (4) | |
C11 | 1.0747 (3) | 0.64501 (15) | 0.3517 (2) | 0.0627 (6) | |
H11A | 1.0109 | 0.5931 | 0.3149 | 0.075* | |
H11B | 1.1631 | 0.6554 | 0.3001 | 0.075* | |
C12 | 1.1446 (4) | 0.6227 (2) | 0.4837 (3) | 0.0857 (9) | |
H12A | 1.2037 | 0.6749 | 0.5220 | 0.129* | |
H12B | 1.2181 | 0.5715 | 0.4827 | 0.129* | |
H12C | 1.0580 | 0.6070 | 0.5333 | 0.129* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0845 (4) | 0.0471 (3) | 0.0613 (4) | 0.0194 (3) | 0.0012 (3) | 0.0078 (2) |
O1 | 0.0535 (8) | 0.0366 (7) | 0.0360 (7) | 0.0063 (6) | 0.0015 (6) | −0.0004 (5) |
O2 | 0.0808 (10) | 0.0446 (8) | 0.0379 (8) | 0.0047 (7) | 0.0104 (7) | −0.0043 (6) |
N1 | 0.0718 (12) | 0.0405 (9) | 0.0626 (12) | 0.0066 (8) | 0.0098 (10) | −0.0062 (8) |
N2 | 0.0531 (10) | 0.0376 (8) | 0.0428 (9) | 0.0036 (7) | 0.0016 (8) | 0.0025 (7) |
N3 | 0.0633 (10) | 0.0408 (9) | 0.0387 (9) | 0.0139 (7) | 0.0071 (8) | 0.0002 (7) |
C1 | 0.0502 (11) | 0.0347 (10) | 0.0524 (12) | 0.0005 (8) | 0.0078 (9) | 0.0015 (8) |
C2 | 0.0843 (16) | 0.0496 (12) | 0.0541 (14) | 0.0016 (12) | 0.0106 (12) | −0.0126 (11) |
C3 | 0.0910 (17) | 0.0517 (13) | 0.0461 (13) | 0.0102 (12) | 0.0011 (12) | −0.0032 (10) |
C4 | 0.0688 (14) | 0.0396 (10) | 0.0481 (12) | 0.0090 (9) | 0.0034 (10) | −0.0018 (9) |
C5 | 0.0474 (11) | 0.0339 (9) | 0.0453 (11) | −0.0019 (8) | 0.0080 (9) | 0.0023 (8) |
C6 | 0.0454 (10) | 0.0308 (9) | 0.0431 (11) | 0.0008 (7) | 0.0048 (9) | 0.0039 (7) |
C7 | 0.0502 (11) | 0.0345 (9) | 0.0353 (10) | −0.0022 (8) | 0.0029 (8) | −0.0011 (7) |
C8 | 0.0479 (11) | 0.0375 (10) | 0.0387 (10) | −0.0033 (8) | 0.0031 (8) | 0.0016 (8) |
C9 | 0.0672 (14) | 0.0549 (12) | 0.0442 (12) | 0.0043 (11) | −0.0069 (10) | −0.0020 (10) |
C10 | 0.0500 (11) | 0.0348 (9) | 0.0392 (10) | −0.0035 (8) | 0.0072 (9) | −0.0006 (8) |
C11 | 0.0796 (16) | 0.0500 (13) | 0.0578 (14) | 0.0237 (11) | 0.0068 (12) | 0.0004 (10) |
C12 | 0.103 (2) | 0.0863 (18) | 0.0661 (17) | 0.0496 (16) | 0.0029 (15) | 0.0079 (14) |
Cl1—C1 | 1.733 (2) | C4—C5 | 1.389 (3) |
O1—C6 | 1.364 (2) | C4—H4 | 0.9300 |
O1—C7 | 1.383 (2) | C5—C6 | 1.471 (3) |
O2—C10 | 1.230 (2) | C7—C8 | 1.347 (2) |
N1—C1 | 1.318 (3) | C7—C10 | 1.479 (3) |
N1—C2 | 1.332 (3) | C8—C9 | 1.489 (3) |
N2—C6 | 1.293 (2) | C9—H9A | 0.9600 |
N2—C8 | 1.395 (2) | C9—H9B | 0.9600 |
N3—C10 | 1.333 (2) | C9—H9C | 0.9600 |
N3—C11 | 1.459 (2) | C11—C12 | 1.459 (3) |
N3—H3 | 0.8600 | C11—H11A | 0.9700 |
C1—C5 | 1.404 (3) | C11—H11B | 0.9700 |
C2—C3 | 1.370 (3) | C12—H12A | 0.9600 |
C2—H2 | 0.9300 | C12—H12B | 0.9600 |
C3—C4 | 1.372 (3) | C12—H12C | 0.9600 |
C3—H3A | 0.9300 | ||
C6—O1—C7 | 104.17 (14) | O1—C7—C10 | 117.74 (15) |
C1—N1—C2 | 117.59 (18) | C7—C8—N2 | 108.60 (16) |
C6—N2—C8 | 105.37 (15) | C7—C8—C9 | 130.30 (18) |
C10—N3—C11 | 121.45 (17) | N2—C8—C9 | 121.08 (17) |
C10—N3—H3 | 119.3 | C8—C9—H9A | 109.5 |
C11—N3—H3 | 119.3 | C8—C9—H9B | 109.5 |
N1—C1—C5 | 124.39 (19) | H9A—C9—H9B | 109.5 |
N1—C1—Cl1 | 113.91 (15) | C8—C9—H9C | 109.5 |
C5—C1—Cl1 | 121.70 (15) | H9A—C9—H9C | 109.5 |
N1—C2—C3 | 123.3 (2) | H9B—C9—H9C | 109.5 |
N1—C2—H2 | 118.4 | O2—C10—N3 | 123.63 (17) |
C3—C2—H2 | 118.4 | O2—C10—C7 | 120.50 (17) |
C2—C3—C4 | 118.6 (2) | N3—C10—C7 | 115.86 (16) |
C2—C3—H3A | 120.7 | C12—C11—N3 | 112.48 (19) |
C4—C3—H3A | 120.7 | C12—C11—H11A | 109.1 |
C3—C4—C5 | 120.25 (19) | N3—C11—H11A | 109.1 |
C3—C4—H4 | 119.9 | C12—C11—H11B | 109.1 |
C5—C4—H4 | 119.9 | N3—C11—H11B | 109.1 |
C4—C5—C1 | 115.87 (18) | H11A—C11—H11B | 107.8 |
C4—C5—C6 | 118.92 (16) | C11—C12—H12A | 109.5 |
C1—C5—C6 | 125.21 (17) | C11—C12—H12B | 109.5 |
N2—C6—O1 | 113.63 (16) | H12A—C12—H12B | 109.5 |
N2—C6—C5 | 131.78 (17) | C11—C12—H12C | 109.5 |
O1—C6—C5 | 114.57 (16) | H12A—C12—H12C | 109.5 |
C8—C7—O1 | 108.22 (15) | H12B—C12—H12C | 109.5 |
C8—C7—C10 | 134.03 (17) | ||
C2—N1—C1—C5 | −0.1 (3) | C4—C5—C6—O1 | −7.8 (3) |
C2—N1—C1—Cl1 | 179.87 (17) | C1—C5—C6—O1 | 172.89 (16) |
C1—N1—C2—C3 | 0.3 (4) | C6—O1—C7—C8 | −0.41 (19) |
N1—C2—C3—C4 | 0.0 (4) | C6—O1—C7—C10 | 179.86 (15) |
C2—C3—C4—C5 | −0.5 (4) | O1—C7—C8—N2 | 0.6 (2) |
C3—C4—C5—C1 | 0.6 (3) | C10—C7—C8—N2 | −179.76 (19) |
C3—C4—C5—C6 | −178.8 (2) | O1—C7—C8—C9 | −178.03 (19) |
N1—C1—C5—C4 | −0.3 (3) | C10—C7—C8—C9 | 1.6 (4) |
Cl1—C1—C5—C4 | 179.72 (15) | C6—N2—C8—C7 | −0.5 (2) |
N1—C1—C5—C6 | 179.00 (19) | C6—N2—C8—C9 | 178.25 (18) |
Cl1—C1—C5—C6 | −1.0 (3) | C11—N3—C10—O2 | 1.9 (3) |
C8—N2—C6—O1 | 0.2 (2) | C11—N3—C10—C7 | −177.52 (18) |
C8—N2—C6—C5 | −178.29 (19) | C8—C7—C10—O2 | 11.7 (3) |
C7—O1—C6—N2 | 0.1 (2) | O1—C7—C10—O2 | −168.64 (17) |
C7—O1—C6—C5 | 178.89 (15) | C8—C7—C10—N3 | −168.8 (2) |
C4—C5—C6—N2 | 170.7 (2) | O1—C7—C10—N3 | 10.8 (2) |
C1—C5—C6—N2 | −8.6 (3) | C10—N3—C11—C12 | 176.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O2i | 0.86 | 2.29 | 3.115 (2) | 161 |
Symmetry code: (i) x, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C12H12ClN3O2 |
Mr | 265.70 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 8.2143 (12), 14.545 (2), 10.4360 (16) |
β (°) | 97.425 (3) |
V (Å3) | 1236.4 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.31 |
Crystal size (mm) | 0.32 × 0.28 × 0.22 |
Data collection | |
Diffractometer | Bruker SMART CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.908, 0.936 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6234, 2183, 1736 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.109, 1.07 |
No. of reflections | 2183 |
No. of parameters | 165 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.23 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O2i | 0.86 | 2.29 | 3.115 (2) | 161 |
Symmetry code: (i) x, −y+3/2, z+1/2. |
References
Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Lechel, T., Lentz, D. & Reissig, H. U. (2009). Chem. Eur. J. 15, 5432–5435. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takechi, H., Oda, Y., Nishizono, N., Oda, K. & Machida, M. (2000). Chem. Pharm. Bull. 48, 1702–1710. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Derivatives of oxazolyl carboxylic acid are important heterocyclic compounds. They display a broad range of biological, medical and pharmacological properties (Takechi et al., 2000; Lechel et al., 2009). We report the crystal structure of the title compound (I) to determine the structure of the main product in the preparation of derivatives ofoxazolyl carboxylic acid. The molecular structure of (I) (Fig. 1) contains no crystallographically imposed symmetry. The pyridine and oxazole rings in each of the ligands are not coplanar, the dihedral angle formed by the least-squares planes of the benzene and pyrazole rings being equal to 8.8°. Analysis of the crystal packing of (I) shows the existence of N3—H3···O2 interactions, as shown in Fig. 2.