organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(2-Fur­yl)-3-(3,4,5-trimeth­­oxy­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 28 October 2010; accepted 31 October 2010; online 6 November 2010)

The title mol­ecule, C16H16O5, is twisted; the dihedral angle between the furan and 3,4,5-trimeth­oxy­phenyl rings is 12.14 (13)°. The two meth­oxy groups at the meta positions of the benzene ring are close to being coplanar with the ring [C—O—C—C = −0.6 (3) and 1.4 (3)°], whereas the third meth­oxy group, at the para position, is (+)-anti­clinal with respect to the benzene ring [C—O—C—C = 104.9 (2)°]. In the crystal, mol­ecules are linked by weak C—H⋯O bonds to stack along the b axis and further C—H⋯O inter­actions consolidate the structure.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Fun et al. (2010[Fun, H.-K., Suwunwong, T., Chantrapromma, S. & Karalai, C. (2010). Acta Cryst. E66, o2559-o2560.]); Suwunwong et al. (2009[Suwunwong, T., Chantrapromma, S., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o1575-o1576.]). For background to and applications of chalcones, see: Batovska et al. (2007[Batovska, D., Parushev, St., Slovova, A., Bankova, V., Tsvetkova, I., Ninova, M. & Najdenski, H. (2007). Eur. J. Med. Chem. 42, 87-92.]); Gu et al. (2009[Gu, B., Ji, W., Huang, X.-Q., Patil, P. S. & Dharmaprakash, S. M. (2009). Opt. Express, 17, 1126-1135.]); Jung et al. (2008[Jung, Y. J., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron, 27, 861-867.]); Prasad et al. (2008[Prasad, Y. R., Kumar, P. R., Smile, D. J. & Babu, P. A. (2008). ARKIVOC, 11, 266-276.]); Saxena et al. (2007[Saxena, H. O., Faridi, U., Kumar, J. K., Luqman, S., Darokar, M. P., Shanker, K., Chanotiya, C. S., Gupta, M. M. & Negi, A. S. (2007). Steroids, 72, 892-900.]); Tewtrakul et al. (2003[Tewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol, 25, 503-508.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16O5

  • Mr = 288.29

  • Orthorhombic, P n a 21

  • a = 24.2677 (4) Å

  • b = 3.9916 (1) Å

  • c = 14.0816 (2) Å

  • V = 1364.04 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.35 × 0.24 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.978

  • 17261 measured reflections

  • 2063 independent reflections

  • 1907 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.092

  • S = 1.06

  • 2063 reflections

  • 254 parameters

  • 1 restraint

  • All H-atom parameters refined

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯O1i 0.99 (3) 2.54 (3) 3.503 (3) 166 (2)
C15—H15B⋯O4ii 1.01 (3) 2.36 (3) 3.337 (3) 162 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones are known to exhibit bioactivity including antimicrobial (Prasad et al., 2008), antifungal (Batovska et al., 2007), anticancer (Saxena et al., 2007) and HIV-1 protease inhibitory (Tewtrakul et al., 2003), as well as Non Linear Optical (NLO) (Gu et al., 2009) and fluorescence properties (Jung et al., 2008). In our on-going research on antibacterial activities, NLO and fluorescence properties of aryl/heteroaryl chalcones, we previously reported the crystal structures of (E)-1-(2-furyl)-3-(2,4,6-trimethoxyphenyl)prop-2-en-1-one (I) (Fun et al., 2010) and (E)-1-(2-thienyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (II) (Suwunwong et al., 2009). The title compound (III) was synthesized and its crystal structure was determined in order to gain structural details to explain the affects of the substituent groups and their positions on the fluorescence properties and how their crystal packing would affect the NLO properties of the compounds. Compound (I) crystallized out in the centrosymmetric C2/c space group which prohibits second order NLO properties whereas compounds (II) and (III) crystallized in non-centrosymmetric Pna21 space group and should possess the second order NLO properties.

The molecule of the title heteroaryl chalcone (Fig. 1) exists in an E configuration with respect to the C6C7 double bond [1.340 (3) Å] with torsion angle C5–C6–C7–C8 = 174.83 (19)°. The molecule is twisted with the dihedral angle between the furan and 3,4,5-trimethoxyphenyl rings being 12.14 (13)°. The propenone unit (C5—C7/O1) is slightly deviated with the torsion angle O1–C5–C6–C7 = 8.0 (3)°. The three methoxy groups of the 3,4,5-trimethoxyphenyl unit have two different orientations: the two methoxy groups at the meta positions (at atom C10 and C12 positions) are co-planar with the attached benzene ring with torsion angles C14–O3–C10–C9 = -0.6 (3)° and C16–O5–C12–C13 = 1.4 (3)° whereas the third one at para position (at atom C11) is (+)-anti-clinally attached with the torsion angle C15–O4–C11—C10 = 104.9 (2)°. Otherwise, the bond distances in (III) are of normal values (Allen et al., 1987) and are comparable with the closely related structures (Fun et al., 2010; Suwunwong et al., 2009).

In the crystal (Fig. 2), the molecules are stacked into columns along the b axis and molecules within the stacks are linked by weak C15—H15B···O4 (Table 1) interactions.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2010); Suwunwong et al. (2009). For background and applications to chalcones, see: Batovska et al. (2007); Gu et al. (2009); Jung et al. (2008); Prasad et al. (2008); Saxena et al. (2007); Tewtrakul et al. (2003).

Experimental top

The title compound was synthesized by the condensation of 3,4,5-trimethoxybenzaldehyde (0.39 g, 2 mmol) in ethanol (15 ml) with 2-furyl methylketone (0.22 g, 2 mmol) in ethanol (15 ml) in the presence of 20% NaOH(aq) (5 ml). After stirring for 4 h, the resulting pale yellow solid appeared and was then collected by filtration, washed with distilled water and dried (69% yield). Pale yellow blocks of (III) were recrystalized from acetone/methanol (1:1 v/v) by the slow evaporation of the solvent at room temperature after several days, Mp. 420–421 K.

Refinement top

All H atoms were located in difference maps and refined isotropically. The highest residual electron density peak is located at 0.89 Å from C2 and the deepest hole is located at 0.70 Å from O2. A total of 1892 Friedel pairs were merged before final refinement.

Structure description top

Chalcones are known to exhibit bioactivity including antimicrobial (Prasad et al., 2008), antifungal (Batovska et al., 2007), anticancer (Saxena et al., 2007) and HIV-1 protease inhibitory (Tewtrakul et al., 2003), as well as Non Linear Optical (NLO) (Gu et al., 2009) and fluorescence properties (Jung et al., 2008). In our on-going research on antibacterial activities, NLO and fluorescence properties of aryl/heteroaryl chalcones, we previously reported the crystal structures of (E)-1-(2-furyl)-3-(2,4,6-trimethoxyphenyl)prop-2-en-1-one (I) (Fun et al., 2010) and (E)-1-(2-thienyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (II) (Suwunwong et al., 2009). The title compound (III) was synthesized and its crystal structure was determined in order to gain structural details to explain the affects of the substituent groups and their positions on the fluorescence properties and how their crystal packing would affect the NLO properties of the compounds. Compound (I) crystallized out in the centrosymmetric C2/c space group which prohibits second order NLO properties whereas compounds (II) and (III) crystallized in non-centrosymmetric Pna21 space group and should possess the second order NLO properties.

The molecule of the title heteroaryl chalcone (Fig. 1) exists in an E configuration with respect to the C6C7 double bond [1.340 (3) Å] with torsion angle C5–C6–C7–C8 = 174.83 (19)°. The molecule is twisted with the dihedral angle between the furan and 3,4,5-trimethoxyphenyl rings being 12.14 (13)°. The propenone unit (C5—C7/O1) is slightly deviated with the torsion angle O1–C5–C6–C7 = 8.0 (3)°. The three methoxy groups of the 3,4,5-trimethoxyphenyl unit have two different orientations: the two methoxy groups at the meta positions (at atom C10 and C12 positions) are co-planar with the attached benzene ring with torsion angles C14–O3–C10–C9 = -0.6 (3)° and C16–O5–C12–C13 = 1.4 (3)° whereas the third one at para position (at atom C11) is (+)-anti-clinally attached with the torsion angle C15–O4–C11—C10 = 104.9 (2)°. Otherwise, the bond distances in (III) are of normal values (Allen et al., 1987) and are comparable with the closely related structures (Fun et al., 2010; Suwunwong et al., 2009).

In the crystal (Fig. 2), the molecules are stacked into columns along the b axis and molecules within the stacks are linked by weak C15—H15B···O4 (Table 1) interactions.

For bond-length data, see: Allen et al. (1987). For hydrogen bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2010); Suwunwong et al. (2009). For background and applications to chalcones, see: Batovska et al. (2007); Gu et al. (2009); Jung et al. (2008); Prasad et al. (2008); Saxena et al. (2007); Tewtrakul et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (III), showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of (III), showing column along the b axis. C—H···O weak interactions are shown as dashed lines.
(E)-1-(2-Furyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C16H16O5Dx = 1.404 Mg m3
Mr = 288.29Melting point = 420–421 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2063 reflections
a = 24.2677 (4) Åθ = 2.2–30.0°
b = 3.9916 (1) ŵ = 0.11 mm1
c = 14.0816 (2) ÅT = 100 K
V = 1364.04 (5) Å3Block, pale yellow
Z = 40.35 × 0.24 × 0.21 mm
F(000) = 608
Data collection top
Bruker APEXII CCD
diffractometer
2063 independent reflections
Radiation source: sealed tube1907 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2934
Tmin = 0.965, Tmax = 0.978k = 55
17261 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.4265P]
where P = (Fo2 + 2Fc2)/3
2063 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 0.36 e Å3
1 restraintΔρmin = 0.22 e Å3
Crystal data top
C16H16O5V = 1364.04 (5) Å3
Mr = 288.29Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 24.2677 (4) ŵ = 0.11 mm1
b = 3.9916 (1) ÅT = 100 K
c = 14.0816 (2) Å0.35 × 0.24 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
2063 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1907 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.978Rint = 0.035
17261 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.092All H-atom parameters refined
S = 1.06Δρmax = 0.36 e Å3
2063 reflectionsΔρmin = 0.22 e Å3
254 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25005 (6)0.6063 (4)0.72174 (11)0.0251 (3)
O20.34121 (7)0.1635 (4)0.87377 (12)0.0271 (4)
O30.41052 (6)0.5004 (4)0.26993 (10)0.0181 (3)
O40.50168 (6)0.1761 (4)0.32189 (11)0.0181 (3)
O50.51882 (6)0.0146 (4)0.50322 (11)0.0190 (3)
C10.33965 (11)0.1379 (8)0.96954 (19)0.0333 (6)
H1A0.3722 (14)0.001 (7)0.995 (2)0.036 (8)*
C20.29645 (12)0.3011 (8)1.00503 (17)0.0342 (6)
H2A0.2846 (17)0.331 (11)1.057 (3)0.064 (13)*
C30.26677 (10)0.4471 (7)0.92549 (17)0.0247 (5)
H3A0.2426 (12)0.568 (8)0.922 (2)0.026 (8)*
C40.29621 (8)0.3538 (5)0.84793 (14)0.0171 (4)
C50.28952 (8)0.4380 (5)0.74728 (14)0.0168 (4)
C60.33353 (8)0.3224 (5)0.68267 (15)0.0171 (4)
H6A0.3628 (11)0.190 (7)0.709 (2)0.020 (6)*
C70.33640 (8)0.4294 (5)0.59260 (14)0.0167 (4)
H7A0.3082 (12)0.566 (7)0.570 (2)0.023 (7)*
C80.37985 (8)0.3565 (5)0.52384 (13)0.0155 (4)
C90.37237 (8)0.4630 (5)0.43008 (15)0.0154 (3)
H9A0.3401 (11)0.568 (7)0.410 (2)0.019 (6)*
C100.41374 (8)0.4064 (5)0.36290 (13)0.0143 (3)
C110.46246 (8)0.2434 (5)0.38936 (13)0.0145 (3)
C120.46971 (8)0.1383 (5)0.48394 (14)0.0151 (4)
C130.42857 (8)0.1923 (5)0.55057 (14)0.0155 (4)
H13A0.4332 (10)0.125 (6)0.615 (2)0.014 (6)*
C140.36071 (8)0.6651 (6)0.24098 (15)0.0189 (4)
H14C0.3554 (11)0.873 (7)0.274 (2)0.020 (7)*
H14B0.3290 (12)0.513 (7)0.248 (2)0.019 (7)*
H14A0.3628 (12)0.717 (7)0.177 (2)0.023 (7)*
C150.54913 (9)0.3915 (6)0.32550 (18)0.0224 (4)
H15A0.5639 (17)0.395 (12)0.393 (3)0.069 (13)*
H15B0.5367 (14)0.627 (8)0.309 (2)0.040 (9)*
H15C0.5741 (12)0.315 (8)0.277 (2)0.032 (8)*
C160.52677 (9)0.1308 (6)0.59880 (14)0.0198 (4)
H16A0.4975 (11)0.287 (7)0.617 (2)0.022 (7)*
H16B0.5618 (12)0.249 (7)0.598 (2)0.023 (7)*
H16C0.5293 (11)0.058 (8)0.645 (2)0.021 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0218 (7)0.0366 (8)0.0169 (7)0.0091 (7)0.0035 (6)0.0052 (7)
O20.0229 (7)0.0313 (9)0.0272 (9)0.0017 (7)0.0050 (6)0.0068 (7)
O30.0184 (7)0.0243 (7)0.0114 (6)0.0016 (6)0.0005 (5)0.0028 (5)
O40.0166 (6)0.0244 (7)0.0133 (6)0.0004 (6)0.0038 (5)0.0033 (6)
O50.0166 (6)0.0255 (7)0.0149 (7)0.0045 (6)0.0004 (5)0.0027 (6)
C10.0318 (12)0.0426 (15)0.0256 (12)0.0123 (11)0.0095 (9)0.0101 (10)
C20.0455 (15)0.0456 (15)0.0113 (9)0.0270 (12)0.0002 (10)0.0011 (10)
C30.0218 (9)0.0340 (12)0.0182 (10)0.0103 (10)0.0068 (8)0.0077 (9)
C40.0156 (8)0.0214 (9)0.0142 (9)0.0018 (7)0.0018 (7)0.0023 (7)
C50.0161 (8)0.0217 (9)0.0126 (8)0.0029 (7)0.0028 (7)0.0009 (7)
C60.0154 (8)0.0185 (9)0.0175 (9)0.0017 (7)0.0017 (7)0.0001 (8)
C70.0126 (8)0.0226 (10)0.0149 (8)0.0008 (7)0.0017 (7)0.0017 (7)
C80.0142 (8)0.0190 (9)0.0134 (8)0.0022 (7)0.0008 (6)0.0009 (7)
C90.0145 (7)0.0187 (9)0.0130 (8)0.0004 (7)0.0001 (7)0.0006 (7)
C100.0162 (8)0.0154 (8)0.0112 (8)0.0023 (7)0.0006 (7)0.0001 (7)
C110.0141 (7)0.0167 (8)0.0127 (8)0.0017 (7)0.0035 (6)0.0018 (7)
C120.0139 (8)0.0160 (9)0.0153 (9)0.0003 (7)0.0017 (6)0.0016 (7)
C130.0164 (8)0.0195 (9)0.0107 (8)0.0022 (7)0.0008 (7)0.0002 (7)
C140.0185 (9)0.0226 (10)0.0157 (9)0.0005 (8)0.0033 (7)0.0026 (8)
C150.0196 (9)0.0214 (10)0.0262 (10)0.0027 (8)0.0090 (8)0.0005 (9)
C160.0193 (9)0.0240 (10)0.0161 (9)0.0014 (8)0.0025 (8)0.0046 (8)
Geometric parameters (Å, º) top
O1—C51.224 (3)C7—C81.461 (3)
O2—C11.353 (3)C7—H7A0.93 (3)
O2—C41.379 (3)C8—C91.399 (3)
O3—C101.364 (2)C8—C131.403 (3)
O3—C141.435 (2)C9—C101.398 (3)
O4—C111.372 (2)C9—H9A0.93 (3)
O4—C151.438 (3)C10—C111.400 (3)
O5—C121.366 (2)C11—C121.407 (3)
O5—C161.437 (2)C12—C131.387 (3)
C1—C21.332 (5)C13—H13A0.96 (3)
C1—H1A1.03 (3)C14—H14C0.96 (3)
C2—C31.454 (4)C14—H14B0.99 (3)
C2—H2A0.80 (5)C14—H14A0.93 (3)
C3—C41.357 (3)C15—H15A1.02 (5)
C3—H3A0.76 (3)C15—H15B1.01 (3)
C4—C51.466 (3)C15—H15C0.96 (3)
C5—C61.477 (3)C16—H16A0.98 (3)
C6—C71.340 (3)C16—H16B0.97 (3)
C6—H6A0.96 (3)C16—H16C1.00 (3)
C1—O2—C4106.4 (2)O3—C10—C9124.33 (18)
C10—O3—C14116.54 (16)O3—C10—C11115.57 (17)
C11—O4—C15114.47 (16)C9—C10—C11120.10 (17)
C12—O5—C16116.60 (16)O4—C11—C10119.52 (17)
C2—C1—O2111.0 (2)O4—C11—C12120.68 (17)
C2—C1—H1A137.1 (19)C10—C11—C12119.74 (17)
O2—C1—H1A111.8 (19)O5—C12—C13124.26 (18)
C1—C2—C3107.3 (2)O5—C12—C11115.50 (17)
C1—C2—H2A135 (3)C13—C12—C11120.25 (17)
C3—C2—H2A118 (3)C12—C13—C8119.85 (18)
C4—C3—C2104.4 (2)C12—C13—H13A121.0 (15)
C4—C3—H3A122 (3)C8—C13—H13A119.1 (15)
C2—C3—H3A133 (3)O3—C14—H14C111.7 (17)
C3—C4—O2110.8 (2)O3—C14—H14B110.3 (16)
C3—C4—C5131.1 (2)H14C—C14—H14B112 (2)
O2—C4—C5117.99 (17)O3—C14—H14A109.5 (18)
O1—C5—C4119.79 (18)H14C—C14—H14A107 (3)
O1—C5—C6123.80 (19)H14B—C14—H14A106 (2)
C4—C5—C6116.36 (18)O4—C15—H15A109 (3)
C7—C6—C5121.40 (19)O4—C15—H15B107.9 (19)
C7—C6—H6A120.0 (17)H15A—C15—H15B108 (3)
C5—C6—H6A118.1 (17)O4—C15—H15C106.8 (19)
C6—C7—C8126.96 (19)H15A—C15—H15C116 (3)
C6—C7—H7A118.4 (18)H15B—C15—H15C109 (3)
C8—C7—H7A114.6 (18)O5—C16—H16A110.7 (17)
C9—C8—C13120.28 (17)O5—C16—H16B105.3 (17)
C9—C8—C7118.13 (18)H16A—C16—H16B109 (2)
C13—C8—C7121.57 (17)O5—C16—H16C111.9 (18)
C10—C9—C8119.77 (17)H16A—C16—H16C111 (2)
C10—C9—H9A118.2 (18)H16B—C16—H16C109 (2)
C8—C9—H9A122.0 (18)
C4—O2—C1—C20.1 (3)C14—O3—C10—C11179.43 (17)
O2—C1—C2—C30.1 (3)C8—C9—C10—O3179.95 (18)
C1—C2—C3—C40.1 (3)C8—C9—C10—C110.1 (3)
C2—C3—C4—O20.0 (2)C15—O4—C11—C10104.9 (2)
C2—C3—C4—C5175.9 (2)C15—O4—C11—C1277.7 (2)
C1—O2—C4—C30.1 (3)O3—C10—C11—O42.9 (3)
C1—O2—C4—C5176.5 (2)C9—C10—C11—O4177.11 (18)
C3—C4—C5—O14.4 (4)O3—C10—C11—C12179.71 (18)
O2—C4—C5—O1179.97 (19)C9—C10—C11—C120.3 (3)
C3—C4—C5—C6172.9 (2)C16—O5—C12—C131.4 (3)
O2—C4—C5—C62.7 (3)C16—O5—C12—C11178.70 (17)
O1—C5—C6—C78.0 (3)O4—C11—C12—O53.4 (3)
C4—C5—C6—C7169.2 (2)C10—C11—C12—O5179.21 (17)
C5—C6—C7—C8174.83 (19)O4—C11—C12—C13176.68 (18)
C6—C7—C8—C9173.3 (2)C10—C11—C12—C130.7 (3)
C6—C7—C8—C138.3 (3)O5—C12—C13—C8179.05 (18)
C13—C8—C9—C100.2 (3)C11—C12—C13—C80.8 (3)
C7—C8—C9—C10178.14 (18)C9—C8—C13—C120.6 (3)
C14—O3—C10—C90.6 (3)C7—C8—C13—C12177.69 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O1i0.99 (3)2.54 (3)3.503 (3)166 (2)
C15—H15B···O4ii1.01 (3)2.36 (3)3.337 (3)162 (2)
Symmetry codes: (i) x+1/2, y1/2, z1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H16O5
Mr288.29
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)24.2677 (4), 3.9916 (1), 14.0816 (2)
V3)1364.04 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.35 × 0.24 × 0.21
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.965, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
17261, 2063, 1907
Rint0.035
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.092, 1.06
No. of reflections2063
No. of parameters254
No. of restraints1
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.36, 0.22

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O1i0.99 (3)2.54 (3)3.503 (3)166 (2)
C15—H15B···O4ii1.01 (3)2.36 (3)3.337 (3)162 (2)
Symmetry codes: (i) x+1/2, y1/2, z1/2; (ii) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank the Thailand Research Fund (TRF) for the research grant (RSA5280033) and the Prince of Songkla University for financial support. The authors also thank Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBatovska, D., Parushev, St., Slovova, A., Bankova, V., Tsvetkova, I., Ninova, M. & Najdenski, H. (2007). Eur. J. Med. Chem. 42, 87–92.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Suwunwong, T., Chantrapromma, S. & Karalai, C. (2010). Acta Cryst. E66, o2559–o2560.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGu, B., Ji, W., Huang, X.-Q., Patil, P. S. & Dharmaprakash, S. M. (2009). Opt. Express, 17, 1126–1135.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJung, Y. J., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron, 27, 861–867.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrasad, Y. R., Kumar, P. R., Smile, D. J. & Babu, P. A. (2008). ARKIVOC, 11, 266–276.  CrossRef Google Scholar
First citationSaxena, H. O., Faridi, U., Kumar, J. K., Luqman, S., Darokar, M. P., Shanker, K., Chanotiya, C. S., Gupta, M. M. & Negi, A. S. (2007). Steroids, 72, 892–900.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o1575–o1576.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol, 25, 503–508.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds