organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

11-[(E)-Benzyl­­idene]-14-hy­dr­oxy-8-phenyl-3,13-di­aza­hepta­cyclo­[13.7.1.19,13.02,9.02,14.03,7.019,23]tetra­cosa-1(22),15,17,19(23),20-pentaen-10-one

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 22 October 2010; accepted 27 October 2010; online 6 November 2010)

In the title compound, C35H30N2O2, the piperidine ring adopts a chair conformation and the pyrrolidine ring adopts an envelope conformation. The naphthalene ring makes dihedral angles of 24.56 (3) and 36.13 (4)° with the terminal phenyl rings. The dihedral angle between the two terminal phenyl rings is 55.27 (5)°. One of the C atoms in the pyrrolidine ring is disordered over two sites, with a refined occupany ratio of 0.670 (3):0.330 (3). An intra­molecular O—H⋯N hydrogen bond generates an S(6) ring. In the crystal structure, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R22(18) loops within sheets of mol­ecules lying parallel to the bc plane.

Related literature

For the details of cyclo­addition reactions, see: Padwa (1984[Padwa, A. (1984). Editor. 1,3-Dipolar Cycloaddition Chemistry, Vols. 1 and 2. New York: Wiley.]); Grigg & Sridharan (1993[Grigg, R. & Sridharan, V. (1993). In Advances in Cycloaddition, edited by D. P. Curran, p. 161. London: Jai Press.]); Monlineux (1987[Monlineux, R. J. (1987). Alkaloids: Chemical and Biological Perspective, edited by S. W. Pelletier, ch. 1. New York: Wiley.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C35H30N2O2

  • Mr = 510.61

  • Monoclinic, P 21 /c

  • a = 11.2264 (19) Å

  • b = 15.600 (3) Å

  • c = 15.031 (3) Å

  • β = 93.927 (5)°

  • V = 2626.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.50 × 0.39 × 0.12 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.961, Tmax = 0.991

  • 44214 measured reflections

  • 11860 independent reflections

  • 9771 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.145

  • S = 1.10

  • 11860 reflections

  • 366 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯N2 0.877 (18) 1.942 (18) 2.6134 (11) 132.2 (15)
C35—H35A⋯O2i 0.93 2.54 3.3159 (13) 142
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The intermolecular [3+2]-cycloaddition of azomethine ylides with olefinic dipolarophiles affords a number of novel heterocyclic scaffolds which are useful for the creation of diverse chemical libraries of drug-like molecules for biological screening (Padwa, 1984; Grigg & Sridharan, 1993). Functionalized pyrrolizidines are the central skeleton for numerous alkaloids and constitute classes of compounds with significant biological activity (Monlineux, 1987). In view of the biological significance of pyrrolizidines, the crystal structure determination of the title compound was carried out and the results are presented here.

The molecular structure of the title compound is shown in Fig. 1. The piperidine (N1/C8–C12) ring adopts a chair conformation [Q = 0.6060 (8) Å, θ = 141.15 (8)°, φ = 236.37 (12)°; Cremer & Pople, 1975]. The pyrrolidine ring, one of the C atom (C26) disordered over two sites with a refined occupancy ratio of 0.670 (3):0.330 (3). The major (N2/C25/C26A/C27/C28) and minor (N2/C25/C26B/C27/C28) disordered pyrrolidine rings adopt the same conformation, that is the envelope conformation; puckering parameters Q(2) = 0.3547 (12) Å, φ = 257.52 (15)° for major disordered component and Q(2) = 0.3237 (17) Å, φ = 67.7 (2)° for minor disordered component. The naphthalene (C14–22/24) ring makes dihedral angles of 24.56 (3)° and 36.13 4)° with the terminal phenyl (C1–C6)/(C30–C35) rings. The dihedral angle between the two terminal phenyl rings (C1–C6) and (C30–C35) is 55.27 (5)°.

In the crystal packing (Fig. 2), adjacent molecules are connected by intramolecular O2—H1O2···N2 and intermolecular C35—H35A···O2 (Table 1) hydrogen bonds, forming dimers lying on sheets parallel to the bc plane.

Related literature top

For the details of cycloaddition reactions, see: Padwa (1984); Grigg & Sridharan (1993); Monlineux (1987). For puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 3,5-bis[(E)-phenylmethylidene]tetrahydro-4(1H)-pyridinone (0.100 g, 0.363 mmol), acenaphthenequinone (0.066 g, 0.363 mmol) and proline (0.042 g, 0.363 mmol) were dissolved in methanol (5 ml) and refluxed for 30 min. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml). The precipitated solid was filtered and washed with water to afford the product which was recrystallised from ethyl acetate to reveal the title compound as colourless plates.

Refinement top

The hydroxyl H atom H1O2 was located from a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically [C—H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C). One of the C atom (C26) of the pyrrolidine ring and the associated H atoms H25A, H25B, H26A, H26B, H27A and H27B disordered over two sites with a refined occupancy ratio of 0.670 (3):0.330 (3).

Structure description top

The intermolecular [3+2]-cycloaddition of azomethine ylides with olefinic dipolarophiles affords a number of novel heterocyclic scaffolds which are useful for the creation of diverse chemical libraries of drug-like molecules for biological screening (Padwa, 1984; Grigg & Sridharan, 1993). Functionalized pyrrolizidines are the central skeleton for numerous alkaloids and constitute classes of compounds with significant biological activity (Monlineux, 1987). In view of the biological significance of pyrrolizidines, the crystal structure determination of the title compound was carried out and the results are presented here.

The molecular structure of the title compound is shown in Fig. 1. The piperidine (N1/C8–C12) ring adopts a chair conformation [Q = 0.6060 (8) Å, θ = 141.15 (8)°, φ = 236.37 (12)°; Cremer & Pople, 1975]. The pyrrolidine ring, one of the C atom (C26) disordered over two sites with a refined occupancy ratio of 0.670 (3):0.330 (3). The major (N2/C25/C26A/C27/C28) and minor (N2/C25/C26B/C27/C28) disordered pyrrolidine rings adopt the same conformation, that is the envelope conformation; puckering parameters Q(2) = 0.3547 (12) Å, φ = 257.52 (15)° for major disordered component and Q(2) = 0.3237 (17) Å, φ = 67.7 (2)° for minor disordered component. The naphthalene (C14–22/24) ring makes dihedral angles of 24.56 (3)° and 36.13 4)° with the terminal phenyl (C1–C6)/(C30–C35) rings. The dihedral angle between the two terminal phenyl rings (C1–C6) and (C30–C35) is 55.27 (5)°.

In the crystal packing (Fig. 2), adjacent molecules are connected by intramolecular O2—H1O2···N2 and intermolecular C35—H35A···O2 (Table 1) hydrogen bonds, forming dimers lying on sheets parallel to the bc plane.

For the details of cycloaddition reactions, see: Padwa (1984); Grigg & Sridharan (1993); Monlineux (1987). For puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids (H atoms are omitted for clarity). Dotted lines represents the disorder component.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) dimers. H atoms are not involving the hydrogen bond interactions are omitted for clarity.
11-[(E)-Benzylidene]-14-hydroxy-8-phenyl-3,13- diazaheptacyclo[13.7.1.19,13.02,9.02,14.03,7.019,23]tetracosa- 1(22),15,17,19(23),20-pentaen-10-one top
Crystal data top
C35H30N2O2F(000) = 1080
Mr = 510.61Dx = 1.291 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9930 reflections
a = 11.2264 (19) Åθ = 2.7–35.4°
b = 15.600 (3) ŵ = 0.08 mm1
c = 15.031 (3) ÅT = 100 K
β = 93.927 (5)°Plate, colourless
V = 2626.2 (8) Å30.50 × 0.39 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD
diffractometer
11860 independent reflections
Radiation source: fine-focus sealed tube9771 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 35.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1817
Tmin = 0.961, Tmax = 0.991k = 2525
44214 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0795P)2 + 0.4943P]
where P = (Fo2 + 2Fc2)/3
11860 reflections(Δ/σ)max = 0.001
366 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C35H30N2O2V = 2626.2 (8) Å3
Mr = 510.61Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2264 (19) ŵ = 0.08 mm1
b = 15.600 (3) ÅT = 100 K
c = 15.031 (3) Å0.50 × 0.39 × 0.12 mm
β = 93.927 (5)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
11860 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
9771 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.991Rint = 0.027
44214 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.56 e Å3
11860 reflectionsΔρmin = 0.43 e Å3
366 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.17017 (5)0.82679 (4)1.03805 (4)0.01641 (11)
O20.08100 (6)0.56861 (4)0.87384 (4)0.01734 (11)
N10.08145 (6)0.63805 (4)1.01254 (4)0.01357 (11)
N20.13097 (6)0.63195 (4)0.83198 (4)0.01472 (12)
C10.22693 (8)0.98132 (6)1.04040 (7)0.02372 (17)
H1A0.17151.01001.00240.028*
C20.34217 (9)1.01357 (7)1.05405 (8)0.0296 (2)
H2A0.36381.06321.02490.035*
C30.42518 (9)0.97128 (8)1.11159 (8)0.0305 (2)
H3A0.50290.99191.11990.037*
C40.39160 (9)0.89812 (7)1.15656 (7)0.02777 (19)
H4A0.44650.87071.19600.033*
C50.27640 (8)0.86573 (6)1.14284 (6)0.02156 (16)
H5A0.25450.81701.17340.026*
C60.19310 (7)0.90631 (5)1.08312 (5)0.01729 (14)
C70.07160 (7)0.87336 (5)1.06380 (5)0.01624 (13)
H7A0.01150.91421.05550.019*
C80.03709 (7)0.79064 (5)1.05664 (5)0.01353 (12)
C90.09132 (7)0.77452 (5)1.02769 (4)0.01271 (12)
C100.11593 (6)0.68998 (5)0.98022 (4)0.01195 (12)
C110.04233 (7)0.61895 (5)1.03138 (5)0.01437 (13)
H11A0.05260.62181.09490.017*
H11B0.06580.56251.00970.017*
C120.12122 (7)0.71385 (5)1.06502 (5)0.01484 (13)
H12A0.19870.73141.04660.018*
H12B0.13140.69751.12730.018*
C130.05607 (6)0.69047 (5)0.88921 (4)0.01160 (12)
C140.02779 (7)0.77725 (5)0.85018 (4)0.01251 (12)
C150.09918 (7)0.84537 (5)0.82280 (5)0.01555 (13)
H15A0.18140.84280.82690.019*
C160.04540 (8)0.91968 (5)0.78807 (5)0.01880 (14)
H16A0.09360.96560.76920.023*
C170.07616 (8)0.92554 (5)0.78155 (6)0.02024 (15)
H17A0.10850.97440.75730.024*
C180.15253 (8)0.85727 (5)0.81173 (5)0.01741 (14)
C190.27885 (8)0.85440 (6)0.81185 (6)0.02362 (17)
H19A0.31990.90050.78940.028*
C200.34140 (8)0.78384 (7)0.84497 (7)0.02464 (17)
H20A0.42410.78350.84400.030*
C210.28357 (7)0.71167 (6)0.88052 (6)0.01966 (15)
H21A0.32740.66500.90320.024*
C220.16109 (7)0.71277 (5)0.88051 (5)0.01407 (12)
C230.07360 (6)0.64942 (5)0.91446 (5)0.01248 (12)
C240.09706 (7)0.78439 (5)0.84559 (5)0.01361 (12)
C250.16597 (7)0.65570 (5)0.73850 (5)0.01698 (14)
H25A0.15110.60880.69840.020*0.670 (3)
H25B0.12200.70570.72070.020*0.670 (3)
H25C0.10850.63500.69920.020*0.330 (3)
H25D0.17270.71680.73210.020*0.330 (3)
C26A0.29771 (12)0.67498 (9)0.73760 (9)0.0215 (3)0.670 (3)
H26A0.31120.73380.75530.026*0.670 (3)
H26B0.33660.66550.67880.026*0.670 (3)
C26B0.2896 (2)0.61090 (17)0.71830 (17)0.0182 (6)0.330 (3)
H26C0.33820.64210.67340.022*0.330 (3)
H26D0.27960.55240.69820.022*0.330 (3)
C270.34291 (9)0.61299 (8)0.80440 (6)0.02674 (19)
H27A0.35910.55730.77750.032*0.670 (3)
H27B0.41520.63430.82860.032*0.670 (3)
H27C0.39630.56540.80920.032*0.330 (3)
H27D0.38700.66510.81070.032*0.330 (3)
C280.24037 (8)0.60765 (6)0.87702 (5)0.01829 (14)
H28A0.23290.54910.90030.022*
C290.24766 (7)0.67195 (5)0.95408 (5)0.01499 (13)
H29A0.28250.72490.92870.018*
C300.32410 (7)0.64389 (6)1.02785 (6)0.01837 (14)
C310.41977 (9)0.69454 (7)1.04970 (9)0.0308 (2)
H31A0.43630.74521.01860.037*
C320.49117 (13)0.67017 (9)1.11779 (12)0.0489 (4)
H32A0.55640.70361.13060.059*
C330.46481 (14)0.59586 (9)1.16659 (11)0.0487 (4)
H33A0.51040.58091.21360.058*
C340.37055 (11)0.54436 (8)1.14494 (8)0.0341 (2)
H34A0.35300.49451.17710.041*
C350.30215 (8)0.56737 (6)1.07490 (6)0.02335 (17)
H35A0.24100.53141.05910.028*
H1O20.0112 (16)0.5609 (11)0.8451 (11)0.041 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0155 (2)0.0171 (3)0.0168 (2)0.0037 (2)0.00198 (18)0.00054 (19)
O20.0203 (3)0.0111 (2)0.0206 (2)0.0022 (2)0.0013 (2)0.00293 (19)
N10.0143 (3)0.0133 (3)0.0130 (2)0.0012 (2)0.00077 (19)0.0022 (2)
N20.0183 (3)0.0137 (3)0.0118 (2)0.0034 (2)0.0016 (2)0.0009 (2)
C10.0191 (3)0.0191 (4)0.0326 (4)0.0010 (3)0.0010 (3)0.0005 (3)
C20.0227 (4)0.0256 (4)0.0404 (5)0.0068 (3)0.0019 (4)0.0011 (4)
C30.0177 (4)0.0324 (5)0.0409 (5)0.0049 (4)0.0014 (3)0.0099 (4)
C40.0200 (4)0.0298 (5)0.0321 (4)0.0006 (3)0.0086 (3)0.0081 (4)
C50.0203 (4)0.0218 (4)0.0217 (3)0.0003 (3)0.0058 (3)0.0034 (3)
C60.0152 (3)0.0164 (3)0.0200 (3)0.0005 (3)0.0006 (2)0.0036 (3)
C70.0147 (3)0.0164 (3)0.0175 (3)0.0013 (2)0.0001 (2)0.0020 (2)
C80.0137 (3)0.0159 (3)0.0110 (2)0.0015 (2)0.0001 (2)0.0005 (2)
C90.0142 (3)0.0141 (3)0.0098 (2)0.0008 (2)0.0010 (2)0.0013 (2)
C100.0121 (3)0.0125 (3)0.0114 (2)0.0001 (2)0.0016 (2)0.0025 (2)
C110.0151 (3)0.0142 (3)0.0140 (3)0.0013 (2)0.0019 (2)0.0043 (2)
C120.0151 (3)0.0161 (3)0.0130 (3)0.0022 (2)0.0015 (2)0.0004 (2)
C130.0136 (3)0.0103 (3)0.0109 (2)0.0005 (2)0.0008 (2)0.0011 (2)
C140.0163 (3)0.0108 (3)0.0105 (2)0.0006 (2)0.0017 (2)0.0011 (2)
C150.0196 (3)0.0126 (3)0.0145 (3)0.0010 (3)0.0015 (2)0.0025 (2)
C160.0274 (4)0.0122 (3)0.0170 (3)0.0005 (3)0.0023 (3)0.0032 (2)
C170.0283 (4)0.0135 (3)0.0193 (3)0.0046 (3)0.0044 (3)0.0032 (3)
C180.0217 (3)0.0147 (3)0.0163 (3)0.0046 (3)0.0048 (3)0.0007 (2)
C190.0218 (4)0.0227 (4)0.0273 (4)0.0073 (3)0.0087 (3)0.0021 (3)
C200.0174 (3)0.0276 (4)0.0299 (4)0.0039 (3)0.0080 (3)0.0006 (3)
C210.0154 (3)0.0216 (4)0.0224 (3)0.0003 (3)0.0048 (3)0.0000 (3)
C220.0149 (3)0.0139 (3)0.0137 (3)0.0007 (2)0.0033 (2)0.0005 (2)
C230.0139 (3)0.0107 (3)0.0130 (3)0.0011 (2)0.0017 (2)0.0004 (2)
C240.0167 (3)0.0127 (3)0.0117 (3)0.0017 (2)0.0033 (2)0.0001 (2)
C250.0201 (3)0.0179 (3)0.0125 (3)0.0013 (3)0.0019 (2)0.0005 (2)
C26A0.0201 (6)0.0247 (6)0.0188 (5)0.0008 (5)0.0056 (4)0.0012 (4)
C26B0.0161 (10)0.0180 (11)0.0195 (10)0.0012 (8)0.0047 (8)0.0021 (8)
C270.0202 (4)0.0373 (5)0.0221 (4)0.0118 (4)0.0034 (3)0.0006 (3)
C280.0199 (3)0.0182 (3)0.0166 (3)0.0075 (3)0.0004 (2)0.0017 (3)
C290.0131 (3)0.0144 (3)0.0173 (3)0.0014 (2)0.0004 (2)0.0038 (2)
C300.0142 (3)0.0175 (3)0.0240 (3)0.0006 (3)0.0051 (3)0.0033 (3)
C310.0219 (4)0.0220 (4)0.0503 (6)0.0045 (3)0.0163 (4)0.0079 (4)
C320.0400 (6)0.0308 (6)0.0813 (10)0.0099 (5)0.0427 (7)0.0110 (6)
C330.0506 (7)0.0319 (6)0.0694 (9)0.0048 (5)0.0468 (7)0.0116 (6)
C340.0356 (5)0.0275 (5)0.0420 (5)0.0024 (4)0.0236 (5)0.0128 (4)
C350.0209 (4)0.0215 (4)0.0291 (4)0.0019 (3)0.0114 (3)0.0082 (3)
Geometric parameters (Å, º) top
O1—C91.2213 (9)C18—C191.4188 (13)
O2—C231.4056 (9)C19—C201.3801 (15)
O2—H1O20.877 (18)C19—H19A0.9300
N1—C111.4677 (10)C20—C211.4222 (13)
N1—C121.4737 (10)C20—H20A0.9300
N1—C231.4814 (10)C21—C221.3751 (11)
N2—C131.4768 (10)C21—H21A0.9300
N2—C251.4800 (10)C22—C241.4103 (11)
N2—C281.4914 (11)C22—C231.5068 (11)
C1—C21.3901 (13)C25—C26A1.5083 (16)
C1—C61.3998 (13)C25—C26B1.565 (3)
C1—H1A0.9300C25—H25A0.9700
C2—C31.3932 (16)C25—H25B0.9700
C2—H2A0.9300C25—H25C0.9600
C3—C41.3917 (17)C25—H25D0.9600
C3—H3A0.9300C26A—C271.5068 (17)
C4—C51.3906 (13)C26A—H25D1.5542
C4—H4A0.9300C26A—H26A0.9700
C5—C61.4022 (12)C26A—H26B0.9700
C5—H5A0.9300C26A—H27D1.5449
C6—C71.4679 (11)C26B—C271.463 (3)
C7—C81.3497 (12)C26B—H26C0.9700
C7—H7A0.9300C26B—H26D0.9700
C8—C91.4982 (11)C27—C281.5334 (12)
C8—C121.5253 (11)C27—H27A0.9700
C9—C101.5158 (11)C27—H27B0.9700
C10—C291.5299 (11)C27—H27C0.9600
C10—C111.5540 (10)C27—H27D0.9600
C10—C131.5650 (10)C28—C291.5387 (12)
C11—H11A0.9700C28—H28A0.9800
C11—H11B0.9700C29—C301.5125 (11)
C12—H12A0.9700C29—H29A0.9800
C12—H12B0.9700C30—C311.3907 (13)
C13—C141.5178 (10)C30—C351.4009 (12)
C13—C231.6117 (11)C31—C321.3953 (16)
C14—C151.3769 (11)C31—H31A0.9300
C14—C241.4124 (11)C32—C331.393 (2)
C15—C161.4226 (12)C32—H32A0.9300
C15—H15A0.9300C33—C341.3850 (17)
C16—C171.3779 (13)C33—H33A0.9300
C16—H16A0.9300C34—C351.3918 (13)
C17—C181.4218 (13)C34—H34A0.9300
C17—H17A0.9300C35—H35A0.9300
C18—C241.4082 (11)
C23—O2—H1O2105.1 (11)N2—C25—C26A104.76 (7)
C11—N1—C12108.40 (6)N2—C25—C26B104.28 (11)
C11—N1—C23102.93 (6)C26A—C25—C26B39.77 (11)
C12—N1—C23115.58 (6)N2—C25—H25A110.8
C13—N2—C25120.12 (6)C26A—C25—H25A110.8
C13—N2—C28110.27 (6)C26B—C25—H25A74.3
C25—N2—C28108.73 (6)N2—C25—H25B110.8
C2—C1—C6120.92 (9)C26A—C25—H25B110.8
C2—C1—H1A119.5C26B—C25—H25B140.1
C6—C1—H1A119.5H25A—C25—H25B108.9
C1—C2—C3119.76 (10)N2—C25—H25C110.8
C1—C2—H2A120.1C26A—C25—H25C139.6
C3—C2—H2A120.1C26B—C25—H25C110.8
C4—C3—C2119.86 (9)H25A—C25—H25C38.1
C4—C3—H3A120.1H25B—C25—H25C74.0
C2—C3—H3A120.1N2—C25—H25D110.9
C5—C4—C3120.40 (9)C26A—C25—H25D74.4
C5—C4—H4A119.8C26B—C25—H25D111.2
C3—C4—H4A119.8H25A—C25—H25D134.7
C4—C5—C6120.24 (9)H25B—C25—H25D38.2
C4—C5—H5A119.9H25C—C25—H25D108.9
C6—C5—H5A119.9C27—C26A—C25103.94 (9)
C1—C6—C5118.76 (8)C27—C26A—H25D130.6
C1—C6—C7118.66 (8)C25—C26A—H25D36.5
C5—C6—C7122.58 (8)C27—C26A—H26A111.0
C8—C7—C6127.48 (7)C25—C26A—H26A111.0
C8—C7—H7A116.3H25D—C26A—H26A77.1
C6—C7—H7A116.3C27—C26A—H26B111.0
C7—C8—C9116.67 (7)C25—C26A—H26B111.0
C7—C8—C12124.86 (7)H25D—C26A—H26B111.6
C9—C8—C12118.05 (7)H26A—C26A—H26B109.0
O1—C9—C8122.84 (7)C27—C26A—H27D36.6
O1—C9—C10122.04 (7)C25—C26A—H27D131.1
C8—C9—C10115.05 (6)H25D—C26A—H27D135.4
C9—C10—C29115.01 (6)H26A—C26A—H27D77.2
C9—C10—C11108.29 (6)H26B—C26A—H27D111.0
C29—C10—C11117.89 (6)C27—C26B—C25103.27 (15)
C9—C10—C13109.39 (6)C27—C26B—H26C111.1
C29—C10—C13103.99 (6)C25—C26B—H26C111.1
C11—C10—C13100.97 (6)C27—C26B—H26D111.1
N1—C11—C10103.78 (6)C25—C26B—H26D111.1
N1—C11—H11A111.0H26C—C26B—H26D109.1
C10—C11—H11A111.0C26B—C27—C26A41.24 (12)
N1—C11—H11B111.0C26B—C27—C28107.20 (12)
C10—C11—H11B111.0C26A—C27—C28103.80 (8)
H11A—C11—H11B109.0C26B—C27—H27A71.8
N1—C12—C8115.01 (6)C26A—C27—H27A111.0
N1—C12—H12A108.5C28—C27—H27A111.0
C8—C12—H12A108.5C26B—C27—H27B137.9
N1—C12—H12B108.5C26A—C27—H27B111.0
C8—C12—H12B108.5C28—C27—H27B111.0
H12A—C12—H12B107.5H27A—C27—H27B109.0
N2—C13—C14116.88 (6)C26B—C27—H27C110.1
N2—C13—C10104.16 (6)C26A—C27—H27C141.9
C14—C13—C10117.12 (6)C28—C27—H27C110.3
N2—C13—C23111.14 (6)H27A—C27—H27C40.5
C14—C13—C23103.65 (6)H27B—C27—H27C72.2
C10—C13—C23103.13 (5)C26B—C27—H27D110.5
C15—C14—C24118.93 (7)C26A—C27—H27D73.8
C15—C14—C13132.16 (7)C28—C27—H27D110.1
C24—C14—C13108.89 (6)H27A—C27—H27D135.7
C14—C15—C16119.05 (8)H27B—C27—H27D39.0
C14—C15—H15A120.5H27C—C27—H27D108.5
C16—C15—H15A120.5N2—C28—C27105.34 (7)
C17—C16—C15121.83 (8)N2—C28—C29105.30 (6)
C17—C16—H16A119.1C27—C28—C29115.11 (8)
C15—C16—H16A119.1N2—C28—H28A110.3
C16—C17—C18120.41 (7)C27—C28—H28A110.3
C16—C17—H17A119.8C29—C28—H28A110.3
C18—C17—H17A119.8C30—C29—C10116.86 (6)
C24—C18—C19116.15 (8)C30—C29—C28115.17 (7)
C24—C18—C17116.62 (8)C10—C29—C28102.30 (6)
C19—C18—C17127.22 (8)C30—C29—H29A107.3
C20—C19—C18120.63 (8)C10—C29—H29A107.3
C20—C19—H19A119.7C28—C29—H29A107.3
C18—C19—H19A119.7C31—C30—C35118.49 (8)
C19—C20—C21122.20 (8)C31—C30—C29119.66 (8)
C19—C20—H20A118.9C35—C30—C29121.85 (7)
C21—C20—H20A118.9C30—C31—C32120.68 (10)
C22—C21—C20118.18 (8)C30—C31—H31A119.7
C22—C21—H21A120.9C32—C31—H31A119.7
C20—C21—H21A120.9C33—C32—C31120.06 (10)
C21—C22—C24119.61 (7)C33—C32—H32A120.0
C21—C22—C23131.81 (7)C31—C32—H32A120.0
C24—C22—C23108.56 (6)C34—C33—C32119.82 (10)
O2—C23—N1108.88 (6)C34—C33—H33A120.1
O2—C23—C22112.45 (6)C32—C33—H33A120.1
N1—C23—C22114.82 (6)C33—C34—C35119.88 (10)
O2—C23—C13109.47 (6)C33—C34—H34A120.1
N1—C23—C13105.85 (5)C35—C34—H34A120.1
C22—C23—C13105.00 (6)C34—C35—C30120.96 (9)
C18—C24—C22123.19 (7)C34—C35—H35A119.5
C18—C24—C14123.10 (7)C30—C35—H35A119.5
C22—C24—C14113.68 (7)
C6—C1—C2—C30.56 (16)C21—C22—C23—O259.02 (11)
C1—C2—C3—C41.41 (17)C24—C22—C23—O2122.53 (7)
C2—C3—C4—C51.53 (16)C21—C22—C23—N166.21 (11)
C3—C4—C5—C60.32 (15)C24—C22—C23—N1112.24 (7)
C2—C1—C6—C52.38 (14)C21—C22—C23—C13177.98 (8)
C2—C1—C6—C7177.78 (9)C24—C22—C23—C133.58 (7)
C4—C5—C6—C12.26 (13)N2—C13—C23—O20.75 (8)
C4—C5—C6—C7177.92 (8)C14—C13—C23—O2125.60 (6)
C1—C6—C7—C8143.04 (9)C10—C13—C23—O2111.82 (6)
C5—C6—C7—C837.13 (13)N2—C13—C23—N1116.46 (6)
C6—C7—C8—C9174.29 (7)C14—C13—C23—N1117.19 (6)
C6—C7—C8—C121.87 (13)C10—C13—C23—N15.38 (7)
C7—C8—C9—O124.09 (10)N2—C13—C23—C22121.68 (6)
C12—C8—C9—O1162.95 (7)C14—C13—C23—C224.67 (7)
C7—C8—C9—C10153.03 (7)C10—C13—C23—C22127.25 (6)
C12—C8—C9—C1019.93 (9)C19—C18—C24—C221.84 (11)
O1—C9—C10—C295.24 (10)C17—C18—C24—C22177.97 (7)
C8—C9—C10—C29177.62 (6)C19—C18—C24—C14179.91 (7)
O1—C9—C10—C11139.50 (7)C17—C18—C24—C140.10 (11)
C8—C9—C10—C1143.36 (8)C21—C22—C24—C181.44 (11)
O1—C9—C10—C13111.30 (8)C23—C22—C24—C18177.23 (7)
C8—C9—C10—C1365.84 (7)C21—C22—C24—C14179.67 (7)
C12—N1—C11—C1074.18 (7)C23—C22—C24—C141.01 (9)
C23—N1—C11—C1048.73 (7)C15—C14—C24—C181.93 (11)
C9—C10—C11—N170.69 (7)C13—C14—C24—C18179.51 (7)
C29—C10—C11—N1156.57 (6)C15—C14—C24—C22176.31 (7)
C13—C10—C11—N144.16 (7)C13—C14—C24—C222.25 (8)
C11—N1—C12—C850.47 (8)C13—N2—C25—C26A109.04 (9)
C23—N1—C12—C864.41 (8)C28—N2—C25—C26A19.26 (10)
C7—C8—C12—N1149.86 (7)C13—N2—C25—C26B150.18 (12)
C9—C8—C12—N122.46 (9)C28—N2—C25—C26B21.88 (13)
C25—N2—C13—C145.38 (10)N2—C25—C26A—C2734.34 (11)
C28—N2—C13—C14122.22 (7)C26B—C25—C26A—C2760.38 (17)
C25—N2—C13—C10136.30 (7)N2—C25—C26B—C2732.81 (17)
C28—N2—C13—C108.70 (8)C26A—C25—C26B—C2763.23 (16)
C25—N2—C13—C23113.28 (7)C25—C26B—C27—C26A60.14 (14)
C28—N2—C13—C23119.12 (7)C25—C26B—C27—C2831.32 (17)
C9—C10—C13—N2152.17 (6)C25—C26A—C27—C26B64.47 (16)
C29—C10—C13—N228.84 (7)C25—C26A—C27—C2836.01 (11)
C11—C10—C13—N293.80 (6)C13—N2—C28—C27136.76 (7)
C9—C10—C13—C1421.40 (8)C25—N2—C28—C273.12 (9)
C29—C10—C13—C14101.93 (7)C13—N2—C28—C2914.67 (8)
C11—C10—C13—C14135.42 (6)C25—N2—C28—C29118.97 (7)
C9—C10—C13—C2391.67 (6)C26B—C27—C28—N218.50 (14)
C29—C10—C13—C23145.00 (6)C26A—C27—C28—N224.23 (11)
C11—C10—C13—C2322.35 (7)C26B—C27—C28—C29134.01 (13)
N2—C13—C14—C1563.31 (10)C26A—C27—C28—C2991.28 (10)
C10—C13—C14—C1561.28 (10)C9—C10—C29—C3076.41 (8)
C23—C13—C14—C15174.06 (8)C11—C10—C29—C3053.29 (9)
N2—C13—C14—C24118.39 (7)C13—C10—C29—C30164.01 (7)
C10—C13—C14—C24117.01 (7)C9—C10—C29—C28156.84 (6)
C23—C13—C14—C244.23 (7)C11—C10—C29—C2873.46 (8)
C24—C14—C15—C162.02 (11)C13—C10—C29—C2837.26 (7)
C13—C14—C15—C16179.82 (7)N2—C28—C29—C30159.99 (6)
C14—C15—C16—C170.37 (12)C27—C28—C29—C3084.47 (9)
C15—C16—C17—C181.50 (13)N2—C28—C29—C1032.16 (7)
C16—C17—C18—C241.59 (12)C27—C28—C29—C10147.69 (7)
C16—C17—C18—C19178.19 (8)C10—C29—C30—C31117.65 (10)
C24—C18—C19—C200.95 (13)C28—C29—C30—C31122.23 (10)
C17—C18—C19—C20178.83 (9)C10—C29—C30—C3562.92 (11)
C18—C19—C20—C210.31 (15)C28—C29—C30—C3557.20 (11)
C19—C20—C21—C220.76 (14)C35—C30—C31—C320.86 (18)
C20—C21—C22—C240.09 (12)C29—C30—C31—C32179.69 (12)
C20—C21—C22—C23178.21 (8)C30—C31—C32—C332.0 (2)
C11—N1—C23—O284.67 (7)C31—C32—C33—C342.7 (3)
C12—N1—C23—O2157.36 (6)C32—C33—C34—C350.4 (2)
C11—N1—C23—C22148.26 (6)C33—C34—C35—C302.5 (2)
C12—N1—C23—C2230.29 (9)C31—C30—C35—C343.16 (16)
C11—N1—C23—C1332.94 (7)C29—C30—C35—C34177.41 (10)
C12—N1—C23—C1385.03 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N20.877 (18)1.942 (18)2.6134 (11)132.2 (15)
C35—H35A···O2i0.932.543.3159 (13)142
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC35H30N2O2
Mr510.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.2264 (19), 15.600 (3), 15.031 (3)
β (°) 93.927 (5)
V3)2626.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.39 × 0.12
Data collection
DiffractometerBruker APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.961, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
44214, 11860, 9771
Rint0.027
(sin θ/λ)max1)0.816
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.145, 1.10
No. of reflections11860
No. of parameters366
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.43

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N20.877 (18)1.942 (18)2.6134 (11)132.2 (15)
C35—H35A···O2i0.932.543.3159 (13)142
Symmetry code: (i) x, y+1, z+2.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The synthetic chemistry work was funded by Universiti Sains Malaysia (USM) under a University Research Grant (1001/PKIMIA/811133) and RSK thanks Universiti Sains Malaysia for the award of postdoctoral fellowship. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for a Research University Grant (No. 1001/PFIZIK/811160). MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGrigg, R. & Sridharan, V. (1993). In Advances in Cycloaddition, edited by D. P. Curran, p. 161. London: Jai Press.  Google Scholar
First citationMonlineux, R. J. (1987). Alkaloids: Chemical and Biological Perspective, edited by S. W. Pelletier, ch. 1. New York: Wiley.  Google Scholar
First citationPadwa, A. (1984). Editor. 1,3-Dipolar Cycloaddition Chemistry, Vols. 1 and 2. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds